본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%ED%94%8C%EB%9F%AC%EA%B7%B8%EC%95%A4%ED%94%8C%EB%A0%88%EC%9D%B4
최신순
조회순
KAIST 설명가능 인공지능연구센터, 플러그앤플레이 방식의 설명가능 인공지능 프레임워크 공개
KAIST 설명가능 인공지능연구센터(센터장 최재식 교수)는 별도의 복잡한 설정이나 전문 지식 없이도 손쉽게 AI모델에 대한 설명성을 제공할 수 있는 플러그앤플레이(Plug-and-Play) 방식의 설명가능 인공지능 프레임워크를 개발해, 이를 27일 오픈소스로 공개했다. 설명가능 인공지능(Explainable AI, 이하 XAI)이란 AI 시스템의 결과에 영향을 미치는 주요 요소를 사람이 이해할 수 있는 형태로 설명해주는 제반 기술을 말한다. 최근 딥러닝 모델과 같이 내부 의사 결정 프로세스가 불투명한 블랙박스 AI 모델에 대한 의존도가 커지면서 설명가능 인공지능 분야에 대한 관심과 연구가 증가했다. 그러나 지금까지는 연구자와 기업 실무자들이 설명가능 인공지능 기술을 활용하는 것이 몇 가지 이유로 쉽지 않았다. 우선, 딥러닝 모델의 유형별로 적용 가능한 설명 알고리즘들이 서로 달라서 해당 모델에 적용할 수 있는 설명 알고리즘이 무엇인지 알기 위해서는 XAI에 대해 어느 정도 사전지식이 필요하기 때문이다. 두번째로, 대상 모델에 적용할 수 있는 설명 알고리즘을 파악하더라도, 각 알고리즘마다 다른 하이퍼 파라미터를 어떻게 설정해야 최적의 설명 결과를 얻을 수 있을지 이해하는 것은 여전히 어려운 과제이다. 세번째로는 적용된 다수의 설명 알고리즘들 중에 어떤 알고리즘이 가장 정확하고 신뢰할 수 있는 것인지를 정량적으로 평가하기 위해서 또다른 툴을 이용해야 하는 번거로운 과정이 뒤따라야 했다. 이번에 오픈소스로 공개된 플러그앤플레이 설명가능 인공지능 프레임워크(Plug-and-Play XAI Framework, 이하 PnPXAI 프레임워크)는 이러한 어려움을 해결하고자 개발되었으며, AI의 신뢰성이 중요한 다양한 AI시스템 연구개발 현장에서 유용한 도구로 활용될 것으로 기대된다. PnPXAI 프레임워크는 적용 가능한 설명알고리즘을 자동으로 추천하기 위해 모델 구조를 인식하는 탐지모듈(Detector)과 적용가능한 설명 알고리즘을 선별하는 추천모듈(Recommender), 설명 알고리즘을 최적화하는 최적화모듈(Optimizer) 및 설명 결과 평가모듈(Evaluator)로 구성되어 있다. 사용자는 ‘자동설명(Auto Explanation)’ 모드에서 대상 모델과 데이터만 입력하면 설명 알고리즘의 시각적 결과(히트맵 또는 모델 결과에 영향을 끼친 중요한 속성들)와 설명의 정확도를 한번에 확인할 수 있다. 사용자들은 자동설명 모드를 통해 XAI에 대한 기본지식과 사용법을 숙지한 이후에는 프레임워크에 포함된 설명 알고리즘과 평가지표를 원하는 방식으로 자유롭게 활용할 수 있다. 현재 프레임워크에는 이미지, 텍스트, 시계열, 표 데이터 등 다양한 데이터유형을 지원하는 설명 알고리즘들이 제공되고 있다. 특히, 서울대학교(2세부 연구책임자 한보형교수)와 협력을 통해 뇌MRI 기반 알츠하이머병 진단모델에 대한 반예제 설명 알고리즘을 지원하였고, 서강대학교(3세부 연구책임자 구명완교수)와 공동연구를 통해 마비말장애 진단모델에 PnPXAI 프레임워크의 설명 알고리즘을 적용하여 AI 기반 의사결정지원 시스템에서 설명성을 성공적으로 구현하기도 했다. 또한, 한국전자통신연구원(4세부 연구책임자 배경만박사)에서 개발한 LLM(대규모언어모델) 생성결과의 사실성을 검증하는 알고리즘을 프레임워크에 통합하는 등 지원 범위를 지속적으로 확장하고 있다. KAIST 설명가능 인공지능연구센터 최재식 센터장은 “기존 설명가능 인공지능 도구들의 한계를 해결하고, 다양한 도메인에서 실질적으로 활용하기 쉬운 도구를 제공하기 위해 국내 최고의 연구진과 수년간 협력한 성과”라며, “이 프레임워크 공개를 통해 AI 기술의 신뢰성을 높여 상용화에 기여하는 것은 물론, 우리 연구센터가 설명가능 인공지능 분야의 글로벌 연구 생태계를 선도하는 중요한 발판을 마련했다는 점에서 의의가 있다”고 밝혔다. PnPXAI 프레임워크는 현재 국내 및 국제특허 출원을 완료했으며, Apache 2.0 라이선스를 준수하는 경우 누구나 깃허브 페이지[링크]를 통해 사용할 수 있다. 한편, 이 연구는 2022년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구이다. (No. RS-2022-II220984, 플러그앤플레이 방식으로 설명가능성을 제공하는 인공지능 기술 개발 및 인공지능 시스템에 대한 설명 제공 검증)
2024.12.27
조회수 1174
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1