-
해양 속 82%까지 생분해되는 종이 포장재 개발
플라스틱으로 인한 자연환경 오염은 반드시 해결해야 할 전 지구적 난제로 꼽힌다. 특히, 패키징 소재(포장재)는 전체 플라스틱 소비의 30~50%를 차지하여 대체재로서의 생분해성 패키징 소재가 주목받고 있다. 가장 척박하다는 생분해 조건인 해양 속에서 미세플라스틱*을 남기지 않으면서도 높은 성능을 갖춘 생분해성 패키징 소재가 있을까?
*미세플라스틱: 5 mm 이하의 작은 플라스틱 조각으로, 플라스틱의 분해 과정에서 생성되며 바닷속과 해수면을 수십 년 이상 떠다니며 해양환경 오염을 일으키고 있음
우리 대학 건설및환경공학과 명재욱 교수, 생명과학과 양한슬 교수 및 연세대학교 패키징및물류학과 서종철 교수 공동 연구팀이 지속가능한 해양 생분해성 고성능 종이 코팅제를 개발했다고 17일 밝혔다.
일상에서 흔히 사용되는 종이 포장은 친환경 포장재로 인정받지만, 수분 저항성, 산소 차단성, 강도 등에서 매우 제한적인 면이 있다. 종이 포장재의 낮은 차단성을 향상하기 위해 폴리에틸렌(PE), 에틸렌비닐알코올(EVOH) 등이 코팅제로 활용되지만, 이런 물질들은 분해되지 않아 자연환경에 버려지면 플라스틱 오염을 심화시킨다.
이러한 문제에 대응하여 다수의 바이오 기반 물질, 생분해성 플라스틱* 등을 활용한 패키징 소재들이 개발되어 왔으나 패키징 성능이 향상될수록 생분해도가 급격하게 떨어지는 딜레마에 직면해왔다.
*생분해성 플라스틱: 난분해성 플라스틱의 대체재로, 토양, 해양 등 자연환경 또는 산업 퇴비화, 혐기소화 등 인공 조건에서 미생물에 의해 분해되는 고분자 화합물을 말함
연세대 연구팀은 생분해성 플라스틱인 폴리비닐알코올(polyvinyl alcohol)에 붕산(boric acid)을 이용해 고물성 필름을 제작하였으며, 이를 종이에 코팅하여 생분해성, 생체 적합성, 고차단성, 고강도를 갖는 패키징 소재를 구현하는데 성공하였다. 개발된 코팅 종이는 산소나 수증기에 우수한 차단성을 보이며 물리적 강도를 띄었다. 특히 다습한 환경에서도 높은 인장강도를 유지하여 종이의 단점을 획기적으로 극복하였다.
우리 대학 연구팀은 개발한 코팅 종이의 지속가능성을 평가하기 위해 생분해도와 생체적합성을 심층 검증하였다. 실험실에서 생분해가 일어나기 가장 어려운 환경인 해양환경을 모방하여 코팅지의 생분해도를 측정하였다. 물질의 탄소 성분이 이산화탄소로 광물화(mineralization)되는 정도를 111일 동안 분석한 결과 코팅 성분에 따라 59~82% 생분해됨을 밝혀내었다. 전자현미경을 통해 해양 미생물이 코팅 소재를 분해하고 있는 현상을 포착하였고 또한 코팅 소재의 낮은 신경독성을 확인하였고 쥐 생체 반응 실험을 통해 코팅 종이의 높은 생체적합성을 검증하였다.
건설및환경공학과 명재욱 교수는 이번 연구를 통해 “기존 종이 패키징의 한계를 극복하기 위해 지속가능성을 유지하면서도 패키징 성능을 향상시킬 수 있는 코팅 전략을 제시하였으며, 붕산 가교 폴리비닐알코올 코팅지는 인위적인 퇴비화 조건이나 하수처리 시설이 아닌 자연환경에서 생분해되며 저독성 물질이기 때문에 의도치 않게 버려지더라도 환경오염을 심화시키지 않아 잠재적으로 플라스틱 포장재의 지속가능한 대체재가 될 수 있다”고 밝혔다.
또한 "해양 생분해성 고성능 종이 코팅제의 개발은 각 분야에서 선도적인 세 연구팀의 혁신적인 기술이 결합된 결과물이다ˮ 라며 "앞으로도 환경친화적이고 성능이 뛰어난 소재 개발을 위해 노력할 것이다ˮ 라고 전했다.
한편, 고성능 종이 코팅 개발 연구를 주도한 연세대학교 서종철 교수는 “본 연구를 통해 난분해성 플라스틱 포장의 대체가 가능한 친환경 종이포장 기술을 개발하였으며 소재 디자인, 응용, 폐기 등 기초부터 응용 전과정의 체계적인 연구 결과를 기반으로 산업적 응용이 될 것으로 기대한다ˮ 라고 전했다.
이번 연구는 한국연구재단과 농림식품기술기획평가원 등의 지원으로 수행되었으며, 친환경 지속가능과학·기술 분야, 식품과학·기술 분야에서 권위 있는 학술지인 Green Chemistry, Food Chemistry 등에 각각 4월 17일, 2월 19일 온라인으로 출판됐다.
※ 논문명 (1): Boric acid-crosslinked poly(vinyl alcohol): biodegradable, biocompatible, robust, and high-barrier paper coating
(저자 정보 : 최신형(KAIST, 제1 저자), 유슬기(KAIST), 박기태(연세대), 김영주(KAIST), 조용준(KAIST), 박제희(KAIST), 서종철(연세대), 양한슬(KAIST), 명재욱(KAIST, 교신저자) 총 9명)
※ 논문명 (2): Effect of epichlorohydrin treatment on the coating process and performance of high-barrier paper packaging
(저자 정보 : 박기태(연세대, 제1 저자), 최신형(KAIST), Kambiz Sadeghi(연세대), Pradeep Kumar Panda(연세대), 명재욱(KAIST), 김도완(국립강릉원주대학교), 서종철(연세대, 교신저자) 총 7명)
2024.05.17
조회수 4237
-
차세대 친환경 에너지 발전 소자를 통한 해양 모니터링 기술 개발
우리 대학 기계공학과 박인규 교수, 오일권 교수와 한국기계연구원(KIMM) 정준호 박사 공동연구팀이 `차세대 친환경 에너지 발전 소자를 통한 해양 모니터링 기술'을 개발하는 데 성공했다고 20일 밝혔다.
이전에 `다양한 센서 구동을 위한 소형 무선 측정 시스템', `마찰전기 나노발전기를 이용한 해양 에너지 수확 기술', `임프린팅을 통한 고효율 나노구조체 형성 기술'을 개발하는 데 각각 성공했던 공동연구팀은, 표면 나노구조체의 설계와 친환경 소재 선정을 통해 소자 전체 재활용이 가능하며 해양 환경에서 고성능·고안정성을 나타내는 마찰전기 나노 발전기를 구현할 수 있음을 처음으로 보였다.
기계공학과 안준성 박사과정과 김지석 박사과정이 공동 제1 저자로 참여한 이번 연구는 저명 국제 학술지 `어드밴스드 에너지 머터리얼즈(Advanced Energy Materials)' 2022년 8월 온라인판에 출판됐으며, 후면 표지 논문(Back Cover)으로 선정됐다. (논문명 : All-Recyclable Triboelectric Nanogenerator for Sustainable Ocean Monitoring Systems)
최근, 기후 변화와 같은 환경 관련 문제가 전 세계적으로 많이 발생하면서, 온실가스 규제, 친환경 에너지 생산, 재활용 가능한 소자 등 이를 해결하기 위한 연구가 국제사회에서 많은 관심을 받고 있다. 그중에서, 특히 마찰전기 나노발전기(triboelectric nanogenerator, 이하 TENG)는 버려지는 기계적 에너지를 전기 에너지의 형태로 수확하는 친환경 재생에너지 소자로서 많은 연구가 진행되고 있다. 하지만, 현재까지 개발됐던 대부분의 TENG는 버려지는 기계적인 에너지를 수확함으로써 화석 연료 사용 감소에 도움이 되지만, 한편으로는 사용된 전극 혹은 마찰 대전 고분자 소재 폐기 과정에서 수많은 전자 폐기물(electronic waste)을 발생시켜 또 다른 환경 문제를 일으킬 수 있다.
최근에는 이를 해결하기 위해 소자의 일부분이 물에 녹아 분해될 수 있는 친환경 소재 기반 TENG가 연구되고 있지만, 재활용과 응용 분야 관점에서 한계에 부딪혀있다. 첫 번째로, 마찰전기를 발생시키는 대전 물질은 물에 녹아 재활용할 수 있지만, 전자를 수확하기 위한 전극 부분의 재사용은 불가능하다. 두 번째로, 물에 녹는 소자 특성으로 인해 TENG의 가장 유망한 적용 분야인 해양 에너지 수확에 응용이 불가능하다. 세 번째로, 현재까지 개발된 재활용 소자 기반 TENG는 기존 상용 소자 기반 TENG에 비해 10~100배 이상 낮은 에너지 수확 성능과 기계화학적 불안정성을 나타낸다. 따라서, 해양 에너지 수확에 적용할 수 있으며 재활용이 가능한 고성능·고안정성 TENG를 개발하는 것은 차세대 친환경 에너지 수확 및 환경 오염 감소에 큰 발전을 이룰 수 있을 것으로 전문가들은 예상하고 있다.
연구팀은 소자 전체 재활용이 가능하며 기계화학적 내구성이 뛰어난 소재·구조 설계를 통해 해양 환경에서 고성능·고안정성을 나타내는 친환경 TENG를 개발했다. 또한, 수확된 해양 에너지를 통해 배터리를 충전하고, 바다 상태(산도, 염도, 온도, 오일 유출) 및 응급 상황 모니터링에 사용되는 전자 소자와 무선 통신 모듈을 구동했다. 이는 해양 에너지를 수확해 다양한 바다 환경을 모니터링할 수 있는 상용 소자들을 구동할 수 있음을 보인 것에서 그 의미가 크다.
연구를 지도한 박인규 교수, 오일권 교수, 한국기계연구원 정준호 박사는 "개발된 친환경 해양 에너지 수확 소자는 범지구적 에너지 문제를 해결할 수 있을 것으로 기대되고, 재활용 가능한 마찰전기 나노 발전기는 추후 바다 에너지를 넘어 친환경 풍력에너지 수확에도 활용될 수 있을 것이다ˮ라며 "이는 친환경 에너지 시대를 앞당기는 발판이 될 것이다ˮ고 연구의 의의를 설명했다.
한편 이번 연구는 과학기술정보통신부의 재원으로 한국연구재단 창의연구지원사업, 중견연구자지원사업, 극한물성시스템 제조플랫폼기술의 지원을 받아 수행됐다.
2022.09.20
조회수 5612
-
김성용 교수, UN 제2차 세계 해양 환경 평가 보고서 공동 발간
우리 대학 김성용 기계공학과 교수가 공동저자로 참여한 국제연합(United Nations, UN)의 제2차 세계해양환경평가(Second World Ocean Assessment; WOA II) 보고서가 4월 22일 발간됐다.
세계해양환경평가 보고서는 전 세계 해양환경의 현재 상태를 종합적이고 통합적인 과학정보로 기술한 문서로 ʻ국제연합의 지속가능한 발전을 위한 국제해양과학 10개년 계획(United Nations Decade of Ocean Science for Sustainable Development)ʼ을 실질적으로 수행하는 중요한 보고서로 꼽힌다. 유엔(UN)은 각국 정부가 해양환경을 보호하기 위한 공동의 노력을 강화하고 정책결정자들의 의사결정을 지원하기 위해 사회경제적인 측면을 포함한 전 지구적 차원의 해양환경을 평가 및 보고하는 ʻ정규과정(Regular Process)ʼ을 수행해오고 있다. 2009년 열린 제64차 유엔총회에서 정규과정 1차 주기(2010~2014)를 승인해 ʻ제1차 세계해양환경평가(First World Ocean Assessment) 보고서ʼ가 2015년 완성됐다. 김 교수는 1차 보고서의 전문가 그룹으로 참여한 데 이어 2016년부터 4년간 진행된 2차 주기(2016-2020) 세계해양환경평가 보고서 제작에 공동 저자로 참여해 전 세계 300여 명의 다학제간 전문가들과 의견을 공유했다. 총 28장으로 구성된 보고서 중 김 교수는 제5장 해양의 물리적 및 화학적 상태과 제9장 기후 대기 변화에 따른 영향 등 2개의 장을 공동 집필했다.이번 보고서는 전 세계의 해양 환경을 평가하기 위해 추진력(Drivers)-압력(Pressure)-상태(State)-영향(Impact)-반응(Response) 등을 종합한 ʻDPSIRʼ의 개념을 적용한 것이 특징이다. 이를 통해, 전 세계 해양을 환경·경제·사회적 측면을 통합하여 분석했으며, 각 지역 해양환경 특성을 구체화한 유일한 보고서로 평가받고 있다.
또한, 유엔(UN)의 모든 회원국이 해양 평가 및 정책을 결정할 때 가장 먼저 반영해야 할 내용이 담겨 있어 현재까지 발간된 해양 관련 보고서 중 영향력이 가장 큰 학술적 성과로 꼽히고 있다.
김 교수는 "전 지구적인 기후변화, 미세플라스틱, 후쿠시마 원전 오염수의 방류가 화두가 되는 시점에서 국가 간의 경계가 없이 전 세계 영향을 주는 해양에 관해 많은 관심과 연구가 필요하다ˮ라고 강조하며 "본 보고서가 각 국가의 해양상태를 판단하고 정책 입안에 기초자료가 되길 바란다.ˮ라고 소감을 전했다. 김 교수가 공동 저자로 참여한 보고서는 유엔(UN) 홈페이지에서 자세한 내용을 확인할 수 있다.
제2차 세계 해양 환경 평가 보고서 자세히 보기 (클릭☞) https://www.un.org/regularprocess/woa2launch
2021.04.26
조회수 24467
-
김성용 교수, 빅 데이터 통해 아중규모 난류의 고유특성 규명
〈 김 성 용 교수 〉
우리 대학 기계공학과/인공지능연구소 김성용 교수 연구팀이 빅 데이터 분석을 통해 아중규모 난류의 고유한 특성과 원동력을 발견하는 데 성공했다.
이번 연구는 원격탐사장비인 연안레이더와 해색위성을 통해 관측된 해양 표층 대형자료의 빅 데이터 분석을 통해 수 킬로미터 및 수 시간 규모의 해양유체를 이해함으로써 전지구 및 지역 기후변화 예측모델의 개선에 기여할 것으로 기대된다.
이번 연구는 환경유체 및 지구물리분야 국제 학술지인 ‘저널 오브 지오피지컬 리서치-오션스(Journal of Geophysical Research-Oceans)’ 8월 6일자에 두 편의 연계논문으로 게재됐다.
김 교수 연구팀의 유장곤, 이은애 석사가 각 논문의 1저자로 참여했고, 석사 연구 주제의 일부가 관련분야 최상위 학술지에 출간되는 성과를 달성했다.
2012년 美 항공우주국(NASA)은 ‘영원한 바다(Perpetual Ocean)’라는 위성을 이용한 해양관측 자료를 시각화한 프로젝트를 공개했다. 이는 2년 반에 걸친 바다 표면 흐름의 움직임에 대한 자료를 모아 제작된 것으로 그 모습이 마치 화가 빈센트 반 고흐의 ‘별이 빛나는 밤(The Starry Night)’속 하늘의 배경과 유사해 대중의 흥미를 끌었다.
이 ‘영원한 바다’는 중규모(100km 이상의 공간 규모) 수준의 난류운동을 기반으로 한 것으로 김 교수 연구팀은 중규모보다 더 작고 짧은 시공간 규모인 아중규모(1~100km 및 매 시간 규모)에서 해양 난류를 연구했다.
아중규모 난류는 지구물리유체 및 환경유체 분야에서 큰 관심을 받는 분야로 열과 밀도를 포함한 물리적 혼합 및 난류특성에 대한 연구 뿐 아니라 해양 영양분의 표층으로의 전달 및 적조와 엽록소의 번성 등 해양생물, 생태 및 환경 보존의 주요한 물리적 원인으로 주목받고 있다.
전 세계적으로 아중규모 해양 난류는 주로 컴퓨터를 이용한 수치 모델링 연구로 진행되고 있으나, 시공간으로 급격히 변하는 아중규모의 해양유체를 기존 장비 및 기술로 관측하기에는 어려움이 있어 제한적이고 간헐적인 현장 관측만 가능한 상황이다.
연구팀은 원격탐사장비인 연안레이더와 해색위성을 이용해 관측한 1년간의 해수유동장 및 5년간의 엽록소 농도장을 빅 데이터 분석해 해양난류의 고유한 특성을 입증했다.
연구팀은 해양난류 파수영역(wavenumber) 에서의 에너지 스펙트럼의 기울기 변화를 계절과 공간에 따른 변화 관점에서 분석했다.
이를 통해 아중규모 난류의 순방향과 역방향의 에너지 캐스케이드(energy cascade, 난류운동에서 큰 규모에서 작은 규모 또는 작은 규모에서 큰 규모로 에너지가 이동하는 현상)가 일어나고, 에너지가 투입되는 공간규모가 약 10 km이며 이는 경압불안정성(baroclinic instability, 수평방향으로 밀도 변화가 심할 때 중력장에서 불안정해져 이를 복원하기 위해 난류 현상이 발생하는 상태)에 의한 것임을 입증했다.
김 교수 연구팀의 연구결과는 해양물리, 대기 및 기후변화의 전 지구 고해상도 모델링 분야의 아중규모 물리현상의 모수화(参数化, parameterization)에 대한 중요한 기여를 할 것으로 기대된다. 아중규모의 원리를 이해함으로써 방사능, 기름유출과 같은 해양 오염물 추적 등 실제적이고 다양한 응용이 가능할 것으로 보인다.
또한 이번 연구는 우리나라 동해안 극전선의 가장자리에서 활발하게 생성되는 아중규모 소용돌이와 전선의 장기 관측자료를 이용한 것으로, 국내 연안 레이더 및 해색위성을 이용한 대형자료의 분석과 해양물리 및 물리생물의 상호작용 연구의 활성화에 기여할 것으로 예상된다.
이번 연구는 한국연구재단, 한국해양과학기술원 해양위성센터, 해양경찰청 연구센터의 지원을 통해 수행됐다.
□ 그림 설명
그림1. 고흐의 별이 빛나는 밤과 NASA 가 제작한 영원한 바다 사진
그림2. 에너지 스펙트럼의 기울기 변화에 따른 에너지의 순방향 및 역방향 캐스케이드와 에너지가 투입되는 공간 규모를 보여주는 예
그림3. 동해에서 해색위성을 이용해 관측된 표층 엽록소 농도장에서 표현된 아중규모 난류 유동의 예
그림4. 임원지역 표층 해수유동장과 울릉도 남부지역 표층 클로로필 농도장
2018.08.13
조회수 12735
-
박인규, 정연식 교수, 모바일 기기 탑재 가능한 고성능 수소센서 개발
〈 가오민 연구원, 박인규 교수, 조민규 연구원 〉
우리 대학 기계공학과 박인규 교수, 신소재공학과 정연식 교수 공동 연구팀이 폴리스티렌(Polystyrene) 구슬의 자기 조립(self-assembly) 현상을 이용해 고성능의 실리콘 기반 수소센서를 개발했다.
연구팀이 개발한 수소 센서는 제작 과정이 단순하고 비용이 저렴해 모바일 기기에 탑재할 수 있어 전력 소모에 어려움을 겪는 모바일 분야에 기여할 수 있을 것으로 기대된다.
가오 민(Gao Min) 연구원, 조민규 박사후 연구원, 한혁진 박사과정이 참여한 이번 연구는 나노 분야 국제 학술지 ‘스몰(Small)’ 3월 8일자 표지논문에 선정됐다.
청정에너지인 수소 가스는 차세대 에너지원으로 각광받고 있다. 현재도 냉각 시스템이나 석유 정제시설 등 다양한 산업분야에서 활용되고 있지만 무색, 무취의 가연성 물질이기 때문에 조기 발견이 어려워 고성능 수소 센서를 개발하는 것이 중요하다.
그러나 기존 수소 센서들은 부피가 크고 소모 전력이 높으며 제작비용이 상대적으로 높은 단점이 있다.
공동 연구팀은 수백 나노미터 (nm) 직경의 폴리스틸렌 구슬들을 자기조립 현상을 이용해 규칙적으로 실리콘 기판 위에 배열시켰다. 이를 이용해 수십 나노미터 수준의 그물 모양 패턴을 구현해 초소형 고성능 수소 센서를 개발했다.
이 기술은 수소가스가 센서에 노출되면 팔라듐 나노입자와 반응해 팔라듐의 일함수(work function)가 변화하고 그에 따라 실리콘 나노 그물 내 전자의 공핍 영역(depletion region)의 크기가 변화하면서 전기 저항이 바뀌는 원리이다.
이번에 개발한 수소 센서는 최소 선폭 50 나노미터 (nm) 이하의 실리콘 나노 그물 구조 센서를 저비용으로 구현할 수 있다.
일반적으로 수소 센서의 성능은 민감도, 반응속도, 선택성 등에 따라 구분된다. 연구팀의 센서는 0.1%의 수소 농도에서 10%의 민감도와 5초의 반응속도를 기록해 기존 실리콘 기반 수소 센서보다 50% 이상 빠르고 10배 이상 높은 민감도를 보였다.
박인규 교수는 “기존의 값비싸고 복잡한 공정을 거치지 않고도, 단순한 방법으로 초미세 나노패턴 구현이 가능하며, 수소센서 뿐만 아니라 다양한 화학, 바이오센서에도 응용이 가능할 것이다”고 말했다.
과학기술정보통신부의 나노소재기술개발사업, 한국연구재단의 국민위해인자에 대응한 기체분자식별․분석기술개발사업, 해양수산부의 해양수산환경기술개발사업, KUSTAR-KAIST 사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 스몰(Small) 2018년 3월 8일자 Issue 표지논문
그림2. 완성된 수소센서의 일반 사진 (왼쪽), 전자현미경 사진 (중간, 오른쪽)
그림3. 수소 농도 변화에 따른 수소센서의 감지 그래프
2018.04.04
조회수 21261
-
이산화탄소 포집저장기술 상용화 속도낸다
- 이산화탄소의 선박 수송 시 발생하는 증발가스 문제 해법 제시-- 원유값 등 다양한 상황에 따른 최적의 재액화율 이론 정립해 -
지구 온난화의 주범이 되는 이산화탄소를 포집한 후 땅속에 주입해 영구 저장하는 기술이 전 세계적으로 관심을 받고 있는 가운데, KAIST 연구진이 이산화탄소의 선박 수송을 위한 최적의 방법을 제시했다.
우리 학교는 해양시스템공학과 장대준 교수 연구팀이 포집된 이산화탄소의 선박 운송 중에 발생하는 증발가스의 최적화된 처리를 위한 해법을 제시했다.
이로써 이산화탄소를 포집하는 기술과 유전에 저장하는 기술 뿐 아니라 선박 수송에 대한 해법도 제시돼, 포집-수송-저장의 삼박자를 갖춰 이산화탄소 포집저장 기술이 곧 상용화될 것으로 전망된다.
최근 지구온난화에 의한 자연재해 문제가 심각해지면서 유럽을 중심으로 이산화탄소 배출을 줄이기 위한 연구가 확산되고 있다.
이를 해결하기 위해 발전소와 공장 등으로부터 발생하는 이산화탄소를 포집해 지중에 다시 영구적으로 저장하는 기술인 ‘이산화탄소 포집 및 저장(CCS, Carbon Capture and Storage)‘이 대안으로서 각광받고 있다.
우리나라는 2013년부터 포스트 교토의정서가 발효될 경우 이산화탄소 감축 의무를 면하기 어려울 전망이다. 정부는 이에 따라 오는 2030년까지 3200만 톤(전체 감축 전망치의 10%)의 이산화탄소를 감축한다는 목표를 세우고 있고 KAIST 등 국내 연구팀들도 이를 위한 기술 개발 및 실용화를 위한 연구에 속도를 내고 있다.
장대준 교수 연구팀은 지난 2009년 ‘이산화탄소 해상수송 및 주입터미널 프로젝트’를 통해 지중 저장 원천기술을 개발하는데 성공했고 이어, 이번에 액상 이산화탄소 운반선상에서 발생하는 증발가스의 위험성을 인식하고 이를 최적화하는 해법을 제시했다.
장 교수 연구팀은 선박을 이용해 액화 이산화탄소를 운송할 때 저온(-51℃)・고압(6.5bar)의 상태로 운반돼야 하는 점에 주목했다.
상온보다 낮은 온도로 운반되는 액화 이산화탄소 저장용기는 대기의 열 침투로 증발가스가 발생해 내부 압력이 높아져 용기가 파괴될 수 있기 때문이다.
연구팀은 이 같은 문제를 해결하기 위해 압력용기에서 기화된 이산화탄소 가스를 재 액화 처리해 다시 압력용기로 주입하는 방법을 제시하고 이론적으로 모델링했다.
또 원유값, 탄소세, 원유증진회수를 위한 탄소거래비용 등 CCS 기술 도입을 위해 핵심적으로 고려될 사항을 바탕으로, 선박의 증발 가스 재액화율 결정을 위한 최적화된 해법을 고안해 냈다.
장대준 교수는 “저장된 이산화탄소가 해양에서 누출되면 대형사고로 번지게 된다” 며 “저장된 이산화탄소의 압력 거동을 예측하고 발생한 증발가스의 적절한 처리방안을 만드는 것이 상용화를 위한 필수적인 과정”이라고 말했다.
아울러 “이번 연구에서 정립된 이론은 CCS 상용화를 위한 시스템의 최적화와 액상 이산화탄소 운반 선박의 개발에 활용될 것으로 기대 된다”고 강조했다.
한편, 이번 연구는 KAIST 해양시스템공학과 장대준 교수(제1저자 추봉식 박사과정 학생)가 교육과학기술부의 세계수준 연구중심대학(World Class University)과 국토해양부의 지원을 받아 수행했다.
장 교수 연구팀의 이 연구 성과는 환경 분야에서 세계적 학술지로 꼽히는 ‘국제 온실가스 제어(International Journal of Greenhouse Gas Control)지’ 6월 12일자 온라인 판에 실렸다.
그림 1. 저장된 액화 화물에서의 BOG 발생 및 그 영향
그림 2. 증발가스 생성으로 인한 저장용기 내부 압력 변화 및 열팽창으로 인한 액위 변화
그림 3. 누출 시 속도 및 온도 변화에 의한 주변 구조 및 선체에 미치는 영향
그림 4. 누출 시 이산화탄소의 거동 관측 실험
그림 5. CCS-EOR 병행 기술에서 증발가스 재액화가 미치는 영향
2012.06.27
조회수 18301
-
KAIST, 선박 수중폭발 연구 박차
해양시스템공학전공 신영식 교수
- 15일, 국내최초로 모형 선박을 이용해 수중폭발 실험해 -- “우리나라 수중폭발 분야 기초연구에 시발점 될 것” -
KAIST가 국내에서는 처음으로 선박 수중폭발 연구를 본격화한다.
우리 학교 해양시스템공학전공 신영식 교수가 지난 15일 국내 최초로 모형 선박을 이용해 폭약의 수중폭발로 인한 충격이 선박에 미치는 영향을 분석하기 위한 실험을 실시했다.
연구팀은 가로 X 세로 1m X 2m 크기의 알루미늄 재질 모형 선박을 만들어 속도, 가속도, 압력 측정 센서를 부착했다. 그 후, 물에 모형선을 띄운 상태에서 선박과 폭약의 수평, 수직 거리를 바꿔가며 수중에서 폭약을 폭발시켜 각 센서의 응답 데이터를 기록했다.
신 교수 연구팀은 이번 실험을 통해 컴퓨터 시뮬레이션만으로는 얻을 수 없었던 실제 실험 데이터를 얻어냈다. 이 데이터는 컴퓨터 시뮬레이션의 결과와 비교해 계산 값의 검증에 사용될 계획이다.
KAIST는 이번 실험을 계기로 향후 수중폭발 관련 시뮬레이션 기법을 점차 고도화 해 보다 정확한 수중충격에 대한 예측이 가능해질 것으로 기대하고 있다.
아울러 충격 등의 수중폭발 현상에 대한 이해를 높여, 선박의 탑재장비의 생존성 확보를 위한 연구와 내충격성 향상을 위한 설계의 검토, 변경의 기초자료 등으로 활용할 예정이다.
연구팀은 이번 결과를 바탕으로 근접수중폭발에 의해 발생하는 현상 중 하나로 선박의 침몰을 유발할 수 있는 휘핑현상을 재현하는 실험을 계획하고 있다. 이 연구가 완료되면 휘핑현상에 대한 보다 정확한 이해를 통해 선박의 디자인을 검토, 보완해 함정과 승조원의 생존능력을 확보하는 데 크게 기여할 수 있을 것으로 예상된다.
신영식 교수는 “미국, 러시아 등 군사강국에서는 실제 함선을 이용한 수중폭발실험이 활성화돼 있어 함정의 내충격성 강화 및 탑재장비의 생존성여부에 관한 자료로 폭넓게 활용되고 있지만 군사기밀로 다뤄져 공개되지 않고 있다“며 ”국내 최초로 실시되는 이번 수중폭발 실험은 이 분야 기초연구의 시발점이 될 것“이라고 이번 실험에 의미를 부여했다.
이번 연구를 주도한 수중충격분야 세계적 석학인 신영식 초빙교수는 미 해군대학원에서 약 30년 동안 교수로 재직하면서 수중폭발, 탑재 전자 장비의 충격 내구성 검증, 충격 및 진동문제해결 등의 성과를 인정받아 2005년 이 대학 최고의 영예직인 특훈교수로 임명되기도 했다.
현재 KAIST 해양시스템공학전공 초빙교수로 재직 중인 신 교수는 미국에서의 경험을 바탕으로 수중폭발이 선박이나 해양구조물에 미치는 영향 등 국내에서는 수행하기 어려운 연구를 수행하고 있다.
한편, 이번 연구를 지원한 KAIST 해양시스템공학전공(학과장 한순흥)은 WCU사업으로 설립됐는데 최고의 자질과 잠재력을 지닌 학생들을 교육시키되 기존의 조선해양 관련학과와 차별화된 미래지향적 교육 프로그램을 통해 우리나라 조선해양공학의 미래를 개척할 수 있는 세계적 수준의 엔지니어와 학자 배출을 목표로 하고 있다.
그림1. 각종 센서를 부착해 만든 알루미늄 모형 배를 물 위에 띄운 모습
그림2. 실험에 사용한 모형 선박의 3D 모델과 수중폭발 컴퓨터시뮬레이션
그림3. 수중폭발실험 장면(수중에서 폭약을 폭파해 버블제트가 생겨 물기둥이 솟구치고 있다.)
그림4. 연구팀 사진(신영식 교수가 모형 선박을 가리키면서 연구진들에게 설명하고 있다.)
2012.03.26
조회수 13906