본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%ED%8E%98%EB%A6%AC%EC%9E%90%EC%84%B1%EC%B2%B4
최신순
조회순
페리자성체의 새로운 특성 발견
우리 대학 물리학과 김갑진 교수와 이상민 교수 공동연구팀이 희토류-전이금속 페리자성체 필름에서 자화를 결정하는 에너지 레벨에 따른 새로운 특성과 스핀-글라스 현상을 관측하였다고 밝혔다. 두 연구팀은 수직자기이방성이 있는 희토류-전이금속 페리 자성체/비자성금속 필름 구조에서 면내 방향의 외부 자기장을 인가하여 측정 에너지 레벨이 다른 분석 방법에 따라 다른 반응을 확인하였으며, 저온에서 스핀상태가 굳는 현상을 확인하였다. 이는 기존 희토류-전이금속 페리 자성체 관련 연구 결과들이 분석법에 따라 상이된 결과를 보여준 이유를 설명 할 수 있는 결과로써 관련 연구들이 고려하고 나아갈 방향을 시사하였다. 우리 대학 물리학과 박지호 연구원과 물리학과 김원태 연구원이 공동 제1저자로 참여한 본 연구는, 우리 대학 신소재공학과 박병국 교수팀, GIST 전기전자컴퓨터공학부 함병승 교수팀, KBSI 조영훈 박사팀의 공동연구로 진행되었으며, 권위 있는 국제학술지 ‘네이처 커뮤니케이션(Nature Communications)’에 9월 21일 온라인 게재됐다. (논문명 : Observation of spin-glass-like characteristics in ferromagnetic TbCo through energy-level-selective approach) 기존의 연구들은 희토류와 전이금속의 자화를 유도하는 전자의 에너지 레벨을 고려하지 않고 분석을 하거나 두 개의 자화를 거시적인 관점에서만 해석한 연구 결과들이 주를 이루었다. 이에 따라 전반적인 에너지 레벨에 따른 분석과 미시적인 관점을 통한 측정 및 분석이 필요한 상황이었다. 이번 연구에서 연구팀은 서로 다른 에너지 레벨(페르미 레벨(EF), EF~1.55 eV/3.1 eV, whole energy level)에서의 특성을 4가지의 측정 방법을 통하여 분석하였다. 전이금속의 자화가 지배적인 페르미 레벨에서는 면내 방향의 외부 자기장에 빠르게 반응하는 반면 희토류의 자화가 지배적인 에너지 레벨에서는 매우 느리게 반응하는 것을 확인하였다. 또한, 위와 같은 현상이 일어나는 것을 기반으로 온도를 20 K 까지 낮추었을 때에는 스핀 방향이 굳는 스핀-글라스와 같은 특성이 나타나는 것을 관측하였다. 본 결과는 다른 에너지 레벨에서 자성 특성이 유도되는 물질들로 이루어진 자성체를 분석하는 방향을 시사하며, 페리자성체가 스핀-글라스로써 사용될 수 있는 가능성을 제시하였다. 한편 이번 연구는 KAIST 글로벌 특이점 연구사업, 한국연구재단 선도연구센터/중견연구자지원사업의 지원을 받아 수행됐다.
2022.10.17
조회수 5288
김갑진 교수, 초고속 동작 자기메모리 핵심 기술 개발 성공
〈 김 갑 진 교수 〉 우리 대학 물리학과 김갑진 교수와 고려대학교 이경진 교수 연구팀이 차세대 자구벽 기반 자기메모리의 속도를 획기적으로 향상시키는 기술을 개발했다. 이 연구는 물리·재료 분야 최고 권위의 학술지인 네이처 머티리얼즈(Nature Materials) 9월 25일자에 게재됐다. 현재 사용되는 메모리 소자인 D램(D-RAM)과 S램(S-RAM)은 속도는 빠르나 전원이 꺼지면 메모리가 사라지는 휘발성 특성이 있고, 플래시 메모리(Flash memory)는 비휘발성이나 속도가 느리고, 하드 디스크 드라이브(HDD)는 용량은 크나 전력 사용량이 크고 충격에 약하다는 한계가 있다. 기존 메모리의 단점을 해결하기 위해 ‘자구벽 기반 자기메모리’를 개발 중이다. 자구벽 메모리의 핵심 동작원리는 전류에 의한 자구벽 이동이다. 자성 나노선을 사용하여 비휘발성 특성을 확보하고, 기계적 회전을 없앰 으로써 전력사용량을 줄인 고집적․저전력의 차세대 메모리이다. 그러나 현재까지 연구결과, 자구벽 메모리의 동작 속도는 최대 수백 m/s로 속도에 한계가 있고, 이는 자구벽이 회전하면서 움직이는 ‘워커붕괴현상*’ 때문이라고 알려져 있다. 따라서 자구벽 메모리의 실용화를 위해 워커붕괴현상을 제거하여 동작 속도를 높일 수 있는 핵심기술 개발이 요구됐다. 자구벽 메모리 연구는 대부분 ‘강자성체’ 물질을 사용했으며, 강자성체의 경우 자구벽이 회전하는 워커붕괴현상을 피할 수 없다. 연구팀은 자기메모리 연구에 ‘페리자성체’인 GdFeCo를 사용한 결과 특정조건을 만족할 경우 워커붕괴현상을 없앨 수 있는 원리를 발견했고, 이를 이용해 자구벽의 이동 속도를 상온에서 2 km/s 이상까지 증가시키는데 성공했다. 자구벽 메모리는 고집적·저전력·비휘발성을 갖춘 메모리로서 이번 연구로 발견한 초고속 동작 특성이 추가된다면 하드디스크를 뛰어넘는 차세대 메모리가 될 것으로 기대된다. 김갑진 교수는 “이번 연구는 페리자성체의 각운동량이 0인 지점에서 나타나는 새로운 물리 현상을 발견했다는 점에서 의미가 크고, 향후 차세대 메모리 구현을 앞당길 수 있을 것으로 기대된다”고 밝혔다. 이 연구는 한국연구재단의 신진연구자지원사업, 선도연구센터지원사업(응집상 양자 결맞음 연구센터)과 DGIST 위탁연구(바이오자성 글로벌 연구센터) 등의 지원을 받아 수행됐다. □ 그림 설명 그림1. 페리자성체를 이용한 자구벽 메모리 소자의 개념도 그림2. 자구벽 속도 측정 소자의 개략도 및 실험 결과
2017.10.20
조회수 13819
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1