본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%ED%95%AD%EC%83%9D%EC%A0%9C
최신순
조회순
저렴한 촉매로 간단하게 항생제 만드는 전략 개발
자연에 풍부한 탄화수소를 원료로 페니실린 등 항생제를 합성할 수 있는 새로운 촉매가 나왔다. 우리 대학 화학과 장석복 특훈교수(기초과학연구원 (IBS) 분자활성 촉매반응 연구단장) 연구팀은 서상원 전(前) 기초과학연구원 차세대 연구 리더(現 DGIST 화학물리학과 교수)와의 협업으로 경제적인 니켈 기반 촉매를 이용해 탄화수소로부터 항생제 원료물질인 ‘카이랄 베타-락탐’을 합성하는 화학반응을 개발했다. 1928년 영국의 생물학자인 알렉산더 플레밍은 푸른곰팡이에서 인류 최초의 항생제인 페니실린을 발견했다. 이후 1945년 영국 화학자 도로시 호지킨이 베타-락탐으로 불리는 고리 화합물이 페니실린을 구성하는 주요 구조임을 밝혀냈다. 베타-락탐은 탄소 원자 3개와 질소 원자 1개로 이루어진 고리 구조(4원환 구조)로 페니실린 외에도 카바페넴, 세팔렉신과 같은 주요 항생제의 골격이기도 하다. 페니실린 구조 규명 덕분에 인류는 베타-락탐 계열의 항생제를 화학적으로 합성할 수 있게 됐다. 하지만 80여 년이 지난 지금도 베타-락탐 합성에는 해결해야 할 과제가 있다. 베타-락탐은 카이랄성(거울상 이성질성)을 지닐 수 있는데, 구성하는 원소의 종류나 개수가 같아도 완전히 다른 성질을 내는 두 유형의 거울상 이성질체가 존재한다는 것이다. 대부분의 시판 베타-락탐 의약품은 유용성을 가진 유형만 선택적으로 제조하기 위해 합성과정에서 카이랄 보조제를 추가로 장착시킨다. 합성 단계가 복잡해지고, 제조 단가가 높아질 뿐만 아니라 보조제 제거를 위해 추가로 화학물질을 투입해야 해서 폐기물이 발생한다는 단점이 있다. 장석복 교수 연구팀은 2019년 탄화수소로부터 합성 가능한 다이옥사졸론과 새로 개발한 촉매를 이용해 카이랄 감마-락탐을 합성하는 데 최초로 성공했다(Nature Catalysis). 당시 5원환 구조인 감마-락탐은 카이랄 선택적으로 합성했지만, 4원환 구조의 베타-락탐을 합성하지는 못했다. 또, 이 반응을 위해서는 값비싼 이리듐 촉매를 써야 한다는 한계도 있었다. 베타-락탐은 감마-락탐보다 더 쓰임이 많지만, 합성에 많은 에너지가 필요해 더 제조가 까다롭다. 이번 연구에서는 상대적으로 저렴하고, 풍부하게 존재하는 니켈 촉매를 이용하여 제조가 까다로운 베타-락탐을 카이랄 선택적으로 합성하는 데 성공했다. 시판 공정에서는 항생제 합성에 필요한 베타-락탐 원료를 8단계에 거쳐 합성했지만, 연구진이 제시한 촉매반응은 보조제 장착 및 제거 과정이 필요 없어 약 3단계 정도로 절차를 대폭 단축할 수 있다. 게다가, 원료물질에 비해 합성된 물질은 시장 가치가 700배가량 높아 고부가가치를 창출할 수 있다. 서상원 교수는 “니켈과 다이옥사졸론의 반응 과정에서 생기는 니켈-아미도 중간체가 베타 위치의 탄소와 선택적으로 반응하여 원하는 베타-락탐 골격을 얻을 수 있다”이라며 “두 유형의 카이랄 베타-락탐 중 한쪽만을 95% 이상의 정확도로 골라 선택적으로 합성할 수 있음을 보여줬다”고 말했다. 한편, 연구진은 천연물 등 복잡한 화학 구조의 물질에 베타-락탐 골격을 높은 정확도로 도입하는 데도 성공했다. 기존 의약품 합성 전략보다 간단하게 후보 약물이 될 새로운 물질을 합성할 수 있다는 의미다. 연구를 이끈 장석복 교수는 “페니실린, 카바페넴과 같은 주요 항생제의 골격인 카이랄 베타-락탐을 손쉽게 합성해냈다”며 “유용 물질의 합성과정을 간소화해 산업에 이바지하는 동시에 신약 개발을 위한 다양한 후보물질 발굴도 견인할 것”이라고 말했다. 연구결과는 8월 25일(한국시간) 화학 분야 권위지인 ‘네이처 카탈리시스(Nature Catalysis, IF 37.8)’ 온라인판에 실렸다.
2023.08.25
조회수 4930
도파민의 성질로 박테리아 생장의 실시간 탐지 기술 개발
우리 몸의 신경전달물질인 도파민의 성질을 이용해 박테리아(병원균)를 쉽게 검출할 수 있는 기술이 우리 대학 연구진에 의해 개발됐다. 생명과학과 정현정 교수, 화학과 이해신 교수 공동연구팀이 도파민의 반응을 이용해 병원균의 생장과 항생제 내성을 광학적으로 측정하고 맨눈으로 실시간 검출하는 기술을 개발했다고 7일 밝혔다. 박테리아의 항생제 내성 문제는 현대인의 건강을 위협하는 위험요인으로 꼽히고 있다. 항생제 내성에 대한 적절한 대처가 없다면 30년 이내에 항생제 내성균에 의한 피해가 암보다 더 현대인의 수명을 줄일 수 있다는 보고서가 발표되기도 했다. 항생제 내성균의 종류가 점차 늘어나면서 미국 질병통제예방센터(CDC)는 연간 최소 200만 명 이상의 환자가 항생제 내성 병원균에 의해 발생하고 있다고 보고했다. 도파민은 대다수 생명체에서 신경전달물질로 사용되며, 산소가 존재하는 환경에서 다른 물질의 도움 없이 자체 중합반응(두 개 이상 결합해 큰 화합물이 되는 일)이 일어난다. 이렇게 중합된 도파민 고분자는 짙은 갈색을 나타내고, 다양한 물질 표면에 흡착해 층을 형성한다. 연구팀은 이러한 도파민의 성질을 이용해 병원균이 생장하는지와 항생제 내성을 갖는지를 육안과 형광으로 동시에 탐지 가능한 기술을 개발했다. 이 기술은 현재 사용되는 디스크 확산 검사나 균 배양 분석에 대비해 시간이 짧고 중합효소 연쇄 반응(PCR 검사)과 비교할 때도 전처리 과정이 필요 없는 간편한 기술이라는 점이 큰 장점이다. 우리 대학 나노과학기술대학원 석박사통합과정 이주훈 학생이 제1 저자로, 나노과학기술대학원 석박사통합과정 류제성 학생과 생명과학과 강유경 박사가 공동 저자로 참여한 이번 연구 결과는 재료과학 분야 국제학술지 `어드밴스드 펑셔널 머티리얼즈(Advanced Functional Materials, IF 16.836)'에 11월 3일 字 온라인 게재됐다. (논문명 : Polydopamine Sensors of Bacterial Hypoxia via Fluorescence Coupling) 도파민의 자체 중합반응에서는 개시제 역할을 하는 산소가 필수적인 존재다. 연구팀은 박테리아가 생장함에 따라 용액 내의 산소를 소모하는 현상을 이용, 박테리아의 생장 정도를 도파민의 중합반응과 연관 지어 관측하는 방법을 개발했다. 또 박테리아의 생장에 영향을 끼치지 않는 소재인 덱스트란으로 형광나노입자를 제조해 실험에 사용했다. 도파민의 자체 중합반응은 용액 내에 존재하는 형광나노입자 표면에 흡착하고 층을 형성해 입자의 화학적, 물리적 성질에 큰 변화를 일으키고 기존에 발생하던 강한 형광 신호를 약하게 만든다. 또한, 도파민과 나노입자가 첨가된 용액 내에서는 도파민의 산화와 자체 중합반응 때문에 용액의 색이 짙은 갈색으로 변한다. 하지만 박테리아가 용액 내에 존재하는 경우 박테리아 생장 때문에 산소가 소모돼 도파민의 자체 중합반응은 저해되고 용액의 색깔은 투명하게 유지된다. 나노입자의 형광 신호 역시 원래의 신호를 유지하게 된다. 연구팀은 이러한 현상을 박테리아의 생장 및 항생제 내성을 탐지하는데 적용할 수 있다는 점에 착안, 항생제에 내성을 가지는 `뉴 델리 메탈로-베타락타마제 1 (NDM-1)'을 발현하는 대장균(E. coli)을 대상으로 실험을 진행했다. 일반적인 대장균의 경우 카바페넴 계열의 항생제인 암피실린에 의해 생장이 크게 저해되는데, 항생제에 내성을 갖는 대장균은 생장이 잘 이뤄진다. 즉 항생제 내성을 가지는지에 따라 소모하는 산소의 양이 달라지고, 이 차이 때문에 도파민의 중합반응 여부를 육안과 광학적 측정으로 확인할 수 있다. 이렇게 살아있는 세포의 활성에 따라 일어나는 도파민의 자체 중합반응은 실제로 인체에 존재하는 다양한 `카테콜아민' 물질에서 나타나는 반응과 깊은 관련이 있다. 일례로 피부에 존재하는 카테콜아민은 자체 중합반응이 왕성하게 일어나 피부의 색에 큰 영향을 주는 멜라닌 색소를 형성하게 되는데 신경계에 존재하는 카테콜아민은 자체 중합반응이 거의 일어나지 않고 단일분자 형태로 존재하여 작용하는 것으로 알려져 있다. 연구팀은 이번 연구 결과를 향후 생체 내에서 도파민 등 카테콜아민의 역할과 작용을 다양한 생체 모델에서 밝히는 연구로 발전시킨다면 매우 흥미로운 연구 결과를 얻을 것으로 기대하고 있다. 정현정 교수는 “이번 연구는 도파민의 자체 중합반응을 생체 시스템에서 규명한 연구로 큰 의미를 가지며, 이를 박테리아 생장 및 항생제 내성의 실시간 검출에 적용할 수 있어 기존의 미생물 배양법보다 신속하게, 그리고 PCR 검사보다 간편하게 진단이 가능해 감염병 확산 예방에 크게 기여할 것으로 기대된다”고 말했다. 한편 이번 연구는 한국연구재단 중견연구자지원사업 및 KAIST 그랜드 챌린지 사업의 지원을 통해 이뤄졌다.
2020.12.07
조회수 43088
전성윤 교수, 8시간 안에 항생제 조합 성능 확인하는 기술 개발
〈 김승규 연구원, 전성윤 교수 〉 우리 대학 기계공학과 전성윤 교수 연구팀(바이오미세유체 연구실)이 미세유체 칩을 이용해 두 개의 항생제 간 시너지 효과를 8시간 만에 검사할 수 있는 기술을 개발했다. 이번 연구는 항생제의 시너지 효과 검사에 최소 24시간 소요돼 활용이 어려웠던 기존 기술을 크게 개선한 것으로, 향후 환자들에게 적절한 항생제 조합치료를 할 수 있는 기반 기술이 될 것으로 기대된다. 김승규 석박사통합과정이 1 저자로 참여하고 생명과학과 정현정 교수 연구팀과 공동으로 수행한 이번 연구는 영국 왕립화학회(Royal Society of Chemistry)에서 발행하는 ‘랩온어칩(Lab on a Chip)’ 3월 21일 자 뒤표지 논문으로 게재됐다. (논문명 : On-chip phenotypic investigation of combinatory antibiotic effects by generating orthogonal concentration gradients, 직교 농도구배 형성을 통한 칩 상 항생제 조합 효과 검사) 항생제에 매우 높은 저항성을 갖는 ‘슈퍼박테리아’의 등장은 세계적으로 병원 및 관련 기관에 큰 위협으로 떠오르고 있다. 지난 2014년에는 세계보건기구(WHO)가 병원균의 항생제에 대한 내성이 심각한 수준에 도달했다고 공식적으로 처음 보고하기도 했다. 이러한 항생제 저항성 병원균을 효과적으로 억제하기 위해 두 종류 이상의 항생제를 섞어 처리하는 ‘항생제 조합 치료’가 주목받고 있지만, 항생제의 종류와 적정한 농도 범위가 큰 영향을 미쳐 정확한 조합을 해야 할뿐더러 치료가 항상 효과적이지는 않다는 문제점이 있다. 따라서 미지의 항생제 저항성 병원균을 대상으로 체외 항생제 조합 검사를 통해 적합한 항생제 조합과 농도 범위를 찾는 것은 매우 중요한 과정이다. 하지만 기존 검사 방식은 항생제 희석 및 샘플 준비 과정이 불편하고 결과 도출까지 24시간 이상이 걸려 대부분 경험적 치료에 의존하고 있다. 연구팀은 문제 해결을 위해 필요한 샘플 양이 수십 마이크로리터에 불과한 미세유체 칩을 이용했다. 머리카락 굵기 수준의 좁은 미세채널에서 유체 흐름을 제어할 수 있는 시스템인 미세유체 칩을 통해 두 개의 항생제 간 농도조합 121개를 단 35분 만에 자동으로 형성했다. 연구팀은 박테리아 샘플을 아가로스 젤과 섞어 미세채널에 주입해 굳힌 뒤 이를 둘러싸는 미세채널들에 각 항생제가 포함된 시약과 항생제가 포함되지 않은 시약을 주입했다. 항생제가 첨가된 채널로부터 항생제가 없는 채널로 항생제 분자들의 확산이 이뤄지고 결국 두 항생제의 조합이 박테리아가 굳혀있는 아가로스 젤에 35분 만에 형성된다. 연구팀은 이후 6시간 동안 억제되는 박테리아의 성장을 현미경을 통해 관찰했다. 연구팀은 서로 다른 항균 원리를 갖는 다섯 종류의 항생제를 두 개씩 조합해 녹농균(Pseudomonas aeruginosa)을 대상으로 항생제 조합 효능 검사를 시행했다. 그 결과 항생제 짝에 따라 각기 다른 항균효과를 확인할 수 있었고 검사한 항생제 짝의 시너지 관계를 분류할 수 있었다. 연구팀의 미세유체 칩 기반의 검사 방식은 번거로운 희석과정과 긴 검사 시간으로 인해 불편했던 기존 검사 방식을 크게 개선했다. 이전에도 전 교수 연구팀은 ‘미세유체 칩 기반의 항생제 효능 신속검사 기술’을 개발해 지난 2월 5일 ‘바이오마이크로플루이딕스(Biomicrofluidics)’지에 피처 기사로 게재한 바 있다. 이번 논문은 그 후속 연구로 미세유체 칩이 차세대 약물 검사 플랫폼으로 활용될 가능성을 제시했다는 의의가 있다. 연구책임자인 전 교수는 “미세유체 칩의 약물 검사 플랫폼으로써의 발전 가능성은 무궁무진하다”라며 “개발한 미세유체 칩이 상용화돼 실제 현장에서 항생제 조합치료를 위해 활용되기를 기대한다”라고 말했다. 이번 연구는 EEWS 기후변화연구허브사업과 교육부 이공분야기초연구사업 및 BK21 플러스프로그램의 지원을 받아 수행됐다. 그림 설명 그림1. Lab on a Chip 표지 이미지 그림2. 본 연구의 미세유체 칩과 분석결과 예시
2019.04.05
조회수 19171
이상엽 특훈교수, 병원균이 항생제에 내성을 갖는 원리 규명
〈 이 상 엽 교수 〉 우리 대학 생명화학공학과 이상엽 교수와 덴마크 공대(DTU) 노보 노르디스크 바이오지속가능센터(Novo Nordist Foundation Center for Biosustainability) 공동 연구팀이 박테리아 병원균이 항생제에 대한 내성을 획득하는 작동 원리를 밝혔다. 이번 연구결과는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 7일자 온라인 판에 게재됐다. 항생제 남용 등으로 인해 항생제 내성균이 점점 더 늘어나고 있다. 이는 인류의 생존을 위협하는 문제로 그 심각성이 전 세계적으로 점점 커지고 있다. 인체 감염균이 항생제 내성을 갖는 방식에는 항생제를 분해하는 효소를 갖거나 다시 뱉어내는 등 다양한 방식이 있다. 그 중 대표적인 것은 항생제 내성 유전자를 획득해 항생제를 무용지물로 만드는 것이다. 내성 유전자는 보통 항생제를 생산하는 곰팡이나 악티노박테리아에서 발견된다. 이는 해당 항생제를 만드는 곰팡이와 박테리아가 자기 스스로를 항생제로부터 보호하기 위해 갖고 있는 것이다. 이 내성 유전자를 인체 감염균이 획득하면 항생제 내성을 갖게 된다. 이러한 사실은 게놈 정보 등을 통해 이미 알려져 있는 사실이다. 그러나 어떤 방식으로 항생제 내성 유전자들이 인체 감염균에 전달되는지는 밝혀지지 않았다. 이상엽 교수와 덴마크 공대 공동 연구팀은 항생제 내성 유전자가 직접적으로 인체 감염균에 전달되는 것이 아니라 연구팀이 캐리백(carry-back)이라고 이름 지은 복잡한 과정을 통해 이뤄지는 것을 규명했다. 우선 인체 감염균과 방선균이 박테리아간의 성교에 해당하는 접합(conjugation)에 의해 인체 감염균의 DNA 일부가 방선균으로 들어간다. 그 와중에 항생제 내성 유전자 양쪽 주위에도 감염균의 DNA가 들어가는경우가 생긴다. 이 상태에서 방선균이 죽어 세포가 깨지면 항생제 내성 유전자와 감염균의 DNA 조각이 포함된 DNA들도 함께 나오게 된다. 이렇게 배출된 항생제 내성 유전자에는 인체 감염균의 일부 DNA가 양쪽에 공존하고 있다. 이 때문에 인체 감염균은 자신의 게놈에 재삽입이 가능해지고 이를 통해 항생제 내성을 획득한다. 연구팀은 생물정보학적 분석과 실제 실험을 통해 이를 증명했다. 이 교수는 “이번 연구결과는 인체 감염 유해균들이 항생제 내성을 획득하는 방식 중 한 가지를 제시한 것이다”며 “병원 내, 외부의 감염과 예방 관리시스템, 항생제의 올바른 사용에 대해 다시 한 번 생각할 수 있는 기회를 제공할 것이다”고 말했다. 이번 연구는 노보 노르디스크 재단과 미래창조과학부 원천기술과(바이오리파이너리를 위한 시스템대사공학 연구사업)의 지원을 받아 수행됐다. □ 그림 설명 그림1. 항생제 내성 유전자가 전달되는 캐리백 현상의 모식도
2017.06.19
조회수 18059
가상세포 이용해 병원균 잡는 항생제 개발
교육과학기술부는 미래기반기술개발사업(시스템생물학 연구)으로 지원한 우리학교 이상엽 교수팀(전남대 이준행교수, 생명(연), 화학(연) 공동연구)이 항생제에 내성을 가진 병원균 퇴치를 위해 시스템생물학을 기반으로 한 신약발굴 방법론을 개발했다고 밝혔다. 이 교수팀은 병원균이 항생제의 오남용으로 인해 치유가 쉽지 않은 점을 감안하여 내성 병원균의 가상세포를 만들어서 이에 대한 특성을 분석하여 제어하는 방법으로 효과를 입증했다. 이번 연구의 대상은 오염된 어패류에 의해 감염되는 패혈증의 병원균인 비브리오 불니피쿠스(Vibrio vulnificus, 이하 비브리오균) 중 내성균 2개이며, 이에 대한 게놈정보와 생물정보를 토대로 가상세포를 구축하였다. 이러한 가상세포가 생존하기 위해 필요한 화학물질은 193개로 분석되었으며, 이중에서 결정적 역할을 수행하는 5개의 화학물질을 추출하였으며, 이에 관여하는 유전자를 제거함으로써 내성 비브리오균의 성장이 억제되는 효과를 증명하였다. 이 교수팀의 연구결과는 올해 1월 18일 세계적 권위의 네이처 자매지인 ‘분자시스템생물학 (Molecular Systems Biology)지’에 논문으로 게재되어 세계적으로도 연구의 우수성이 인정되었다. 이러한 시스템생물학 기법에 근거한 신약발굴 방법론은 다른 내성 병원균은 물론 다양한 인간 질병에도 적용할 수 있는 토대를 마련한 것으로 기대된다.
2011.01.19
조회수 14308
가상세포를 이용한 병원균의 약물표적 예측기술 개발
- 가상세포 시스템 활용한 새로운 항생제 개발에 큰 파급효과 기대 - 분자 바이오시스템(Molecular BioSystems)지 표지 논문으로 게재 생명화학공학과 이상엽(李相燁, 46세, LG화학 석좌교수, 생명과학기술대학 학장)특훈교수팀이 항생제에 내성을 가지는 병원성 미생물의 가상세포를 구축하고 이를 이용해 병원균의 성장을 효과적으로 억제할 수 있는 약물 표적을 예측하는 기술을 최근 개발했다. 김현욱(생명화학공학과 박사과정)연구원의 학위 논문연구로 수행한 이번 연구 결과는 유럽 화학 관련 학술단체 RSC(The Royal Society of Chemistry)에서 발간하는 분자 바이오시스템(Molecular BioSystems)지의 2월호 표지 논문으로 게재됐다. 예전에는 병원성 세균들을 항생제로 쉽게 치유할 수 있었지만 이제는 항생제의 오남용으로 인해서 병원균들은 항생제에 대한 내성을 가지게 됐으며, 따라서 한 번 감염이 되면 치유가 이전보다 쉽지 않다. 그 대표적인 병원균이 바로 아시네토박터 바우마니(Acinetobacter baumannaii)다. 본래 흙이나 물에서 쉽게 발견되는 이 미생물은 항생제에 내성을 갖지 않아 치료가 쉽고 건강한 사람은 잘 감염되지 않는 균이었다. 그러나 지난 10년 동안에 항생제에 내성을 갖는 슈퍼박테리아로 변했으며, 이라크 전쟁에 참전한 다수의 미군과 프랑스군도 이 균에 감염되면서 상처가 낫질 않아 많은 희생을 야기했다. 李 교수 연구팀은 아시네토박터 바우마니의 게놈과 전체적인 대사특성을 알아보기 위해 각종 데이터베이스에 산재해 있는 생물정보와 문헌정보를 컴퓨터에 입력, 분석, 디자인하여 가상세포를 구축하고, 다양한 네트워크 분석기법, 필수 대사반응 및 대사산물 분석 등 융합 방법론을 이용해 이 병원균의 성장을 효과적으로 차단할 수 있는 약물표적을 예측했다. 인간에게는 영향을 미치지 않으면서 병원균에게만 작용하는 최종 약물표적들이다. 필수 대사반응은 생명체가 대사활동을 정상적으로 하기 위하여 반드시 필요한 효소반응을 말하며, 필수 대사산물이란 생명체가 생존하기 위해 대사에 반드시 필요로 하는 화학물질로서 이들을 제거할 경우 이와 반응을 하는 효소들을 모두 억제되는 효과가 있다. 이 약물표적은 가상세포를 구성하고 있는 대사 유전자, 효소 반응, 신진대사들의 기능을 짧은 시간 안에 빠짐없이 체계적으로 검토해 예측함으로써 그 신뢰성을 높였다. 이번 연구 결과는 최근 많은 관심을 받고 있는 시스템 생물학 연구기법을 이용하여, 처음으로 필수 대사물질의 체계적인 발굴을 통해 효과적인 약물표적을 찾고, 나아가 새로운 항생제 개발의 가능성을 열었다는 점에서 높이 평가받고 있다. 또한 병원균에 의한 감염 현상과 신약개발에 큰 공헌을 할 것으로 기대를 모으고 있다. 李 교수는 “현재 수많은 생물의 게놈 정보가 쏟아지고 있지만 이것을 실질적으로 유용한 정보로 전환하는 데에는 아직도 많은 어려움이 있다. 아시네토박토 바우마니의 게놈 정보로부터 의학적으로 실용성이 있는 정보를 재생산했다는 점에서 의의가 있다”며 “특히 이 병원균의 가상세포 개발은 특정 환경에서 필수 유전자나 효소 반응에 대한 대량의 새로운 생물정보를 제공할 수 있는 계기를 마련했다.”고 말했다. 李 교수팀은 교육과학기술부 시스템 생물학 연구개발사업의 지원으로 이번 연구를 수행했으며, 다양한 병원성 균주의 가상세포 개발 및 항생제 약물표적 예측 방법을 특허 출원했다. ▣ 용어설명 ○ 약물표적 : 차단 시 병원성 미생물의 성장을 효과적으로 억제할 수 있는 단백질 효소 및 그와 관련된 화학물질 ▣ (자료1) 가상세포. (자료2) 가상세포로부터 필수대사산물을 예측한 후에, 병원균을 가장 효과적으로 죽일 수 있으면서 동시에 인간에게는 영향을 미치지 않는 약물표적만을 추리는 과정
2010.02.18
조회수 16208
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1