본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%ED%97%88%EB%B8%8C%EC%82%AC%EC%97%85
최신순
조회순
전성윤 교수, 8시간 안에 항생제 조합 성능 확인하는 기술 개발
〈 김승규 연구원, 전성윤 교수 〉 우리 대학 기계공학과 전성윤 교수 연구팀(바이오미세유체 연구실)이 미세유체 칩을 이용해 두 개의 항생제 간 시너지 효과를 8시간 만에 검사할 수 있는 기술을 개발했다. 이번 연구는 항생제의 시너지 효과 검사에 최소 24시간 소요돼 활용이 어려웠던 기존 기술을 크게 개선한 것으로, 향후 환자들에게 적절한 항생제 조합치료를 할 수 있는 기반 기술이 될 것으로 기대된다. 김승규 석박사통합과정이 1 저자로 참여하고 생명과학과 정현정 교수 연구팀과 공동으로 수행한 이번 연구는 영국 왕립화학회(Royal Society of Chemistry)에서 발행하는 ‘랩온어칩(Lab on a Chip)’ 3월 21일 자 뒤표지 논문으로 게재됐다. (논문명 : On-chip phenotypic investigation of combinatory antibiotic effects by generating orthogonal concentration gradients, 직교 농도구배 형성을 통한 칩 상 항생제 조합 효과 검사) 항생제에 매우 높은 저항성을 갖는 ‘슈퍼박테리아’의 등장은 세계적으로 병원 및 관련 기관에 큰 위협으로 떠오르고 있다. 지난 2014년에는 세계보건기구(WHO)가 병원균의 항생제에 대한 내성이 심각한 수준에 도달했다고 공식적으로 처음 보고하기도 했다. 이러한 항생제 저항성 병원균을 효과적으로 억제하기 위해 두 종류 이상의 항생제를 섞어 처리하는 ‘항생제 조합 치료’가 주목받고 있지만, 항생제의 종류와 적정한 농도 범위가 큰 영향을 미쳐 정확한 조합을 해야 할뿐더러 치료가 항상 효과적이지는 않다는 문제점이 있다. 따라서 미지의 항생제 저항성 병원균을 대상으로 체외 항생제 조합 검사를 통해 적합한 항생제 조합과 농도 범위를 찾는 것은 매우 중요한 과정이다. 하지만 기존 검사 방식은 항생제 희석 및 샘플 준비 과정이 불편하고 결과 도출까지 24시간 이상이 걸려 대부분 경험적 치료에 의존하고 있다. 연구팀은 문제 해결을 위해 필요한 샘플 양이 수십 마이크로리터에 불과한 미세유체 칩을 이용했다. 머리카락 굵기 수준의 좁은 미세채널에서 유체 흐름을 제어할 수 있는 시스템인 미세유체 칩을 통해 두 개의 항생제 간 농도조합 121개를 단 35분 만에 자동으로 형성했다. 연구팀은 박테리아 샘플을 아가로스 젤과 섞어 미세채널에 주입해 굳힌 뒤 이를 둘러싸는 미세채널들에 각 항생제가 포함된 시약과 항생제가 포함되지 않은 시약을 주입했다. 항생제가 첨가된 채널로부터 항생제가 없는 채널로 항생제 분자들의 확산이 이뤄지고 결국 두 항생제의 조합이 박테리아가 굳혀있는 아가로스 젤에 35분 만에 형성된다. 연구팀은 이후 6시간 동안 억제되는 박테리아의 성장을 현미경을 통해 관찰했다. 연구팀은 서로 다른 항균 원리를 갖는 다섯 종류의 항생제를 두 개씩 조합해 녹농균(Pseudomonas aeruginosa)을 대상으로 항생제 조합 효능 검사를 시행했다. 그 결과 항생제 짝에 따라 각기 다른 항균효과를 확인할 수 있었고 검사한 항생제 짝의 시너지 관계를 분류할 수 있었다. 연구팀의 미세유체 칩 기반의 검사 방식은 번거로운 희석과정과 긴 검사 시간으로 인해 불편했던 기존 검사 방식을 크게 개선했다. 이전에도 전 교수 연구팀은 ‘미세유체 칩 기반의 항생제 효능 신속검사 기술’을 개발해 지난 2월 5일 ‘바이오마이크로플루이딕스(Biomicrofluidics)’지에 피처 기사로 게재한 바 있다. 이번 논문은 그 후속 연구로 미세유체 칩이 차세대 약물 검사 플랫폼으로 활용될 가능성을 제시했다는 의의가 있다. 연구책임자인 전 교수는 “미세유체 칩의 약물 검사 플랫폼으로써의 발전 가능성은 무궁무진하다”라며 “개발한 미세유체 칩이 상용화돼 실제 현장에서 항생제 조합치료를 위해 활용되기를 기대한다”라고 말했다. 이번 연구는 EEWS 기후변화연구허브사업과 교육부 이공분야기초연구사업 및 BK21 플러스프로그램의 지원을 받아 수행됐다. 그림 설명 그림1. Lab on a Chip 표지 이미지 그림2. 본 연구의 미세유체 칩과 분석결과 예시
2019.04.05
조회수 19200
김희탁, 정희태 교수, 수명 5배 늘린 바나듐레독스-흐름전지 개발
〈 김수현 박사과정, 김희탁 교수, 최정훈 박사과정 〉 우리 대학 생명화학공학과 정희태, 김희탁 교수 공동 연구팀(차세대배터리센터)이 용량 유지율 15배, 수명을 5배 향상시킨 바나듐레독스-흐름전지를 개발했다. 신재생 에너지의 발전과 함께 이를 통해 생산된 에너지를 효율적이고 안전하게 저장할 수 있는 대용량 에너지 저장장치의 필요성이 커지고 있다. 바나듐레독스-흐름전지는 폭발 위험이 없는 이차전지로 대용량화에 적합해 기존 에너지 저장장치를 대체할 수 있을 것으로 기대된다. 김수현, 최정훈 박사과정이 공동 1저자로 참여한 이번 연구 결과는 국제 학술지 ‘나노 레터스(Nano letters)’ 5월 3일자 온라인 판에 게재됐다. (논문명 : Pore Size-Tuned Graphene Oxide Framework as lon-Selective and Protective Layers on Hydrocarbon Membranes for Vanadium Redox Flow Batteries) 기존의 바나듐레독스-흐름전지는 과불소계 분리막의 활물질 투과도가 높아 충․방전 효율과 용량 유지율이 매우 낮다는 한계가 있다. 이를 해결하기 위해 낮은 활물질 투과도를 갖는 탄화수소계 분리막을 적용시키고자 했지만 활물질인 바나듐5가 이온에 의해 열화 현상이 발생하고 전지 수명이 급감하는 문제가 있었다. 따라서 활물질인 바나듐 이온의 크기보다는 작으면서 전하 운반체인 수소 이온보다는 큰 기공 크기를 갖는 분리막 개발의 필요성이 커지고 있다. 공동 연구팀은 산화그래핀 간의 가교 반응을 통해 바나듐레독스-흐름전지에 적합한 기공 크기를 갖는 산화그래핀 골격체 분리막을 구현하는 데 성공했다. 가교에 의해 수화 팽창(moisture expansion, 습기나 물을 흡수해 팽창하는 현상)이 제한된 산화그래핀 간 층간 간격을 선택적 이온의 투과를 위한 기공으로 활용하는 원리이다. 이 산화그래핀 골격체는 기공 크기를 통한 분리 성능이 뛰어나 매우 높은 수소 이온-바나듐 이온 선택성을 갖는다. 연구팀의 분리막은 바나듐레독스-흐름전지의 용량 유지율을 기존 과불소계 분리막의 15배, 충․방전 사이클 수명 또한 기존 탄화수소계 분리막에 비해 5배 이상 향상시켰다. 연구팀의 산화그래핀 골격체를 통한 기공 크기 조절 기술은 다양한 크기의 이온을 활용하는 이차전지, 센서 등의 전기화학적 시스템에 적용 가능할 것으로 보인다. 김희탁 교수는 “레독스 흐름전지 분야의 고질적인 문제인 활물질의 분리막을 통한 크로스오버 및 이에 따른 분리막 열화문제를 나노기술을 통해 해결할 수 있음을 보여줬다”며 “바나듐레독스-흐름전지 뿐만 아니라 다양한 대용량 에너지 저장장치용 이차전지에 적용될 수 있을 것이다”고 말했다. 이번 연구는 한국화학연구원 주요사업, 에너지기술평가원과 기후변화연구허브사업의 지원을 통해 수행됐다. □ 그림 설명 그림1. 산화그래핀 골격체를 통한 수화 바나듐 이온과 수소 이온의 선택적 이온 투과에 대한 모식도 그림2. 바나듐레독스-흐름전지의 사이클 용량 특성
2018.06.07
조회수 12867
김도경 교수, 모세관현상 이용한 리튬-황 전지 소재 개발
우리 대학 신소재공학과 김도경 교수 연구팀이 종이가 물을 흡수하는 모세관 현상처럼 탄소나노섬유 사이에 황을 잡아두는 방식을 통해 리튬-황 기반 이차전지 전극 소재를 개발했다. 연구팀이 개발한 면적당 용량(mAh/㎠)이 우수한 저중량, 고용량 리튬-황 기반 이차전지 전극소재를 통해 리튬-황 전지의 상용화를 앞당길 수 있을 것으로 기대된다. 윤종혁 박사과정이 1저자로 참여하고 김도경 교수, UNIST 이현욱 교수가 교신저자로 참여한 이번 연구는 국제 학술지 ‘나노 레터스(Nano Letters)’ 2018년도 18호에 게재됐다. 최근 전기자동차, 대용량 에너지 저장장치의 수요가 급증함에 따라 기존 리튬이온 전지를 뛰어넘는 높은 에너지 밀도의 이차전지 개발 필요성이 커지고 있다. 리튬-황 전지는 차세대 고용량 리튬이차전지로 각광받고 있으며 이론적으로 리튬이온 전지보다 약 6배 이상 높은 에너지 밀도를 갖는다. 하지만 황의 낮은 전기전도도, 충전과 방전으로 인해 발생하는 부피 변화, 리튬 폴리설파이드 중간상이 전해질로 녹아 배출되는 현상은 리튬-황 전지 상용화의 걸림돌이다. 이를 해결하기 위해 다공성 탄소 분말로 황을 감싸 전기전도도를 향상시키고 부피변화를 완화시키며 폴리설파이드가 녹는 것을 방지하는 황-탄소 전극 개발에 대한 연구가 주로 진행돼 왔다. 그러나 이러한 구형의 0차원 탄소 분말들은 입자 간 무수한 접촉 저항이 발생하고 황을 감싸는 합성 과정이 까다로울 뿐 아니라 입자들을 연결하기 위해 고분자 바인더를 사용해야한다는 단점이 있다. 연구팀은 기존 탄소 재료의 단점을 극복하기 위해 전기방사를 통해 대량으로 1차원 형태의 탄소나노섬유를 제작하고 고체 황 분말이 분산된 슬러리(slurry, 고체와 액체 혼합물 또는 미세 고체입자가 물 속에 현탁된 현탁액)에 적신 뒤 건조하는 간단한 방법을 통해 접촉 저항을 대폭 줄인 황-탄소 전극을 개발했다. 연구팀은 주사전자현미경(SEM)을 통해 현상을 관찰했다. 종이가 물을 흡수하듯 고체 황이 전기화학 반응 중 중간 산물인 액체 리튬 폴리설파이드로 변화하고 이들이 탄소나노섬유들 사이에 일정한 모양으로 맺힌 후 충전과 방전 과정에서 그 형태를 유지하며 밖으로 녹아나가지 않음을 확인했다. 이는 복잡하게 황을 감싸지 않고도 황이 탄소 섬유들 사이에 효과적으로 가둬지는 것을 발견한 것이다. 또한 기존 연구 결과가 단위 면적당 황 함량이 2mg/㎠ 이내인 것에 비해 이번 연구에서는 10mg/㎠이 넘는 황 함량을 달성했고 이를 기반으로 7mAh/㎠의 높은 면적당용량을 기록했다. 이는 기존 리튬이온전지의 면적당용량인 1~3mAh/㎠를 능가하는 값이다. 1저자인 윤종혁 박사과정은 “금속집전체 위에 전극물질을 도포하는 기존의 전극 제조 방법과는 전혀 다른 전극 구조 및 제조 방식을 적용한 연구로 향후 리튬 이차전지의 연구 범위를 넓히는 데에 기여할 수 있을 것이다”고 말했다. 김도경 교수는 “고용량 리튬-황 상용화에 한 단계 다가선 연구성과로 전기자동차뿐만 아니라 무인항공기(UAV) 및 드론 등에도 폭넓게 적용될 수 있을 것으로 기대된다”고 말했다. 이번 연구는 EEWS 연구센터의 기후변화연구허브사업과 한국연구재단의 중견연구자 지원사업을 통해 수행됐다. □ 그림 설명 그림1. 전기화학 반응을 통해 탄소나노섬유에 황이 맺히는 현상과 그로 인한 전지의 안정적인 수명 특성 그림2. 탄소나노섬유들 사이에 흡수되어 맺힌 형태 그대로 고체화 된 황의 미세구조와 모식도 그림3. 액상의 리튬 폴리설파이드를 효과적으로 흡수하는 탄소나노섬유 구조체
2018.03.22
조회수 17241
조용훈 교수, 금속나노구조 이용해 효율 높인 퀀텀닷 LED 개발
우리 대학 물리학과 조용훈 교수 연구팀이 금속나노 배열 구조를 이용해 퀀텀닷(Quantum Dot) 발광다이오드(LED)의 효율을 향상시킬 수 있는 기술을 개발했다. 이 기술을 통해 차세대 디스플레이 기술이 한 단계 발전하는 데 기여할 것으로 기대된다. 현재 사용되는 퀀텀닷 기반의 디스플레이는 청색 LED를 광원으로 사용해 녹색과 적색 퀀텀닷을 여기(勵起, 광자 에너지가 분자로 옮아가 높은 에너지상태로 방출되는 상태)해 색 변환을 하는 방식이다. 이러한 방식은 높은 가격의 퀀텀닷을 이용하기 때문에 디스플레이 소자의 단가가 높아진다. 또한 액체 상태인 퀀텀닷을 소재에 적용하기 위해 공기 중에 말리면 발광 효율이 급격히 저하된다. 연구팀은 문제 해결을 위해 금속 나노구조가 청색 LED의 빛을 받으며 발생하는 국소 표면 플라즈몬 효과를 이용해 퀀텀닷의 발광효율을 증가시켰다. 더불어 발광 휘도를 높일 수 있는 LED 구조를 이론적으로 제시하고 구현하는 데 성공했다. 이 구조는 기본 청색 LED를 여기 광원으로 이용한다. 알루미늄 금속 나노구조와 녹색 퀀텀닷을 여기해 녹색 발광 휘도를 증가시키고, 은 금속 나노구조와 적색 퀀텀닷을 여기해 적색 발광 휘도를 증가시키는 방식이다. 이는 금속 나노구조를 통해 특정 휘도를 얻기 위해 필요한 퀀텀닷의 양을 많이 줄일 수 있다는 의미이고 결과적으로 소재의 단가를 낮출 수 있다. 이번 연구는 소재의 구조를 이론적으로 모델링했기 때문에 목적에 따라 금속 나노구조를 간단하게 새로 디자인해 조절할 수 있다. 조 교수는 “향후 퀀텀닷 디스플레이에 금속 나노구조를 도입하는 기술이 적절히 도입된다면 소재에 필요한 퀀텀닷의 양을 줄이고 효율적인 색 변환을 통해 단가를 줄일 수 있을 것으로 기대된다”고 말했다. 박현철 박사과정이 1저자로 참여한 이번 연구는 나노과학 분야 국제 학술지 ‘스몰(Small)’ 12월 27일자 표지 논문에 선정되었으며, 한국연구재단의 중견연구자 지원사업과 KAIST 기후변화연구 허브사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 스몰(Small)저널의 12월 27일자 표지 논문 그림 . 그림2. 금속 나노구조가 있을 경우와 없을 경우의 발광 세기 차이를 보인 스펙트럼
2018.01.15
조회수 13498
조용훈 교수, 종이 위에서 빛나는 초소형 반도체 레이저 개발
우리 대학 물리학과 조용훈 교수 연구팀이 종이 위에서 작동하는 초소형 반도체 레이저를 개발했다. 나노 크기의 광결정 소자를 흡수성이 높은 종이와 결합함으로써 최첨단 반도체 센서를 저렴한 가격으로 다양한 질병 진단에 활용할 수 있을 것으로 기대된다. 이 연구 결과는 소재 분야 학술지 ‘어드밴스드 머티리얼즈(Advanced Materials)’ 11월 17일자에 게재됐다. 빛을 매개체로 사용하는 광소자는 높은 대역폭을 갖고 있어 대용량으로 정보 전송이 가능하고 낮은 전력으로도 구동할 수 있다. 일반적으로 반도체 광소자는 직접적으로 특정 기능을 수행하는 부분 외에 이들을 단순히 지탱하기 위한 반도체 기판이 필요하다. 반도체 기판의 부피는 전체 소자 부피의 대부분을 차지하고 자연적으로 부패하지 않는 물질이기 때문에 소자를 폐기할 때 환경 문제를 일으킨다. 연구팀은 문제 해결을 위해 두꺼운 반도체 기판을 제거했고 일상생활에서 쉽게 구할 수 있는 종이를 광소자의 기판으로 사용했다. 종이의 주원료는 나무이기 때문에 자연적으로 썩어 없어진다. 또한 일상생활에서 쉽게 찾아볼 수 있고 가격이 저렴하기 때문에 종이를 이용한 소자는 단가를 획기적으로 낮출 수 있다. 종이는 기계적으로도 우수한 특성들을 지닌다. 자유자재로 구부릴 수 있고 접었다 피는 것을 반복해도 끊어지지 않는다. 이러한 특성은 기존 플렉서블 기판들이 구현하고자 하는 우수한 특성이다. 연구팀은 반도체 광소자를 종이 위에 옮기기 위해 나노 광소자를 마이크로 스탬프로 떼어 내는 기술을 이용했다. 이를 통해 반도체 기판에 높은 집적도로 패터닝(특정 부분을 깎아내는 식각 과정을 통해 회로를 새겨 넣는 과정)한 나노 광소자를 새로운 종이 기판에 원하는 간격으로 재배열 할 수 있었다. 이번에 종이 위에 결합된 광소자는 폭 0.5 마이크로미터. 길이 6 마이크로미터, 높이 0.3 마이크로미터 크기로 머리카락(약 0.1 mm) 두께의 100분의 1 수준이다. 연구팀은 개발한 광소자를 유체 채널(Fluid channel)이 형성된 종이 위에 결합해 굴절률 센서로도 활용 가능함을 증명했다. 이미 상용화된 임신진단키트 등에서도 볼 수 있듯이 종이는 좋은 흡수성을 가지고 있고 광결정 소자는 높은 민감도를 가지고 있어 센서 응용에 매우 적합하다. 조 교수는 “이 기술은 종이를 광소자의 기판으로 사용함으로써 최근 화두인 친환경 광소자 플랫폼을 만드는데 크게 기여할 수 있다”며 “저렴한 종이와 고성능 광결정 센서를 결합해 전체 소자의 단가는 낮추면서 성능은 뛰어난 적정기술로 활용할 수 있다”고 말했다. 물리학과 김세정 박사가 1저자로 참여한 이번 연구는 서강대학교 신관우 교수, 우리 대학 이용희 교수가 참여했고, 한국연구재단 중견연구자지원사업과 KAIST 기후변화연구허브사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 종이 기판 위 광결정 레이저 모식도 그림2. 종이 기판위에서 동작하는 광결정 공진기 레이저 및 굴절률 센서
2016.11.25
조회수 18590
조용훈 교수, 피라미드 구조로 방향성과 집광 효율을 높인 고성능 반도체 양자 광원 개발
우리 대학 물리학과 조용훈 교수 연구팀이 반도체 피라미드 구조의 양자점이 피라미드 밑면으로 강한 빛을 방출함을 발견하고 이 빛을 높은 효율로 모을 수 있는 기술을 개발했다. 김세정, 공수현 박사가 공동 1저자로 참여한 이번 연구 결과는 나노분야 국제 학술지 ‘나노 레터스(Nano Letters)’ 10월 12일자에 게재됐다. 반도체 양자점은 빛 알갱이를 하나씩 내뿜는 단일광자원(양자광원)으로 활용가능하다. 단일광자원은 미래의 양자컴퓨터 또는 양자암호기술 등을 구현하기 위한 필수 요소이다. 일반적인 양자점은 불규칙적인 위치에 형성되는 반면 3차원 피라미드 구조에 얇게 양자우물(Quantum well)을 성장시키면 정확히 피라미드 꼭짓점 위치에 양자점(Quantum dot)을 형성할 수 있다. 이 기술을 활용하면 위치가 제어된 단일광자원을 높은 수율로 얻을 수 있다. 하지만 양자점에서 나오는 빛은 빛 알갱이 개수가 적고 양자점이 굴절률 높은 반도체 물질에 갇혀 있기 때문에 일반적으로 구조 바깥으로 빠져나오기 어렵다. 반도체 단일광자원 소자가 상용화 단계로 나아가려면 빛의 집광 효율을 높여야만 한다. 연구팀은 일반적으로 가지고 있는 고정관념을 벗어나 문제를 해결했다. 피라미드 구조의 빛의 지향성(directionality)을 관찰했고 이를 이용했다. 그 동안 피라미드 양자점에서 나오는 빛은 피라미드의 위, 즉 꼭짓점 방향으로 나오는 신호만을 측정했다. 피라미드 밑면 방향으로는 성장 과정상 두꺼운 기판이 반드시 존재하기 때문이다. 하지만 연구팀은 시뮬레이션을 통해 양자점이 피라미드 위쪽보다 밑면 방향으로 더 많은 빛을 방출함을 확인했다. 또한 피라미드 밑면 방향으로 진행하는 빛은 가우시안 형태의 전기장 분포 형태를 갖고 있어, 광도파로 또는 광섬유의 단일 모드와 잘 일치한다. 이는 제품과 전선을 결합하듯이 광원과 광도파로 간의 결합 효율을 높일 수 있다. 이에 연구팀은 폴리머를 이용해 피라미드 구조체를 기판에서 떼어냈다. 피라미드의 밑면으로 나오는 빛이 두꺼운 반도체 기판을 거치지 않고 공기 중으로 직접 방출되도록 한 것이다. 연구팀이 떼어낸 피라미드는 쉽게 다른 광학 소자들과 직접 결합할 수 있어 피라미드 양자점의 응용분야가 확대될 수 있는 발판이 될 것으로 기대된다. 조 교수는 “이번 연구 내용은 양자 광원 뿐 아니라 LED와 같은 광원 소자에도 적용 가능해 활용도가 높을 것으로 기대된다.”고 말했다. 이번 연구는 한국연구재단의 중견연구자지원사업과 KAIST 기후변화연구 허브사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 폴리머로 떼어낸 피라미드 양자점의 모식도 그림2. 피라미드 양자점에서 방출된 빛의 상반구 및 하반구 먼장 (far-field) 방출 패턴(좌)와 폴리머로 떼어내기 전후의 나노 피라미드 구조체(후)
2016.10.18
조회수 18312
박오옥, 한상우 교수, 팔 14개 달린 금 나노입자 개발
우리 대학이 중심 입자에 14개의 팔 모양 입자가 달린 이원 구조의 금 나노입자를 개발했다. 이 기술은 팔 모양 입자 주변에서 전기장을 강하게 증폭시켜 표면증강 라만분광을 이용해 미량의 물질도 검출할 수 있다. 이를 통해 화폐 보안물질, 인체 광열치료 등에도 활용 가능할 것으로 기대된다. 생명화학공학과 박오옥 교수, 화학과 한상우 교수, 한국화학연구원 김도엽 박사와가 공동으로 진행한 이번 연구 성과는 광학 재료분야 학술지 ‘저널 오브 머티리얼스 케미스트리 씨(Journal of Materials Chemistry C)’ 4월 21일자 표지논문으로 게재됐다. 중심에 팔 모양의 입자가 달린 이원구조의 금 나노입자는 외부의 빛과 반응해 팔 모양 주변에서 전기장이 강하게 증폭된다. 이를 통해 금 나노입자를 기판으로 활용해 물질을 그 위에 올리면 적은 농도로도 쉽게 물질의 검출이 가능해진다. 하지만 기존 기술은 중심 나노입자에 달린 팔 모양 입자의 크기, 길이를 정밀하게 제어하지 못해 형태가 제각각인 금 나노입자만 얻을 수 있었다. 연구팀은 문제 해결을 위해 14개의 꼭지점을 갖는 사방십이면체 형태의 금 나노입자를 먼저 합성 후 꼭지점 부분만 선택적으로 성장시켰다. 이를 통해 팔이 14개 달린 이원구조의 금 나노입자를 합성했고 팔 크기나 길이를 조절해 광학특성 및 전기장 세기 증폭을 조절할 수 있게 됐다. 연구팀은 유한차분 시간영역법을 통한 시뮬레이션과 표면증강라만산란 실험을 통해 이원 구조에서의 팔의 크기가 작을수록, 몸통 입자의 크기가 클수록 전기장 세기가 강하게 증폭됨을 증명했다. 이 기술을 표면증강라만분광(surface-enhanced Raman spectroscopy)에 이용한다면 물질의 분자 검출 및 분석 등에 응용할 수 있다. 박 교수 연구팀은 이전 연구에서도 美 워싱턴대학 유난 시아(Younan Xia) 교수와의 공동연구를 통해 6개의 팔 모양 입자가 달린 이원구조의 금 나노입자 합성기술을 개발한 바 있다. 이번 연구에서는 이원 구조 금 나노입자의 성장과정 분석과, 더 나아가 이론적 계산을 통한 금 나노입자 표면에서의 전기장 세기가 증폭됨을 확인했다. 또한 실제 표면증강 라만산란 실험을 통한 특정분자 검출 등 다각적 연구를 통해 이원구조 금 나노입자의 응용 가능성을 높였다. 연구팀은 “새로운 접근법을 통한 이원구조 금 나노입자의 팔 개수, 길이 등의 조절로 광학특성 등 물리적 성질을 제어하는 기술을 개발했다”며 “이를 통해 라만분광법을 이용한 물질 검출이나 화폐보안물질 등에 응용 가능할 것으로 기대된다”고 말했다. 이번 연구는 미래창조과학부 산하의 한국연구재단-선도연구센터지원사업, 나노·소재기술개발사업 및 기초연구사업과 KAIST 기후변화연구허브사업의 지원으로 수행됐다. □ 그림 설명 그림1. 중심입자에 14개의 팔이 달린 이원구조의 금 나노입자와 팔의 크기만 선택적으로 조절된 금 나노입자의 전자현미경 이미지 그림2. 팔 크기 변화에 따른 전기장 세기를 유한차분 시간영영법으로 시뮬레이션한 결과와 표면증강라만 신호 결과
2016.05.10
조회수 16592
무형광체 백색 LED 제조 기술 개발
우리 대학 물리학과 조용훈 교수 연구팀이 형광체를 사용하지 않은 백색 LED 제조 기술을 개발했다. 이 기술은 차세대 조명 및 디스플레이 기술의 발전에 기여할 것으로 기대된다. 이번 연구 결과는 네이처가 발행하는 학술지 ‘빛 : 과학과 응용 (Light : Science & Applications)’ 12일자 온라인 판에 게재됐고, 그 중요성을 인정받아 인쇄본의 표지 논문으로 선정됐다. 현재 대부분의 백색 LED는 청색 LED에 황색 형광체를 사용하거나 여러 색의 LED 칩을 병렬 조합해서 만드는 방식이다. 그러나 황색 형광체는 희토류물질로 수입의존도가 높고, 낮은 연색성, 변색 등의 문제점을 갖는다. 또한 여러 색의 LED 칩을 병렬 조합하는 방식은 단가가 매우 높아진다는 단점이 있다. 연구팀은 문제 해결을 위해 형광체를 사용하지 않고 하나의 반도체 칩으로 백색 LED를 제작하기 위한 방법을 고안했다. 동심원 모양으로 꼭대기 부분을 잘라낸 피라미드 구조가 제작되도록 마이크로 복합 구조체를 설계한 것이다. 이 마이크로 크기 삼차원 구조체는 각 면마다 다른 조건의 양자우물이 형성돼 각 면에서 다른 색의 빛을 낼 수 있다. 결국 기존의 여러 LED 색을 조합할 필요 없이 한 구조체에서도 다양한 색을 혼합할 수 있게 된다. 삼차원 구조체를 만드는 시간과 조건을 조절해 각 결정면의 면적을 변화시킴으로써 다양하게 혼합된 색의 LED가 제작 가능하다. 연구팀은 각 결정면의 면적을 조절해 하나의 LED 칩으로 무형광체 백색 LED를 시연했다. 또한 LED에 인가하는 전류를 변화시켜도 색이 거의 변하지 않았다. 이는 무형광체 백색 LED의 초기단계로 미래의 무형광체 백색광원의 방향성을 제시했다는 의의를 갖는다. 이밖에도 연구팀은 고배율 대물렌즈를 사용해 3차원 구조체 내부에서 전류주입의 정도를 측정하는 방법을 소개했다. 이를 통해 전류를 효율적으로 주입시키는 방안을 개발한다면 LED 소자의 효율과 색재현성을 조절할 수 있을 것으로 전망했다. 조 교수는 “향후 3차원 반도체 공정개발을 통해 효율이 개선된다면 형광체 없이도 값싸고 색 재현성이 좋은 단일 칩 백색 광원으로 활용될 수 있을 것이다”고 말했다. 임승혁 박사과정 학생이 1저자로 참여한 이번 연구는 한국연구재단의 중견연구자 지원사업과 KAIST 기후변화연구 허브사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 형광체를 사용하지 않은 마이크로 크기의 끝이 잘린 피라미드 형태의 복합 구조체에서 전류 주입으로 백색광을 내는 개념도 그림2. 형광체를 사용하지 않은 마이크로 크기의 끝이 잘린 피라미드 형태의 전자현미경사진과 백색광의 전계발광 스펙트럼
2016.02.23
조회수 12719
고효율의 단일광자원 소자 핵심기술 개발
조 용 훈 교수 우리 대학 물리학과 조용훈 교수 연구팀이 양자정보기술에 기여할 수 있는 고효율의 단일광자원(양자광원) 의 방출 효율과 공정 수율을 높일 수 있는 기술을 개발했다. 이번 연구 결과는 자연과학분야 학술지인 미국국립과학원회보(PNAS: Proceedings of the National Academy of Sciences) 4월 13일자 온라인 판에 게재됐다. 빛은 보통 파동의 성질을 갖는 동시에 입자의 성질도 가지고 있는데, 이 입자를 광자라고 한다. 단일광자원 혹은 양자광원은 광자가 뭉쳐서 나오는 고전적인 광원과는 달리 한 번에 한 개의 광자만 방출하는 소자이다. 반도체 양자점을 이용한 단일광자 방출 소자는 안정성 및 전기구동 가능성이 높아 상용화에 적합한 소자로 각광받고 있다. 하지만 빛의 파장은 양자점보다 수십~수백 배 정도 크기 때문에 상호 작용하기 어려워서 단일광자의 방출 효율이 매우 작다는 한계점이 있다. 따라서 고효율 단일광자원를 만들기 위해서는 양자점과 빛을 집속시키는 구조(광공진기)를 공간적으로 정확히 결합시키는 것이 필수적이다. 하지만 양자점은 불규칙하게 분포되어 있고 위치를 정확히 확인할 수 없어 우연성에 의존한 결합을 기대할 수밖에 없었다. 따라서 긴 공정시간에도 불구하고 소수의 단일광자소자를 제작하는 수준에 머물러 있었다. 연구팀은 문제 해결을 위해 피라미드 모양의 나노 구조체를 활용했다. 반도체 나노피라미드 구조에서는 양자점이 피라미드의 꼭지점에 자발적으로 형성된다. 그리고 그 위에 금속 필름을 얇게 증착하면 빛 역시 뾰족한 금속 끝에 모이는 성질 때문에 양자점과 동일한 위치에 집속되는 것이다. 특히 금속에서는 빛이 본래 가진 파장보다 작게 뭉칠 수 있다. 즉, 빛이 가진 파장보다 더 소형화를 시킬 수 있기 때문에 양자점과의 크기 차이로 인한 문제를 극복할 수 있게 되는데, 이 방법으로 단일광자 방출 효율이 기존의 방식보다 20배 정도 증가되었다. 단일광자 방출소자는 양자광컴퓨터 및 양자암호기술 구현의 가장 기본적인 구성 요소이다. 이번 연구를 통해 기존의 까다로운 과정들 없이 단순한 방식으로 효율과 수율을 모두 높일 수 있으므로, 단일광자방출원 혹은 양자광원 관련 기술의 상용화 가능성이 높아질 것으로 기대된다. 조 교수는 “이 기술은 높은 공정 수율을 갖고 있기 때문에 상용 양자광원 소자 제작 한계를 해결하고, 양자정보통신 분야 구현에 중요 기술이 될 것”이라고 말했다. 조용훈 교수의 지도를 받아 공수현(1저자)·김제형(2저자) 박사가 수행한 이번 연구는 우리 대학 신종화·이용희 교수, 프랑스 CNRS의 레시당 박사, 미국 UC 버클리의 샹장 교수가 참여했으며, 한국연구재단의 중견연구자 지원사업과 KAIST 기후변화연구 허브사업의 지원을 받아 수행됐다. 그림 1. 단일 광자가 높은 효율로 방출되는 모습의 개념도
2015.04.23
조회수 14019
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1