본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%ED%8F%AC%EC%8A%A4%EC%BD%94
최신순
조회순
서성배 교수, 스트레스 세포(CRF 세포) 변화 초 단위 관찰 성공
〈 서성배 교수 〉 우리 대학 생명과학과 서성배 교수 연구팀이 스트레스에 따른 몸의 반응을 조절하는 일명 부신피질 자극 호르몬 방출인자, 일명 ‘스트레스 세포 (CRF 세포)’의 새로운 역할을 밝혀냈다. 연구팀은 부정적 판단을 유도하는 외부 자극이 발생할 때 CRF 세포가 활성화되고 반대로 긍정적인 외부자극을 줄 때 억제되는 현상을 초 단위로 측정하는 데 성공함으로써 기존보다 확대된 CRF 세포의 역할이 있다는 사실을 밝혔다. 이는 동물의 본능적 감정 판단에 대한 실마리가 될 수 있는 결과로, 우울증이나 불안장애, 외상후 스트레스 장애 등의 치료제 개발에 새로운 단서를 제시할 수 있을 것으로 기대된다. 김진은 박사과정이 1저자로 참여한 이번 연구 결과는 국제 학술지 ‘네이처 뉴로사이언스(Nature Neuroscience)’ 4월호 22권에 게재됐다. (논문명 : Rapid, biphasic CRF neuronal responses encode positive and negative valence) 자연환경에서 동물은 천적을 만나면 빠르게 도망가지만 좋아하는 음식을 발견하면 자연스럽게 다가가는 선천적 행동 양식을 보인다. 도망가거나 이끌리는 본능적 행동은 주어진 특정 자극을 부정적이거나 긍정적으로 판단하는 두뇌에 의해 결정된다. 시상하부-뇌하수체-부신 축(Hypothalamus-Pioituitary-Adrenal Axis, 이하 HPA Axis)은 심리적, 물리적 스트레스에 대한 우리 몸의 생리학적 반응을 조절하는 영역이다. 이 HPA Axis를 조절하는 것이 흔히 스트레스 조절인자로 알려진 ‘부신피질 자극 호르몬 방출인자(Corticotropin Releasing Factor, 이하 CRF)’이다. 시상하부 영역의 부신피질 자극 호르몬 방출인자를 방출하는 세포는 다양한 스트레스에 의해 자극돼 혈액의 코티졸 인자를 증가시키는 연쇄반응을 유도하고 동물의 생리학적 신진대사 상태를 유지하는 신경내분비 조절의 중추로, 흔히 스트레스 세포로 알려져 있다. 이 CRF 세포가 활성화되면 동물의 부정적 감정이 커진다는 가설은 예전부터 있었지만 약 30분 단위로만 측정할 수 있고, 쥐 등의 실험체를 부검해야만 호르몬의 변화를 파악할 수 있다는 한계가 있어 CRF 세포의 활성도가 스트레스성 자극, 특히 좋은 자극에 대해 초 단위로 어떻게 변화하는지 파악이 어려웠다. 연구팀은 뉴욕대와의 공동연구를 통해 생쥐 두뇌의 시상하부 영역의 CRF 세포의 활성도를 실시간으로 측정하는 칼슘이미징 기술 중 파이버포토메트리(fiberphotometry)를 도입했다. 연구팀은 부정적, 긍정적 감정의 판단을 유도하는 다양한 자극에 쥐를 노출해 세포의 반응성을 관찰했다. 그 결과 생쥐를 물에 빠뜨리거나 날아오는 새를 모방한 시각적 자극, 천적의 오줌 냄새 등 위협적 외부 자극에 의해 쥐가 도망할 때 CRF가 빠르게 활성화되는 것을 확인했다. 반대로 맛있는 음식, 암컷 쥐 등 긍정적 판단을 유도하는 자극에 노출했을 때 CRF 활성도가 억제되는 양방향성의 특징을 규명했다. 서성배 교수는 “음식 냄새와 시각적 자극에 의해 쥐들의 행동이 유도되기 전부터 CRF 세포가 감소하는 부분이 흥미롭다”라고 말하며 그 이유를 설명했다. “시상하부의 CRF 세포가 이러한 예측에 의한 기능을 보인다는 것은 그간 알려진 시상하부 영역의 세포들과는 차별성이 있는 역할이고, 쥐들이 좋은 자극에 노출 되면 CRF 세포 활성도가 감소하는 점도 혁신적인 패러다임의 전환이다”라고 말했다. 연구팀은 생명과학과 김대수 교수 연구팀과의 협력으로 빛을 이용해 특정 세포의 활성을 조절할 수 있는 광유전학을 적용했다. 이를 통해 CRF 세포를 자극해 인위적으로 특정 환경을 싫어하거나 좋아하게 만들 수 있음을 확인했다. 이 결과는 CRF 세포의 활성도가 대상에 대한 선호도 판단에 중요한 역할을 할 수 있다는 것을 증명했다. 김진은 연구원은 “시상하부에서 다양한 세포와 복잡하게 얽힌 CRF 세포의 활성도를 측정하기 위해 칼슘이미징이라는 새 기술을 도입함으로써 기존 기술적 한계를 극복했다”라며 “CRF 호르몬의 아미노산 서열이 밝혀진 이래 40여 년 동안 느린 내분비 조절 기능만으로 알고 있던 CRF의 역할에 대한 이해를 새 기술을 통해 넓혔다는 의의가 있다”라고 말했다. 이번 연구 결과는 호르몬 방출을 통해 시상하부-뇌하수체-부신 축(HPA axis)을 조절한다는 CRF의 기존 기능을 넘어, CRF 세포가 다양한 감각적 자극에 대한 긍정 또는 부정적 판단을 통해 적절한 행동 반응을 조절하는 역할을 할 수 있음을 시사한다. 서성배 교수는 “우울증, 불안증, 외상후 스트레스 장애 등의 질환이 스트레스와 관련이 높다는 사실을 밝혔다”라며 “CRF 세포 활성도를 생쥐를 통해 실시간 측정함으로써 우울증 치료제, 약물의 효과를 시험하는 데 적용할 수 있을 것이다”라고 말했다. 이번 연구는 KAIST 신임교원 정착 연구비, KAIST 석박사 모험연구 사업, 포스코 청암재단 포스코 사이언스 펠로우십의 지원을 통해 수행됐다. □ 그림 설명 그림1. 광유전학을 통한 시상하부 CRF 세포의 활성도 인위적 조절 그림2. 시상하부 CRF 세포의 양방향성의 활성도와 인비보 칼슘이미징모식도 (위) 시각적 위협, 공격성이 있는 쥐로부터의 위협 (나쁜 자극)과 음식, 새끼쥐 (좋은 자극)에 이의한 시상하부 CRF 세포의 활성화 혹은 억제에 대한 예시. (아래)
2019.04.18
조회수 13695
장대준 교수, 형상 조절 가능한 압력탱크 상용화 성공
〈 (주)래티스태크놀로지 박근오 사장, KAIST 유화롱 연구원, 장대준 교수 〉 우리 대학 기계공학과 장대준 교수와 폴 베르간(Pål G. Bergan) 교수(2009년~2015년 재직, 현재는 은퇴) 연구팀이 개발한 자유자재로 형상을 조절할 수 있는 격자형압력탱크 기술이 상용화에 성공해 울산항 청항선의 LNG 연료탱크(15m3, 9기압)에 적용됐다. 격자형압력탱크라 불리는 이 기술은 내부 격자구조를 통해 압력을 견디는 방식으로 기존의 실린더형이나 구형으로만 가능했던 압력용기 기술의 한계를 극복해 압력용기 설계의 새로운 표본을 제시할 것으로 보인다. 연구팀은 2011년에 원천 특허 출원 이후 2012년부터 포스코와 협업을 통해 상용화에 착수해 7개의 국제인증과 4개의 시험탱크를 성공적으로 제작 및 시험해 기술의 적용 가능성을 입증했다. 이 기술은 KAIST 기술창업 기업인 ㈜래티스테크놀로지에 이전돼 상용화가 추진됐고, 지난 25일 청항선의 LNG 연료탱크로 채택됐음을 확정했다. 연구팀의 기술은 친환경 선박의 LNG 및 액체수소(LH2) 연료 저장 탱크에 활용할 수 있다. 대형 선박 1척은 자동차 5천 대 분량의 배기 가스량을 분출한다. 자동차에 대한 강력한 배기가스 규제와 달리 대양을 운항하는 대형 선박은 그동안 배기가스 규제가 없어 저품질의 중질류를 연료로 사용해 황산화물, 질소 산화물, 미세먼지, 이산화탄소 등을 대량으로 배출해 왔다. 이에 UN 산하의 국제해사기구(IMO)는 대형 선박의 배기가스에 대한 규제를 매년 강화하고 있으며 특히 2020년까지 선박 연료의 황 함유량을 0.5%, 2025년까지 이산화탄소 배출량을 50% 감축하는 규제를 발표했다. 이러한 목표 달성을 위해서는 선박 연료가 LNG와 액체수소로 바뀌어야 하는데 이 연료를 저장하는 기술이 가장 큰 기술적 및 경제적 걸림돌이었다. 격자형압력탱크는 이러한 걸림돌을 제거할 이상적인 압력탱크기술로 인정받았고 이번 적용을 통해 상용화에도 성공했다. 기존의 구형 또는 실리콘형 압력 탱크는 풍선과 유사하게 압력 하중을 막응력(Membrane Stress)으로만 견디기 때문에 표면에 작은 결함들이 성장하면서 전체적으로 파괴되거나, 크기가 커지면서 표면 두께가 증가해 용접이 어려워져 대형화에 한계가 있었다. 특히 실린더 주위는 버려지는 공간이 돼 다수의 실린더를 사용할 경우 실질적 저장 공간이 절반 이하로 떨어지게 되는 공간 효율성 문제를 해결하는 데 어려움이 있었다. 연구팀은 격자구조를 내부에 적용해 기존 압력 용기와는 전혀 다른 설계 이론을 개발했다. 내부 압력을 받는 마주보는 두 면을 격자구조로 연결하고 용기 표면은 보강재를 사용해 굽힘 응력(Bending Stress)으로 압력을 견디게 했다. 또한 레고 블록 쌓듯이 규칙적인 격자구조를 반복적으로 사용해 단순하고 일관적인 방법으로 대형화를 가능하게 했다. 이러한 설계 구조는 여러 가지 장점을 갖는다. 구조적 다중성으로 안전도를 크게 높일 수 있고 탱크가 커져도 구조의 두께가 유지되며 최대의 공간 효율성을 보장한다. 그밖에도 격자 구조가 내부 유체의 움직임을 제한해 선박용 LNG 저장 탱크의 가장 큰 숙제인 슬로싱(sloshing, 탱크 내부의 유체의 움직임에 의한 하중) 현상과 피뢰파괴 위험을 획기적으로 낮췄다. 장 교수 연구팀과 ㈜래티스테크놀로지 기술팀은 경량화와 경제성을 중점에 두고 상용화 개발 연구를 수행했다. 내부 격자 구조가 너무 밀집되면 탱크는 가벼워지지만 제작이 어려워지고 경제성이 떨어진다. 반면 다수의 실린더를 단일 격자형 압력용기로 대체한다면 탱크 자체 경제성 뿐 아니라 배관, 전계장 등의 부수적 비용과 운용의 복잡성을 낮출 수 있다. 연구팀은 구조 및 생산 최적화를 통해 다수의 실린더를 단일 탱크로 대체하면서 중량과 비용은 감소시키는 격자형압력탱크를 개발했다. 장 교수는 “압력용기는 물질과 에너지를 저장하는 가장 기본적인 장치로 가정부터 산업까지 다양한 곳에 필요해 원하는 형상의 압력탱크인 격자형압력탱크의 응용 범위는 매우 넓다”며 “LNG 추진 선박용 연료 탱크 뿐 아니라 육상 산업 설비, 철도, 차량 등에 적용 가능할 것이다”고 말했다. 이번 연구는 포스코 산학공동연구 및 중소기업청 시장창출형 창조기술개발사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 격자형압력탱크의 내부 구조 그림2. 다양한 크기와 형상의 격자형압력탱크 그림3. 24제곱미터 실린더 탱크와 22제곱미터 격자형압력탱크 비교 사진 그림4. 6개의 실린더와 1개의 격자형압력탱크를 장착한 크루즈선
2018.05.30
조회수 13720
김재경 교수, 수학 통해 암과 생체시계의 핵심 연결고리 발견
〈 이번 연구에 참여한 김재경 교수와 버지니아 공대 연구팀 〉 우리 대학 수리과학과 김재경 교수가 미분방정식을 이용한 수학적 모델링을 통해 생체시계가 암 억제 핵심 물질인 p53을 24시간 주기로 변화시키는 원리를 예측했다. 그리고 김재경 교수의 수학적 모델링은 미국 버지니아 공대 칼라 핀키엘스타인(Carla Finkielstein, 아르헨티나) 교수 연구팀의 실험을 통해 검증돼 생체시계와 암 사이에 중요한 연결고리가 있음이 증명됐다. 이번 연구 결과는 미국의 저명 학술지 미국국립과학원회보(PNAS) 11월 9일자 온라인 판에 게재됐다. 뇌 속의 생체 시계는 우리가 24시간 주기에 맞춰 살 수 있도록 행동과 생리작용을 조절한다. 밤 9시가 되면 뇌 속의 멜라토닌 호르몬이 분비를 유발해 일정 시간에 수면을 취하게 하는 등 세포분열부터 운동 및 학습 능력 등 다양한 생리 작용에 관여한다. 만성적 야근, 교대 근무 등으로 인해 생체 시계와 실제 시간이 충돌해 생체 시계의 교란이 생기면 당뇨, 암, 심장병 등 다양한 질병을 유발할 수 있다. 지난 2014년 김 교수가 버지니아 공대의 칼라 핀키엘스타인 교수 연구팀과 만났을 때 핀키엘스타인 교수 연구팀은 암 억제물질인 p53이 24시간을 주기로 변화함을 관찰했지만 어떤 원리로 생체시계가 p53의 24시간 주기 리듬을 만들어내는지는 알지 못하는 상태였다. p53이 세포의 조절 시스템 중에서도 매우 복잡한 시스템으로 구성돼 실험만을 통해 원리를 밝혀내기엔 많은 시간과 인력이 소모되기 때문이다. 김 교수는 문제 해결을 위해 수리모델링을 이용한 컴퓨터 시뮬레이션을 통해 수백만 경우의 가상 실험을 실시했다. 시행착오에 기반한 전통적 실험 대신 수리모델을 이용함으로써 비용, 시간, 인력 등을 줄일 수 있었다. 김 교수는 이 과정에서 생체 시계의 핵심 역할을 하는 물질인 Period2 단백질이 p53의 생체리듬과 깊은 관련이 있음을 밝혔다. 세포는 크게 핵과 세포질 두 가지 성분으로 나뉜다. p53은 핵과 세포질에 모두 존재할 수 있는데 이 중 핵 안으로 p53이 들어가면 안정화돼 분해가 느리게 일어난다. 김 교수는 p53 단백질을 핵 안으로 끌고 들어가는 물질이 생체 시계의 핵심 역할을 하는 Period2 단백질임을 예측했다. 이러한 김 교수의 수리모델을 통한 예측들은 핀키엘스타인교수 연구팀에 의해서 실험으로 검증돼 생체시계와 암 사이의 핵심 연결 고리를 발견할 수 있었다. 이번 연구는 p53 단백질을 정상화하는 수많은 항암제들이 투약 시간에 따라 효과가 달라졌던 원인을 규명하고 최적의 항암제 투약 시간을 밝히는 데 중요한 역할을 할 것으로 기대된다. 연구팀은 생체시계가 불안정한 교대 근무 직종 종사자들이 암 발병 확률이 높아지는 원인 규명 및 치료법 개발에 역할을 할 것으로 예상된다고 밝혔다. 김 교수는 “간호사, 경찰 등 교대 근무로 인해 고생하시는 분들이 좀 더 건강한 생활을 할 수 있도록 수학을 통해 조그만 기여를 하게 돼 기쁘다”며 “이번 성과를 통해 우리나라에서 아직은 부족한 생물학과 수학의 교류가 활발해지길 기대한다”고 말했다. 미국 버지니아 공대와 공동으로 진행한 이번 연구는 포스코 청암 재단, 미국과학연구재단, 한국연구재단의 신진연구자 지원 사업 등의 지원을 받아 수행됐다. □ 그림 설명 그림1. 수학과 실험을 통해서 밝혀진 생체시계의 핵심 단백질 Period2(Per2)와 암 억제 핵심 물질인 p53의 복잡한 상호작용 그림2. 이번 연구에서 사용된 수리모델의 일부
2016.11.10
조회수 40155
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1