본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%ED%98%95%ED%8B%80%EB%B2%95
최신순
조회순
인공장기 생체 단백질 모방 금속 필름 개발
오랜 기간에 걸쳐 생체 구조체를 형틀로 삼아 다양한 무기물을 증착 및 성장시킴으로써 생체 모방 재료를 합성하는 연구들이 이루어져 왔는데, 이를 생체 형틀법이라고 한다. 이런 생체 형틀법은 생체에 있는 특정 구조체에 사용되어 오랜 시간 동안 에너지, 광학, 마이크로로봇, 의료 분야 등에 응용되어 왔다. 특히 생체 구조체를 사용하고 모방했다는 점에서 인체 내 활용이 용이하여 인공장기나 상처 치유 분야로 많이 연구되었다. 우리 대학 신소재공학과 장재범, 김일두 교수 연구팀이 생체 형틀법을 이용해 세포외 기질을 구성하는 여러 단백질 중 원하는 특정 단백질만을 선택해 해당 단백질 구조체를 모방한 금속 필름을 합성하고 전기 전달 특성을 확인하는 것에 성공했다고 16일 밝혔다. 세포외 기질이란 세포 밖에 존재하며 세포의 분화, 성장, 이동에 중요한 역할을 수행할 뿐만 아니라 생체 조직과 기관(organ)의 구조적·기계적 특성 유지에 필수적인 생체 구조물이다. 이러한 세포외 기질은 여러 단백질을 포함하며, 그 단백질 구조체를 원하는 형태로 변형하거나 최근에는 세포외 기질을 3D 프린팅을 위한 바이오잉크로 사용할 만큼 세포외 기질을 다루는 많은 기술 개발이 진행되고 있다. 따라서 세포외 기질은 생체 형틀법을 통해 다양한 구조의 재료 합성에 이용될 수 있지만, 현재까지 관련된 연구는 많이 이뤄지지 않았다. 연구팀은 2022년 항체(Antibody)를 활용한 신개념 생체 형틀법인 `항체 유도 생체 형틀‘을 개발해 최초로 다세포 생물 내부에 있는 특정 단백질 구조체를 모방한 금속 구조체를 합성하는 데 성공했다. 이번 연구에서는 이전 연구를 세포외 기질로 확장해 세포를 지탱하는 구조체를 구성하는 단백질 중 피브로넥틴(fibronectin)을 표적 단백질로 삼아 그물형 금속 필름 제작에 성공했다. 연구팀은 이에 더 나아가 합성한 그물형 금속 필름에 추가적 처리를 통해 금속을 통한 전기 전달이 가능하도록 만들었다. 이를 기반으로 물을 전기 분해하여 수소를 생산하거나, 또는 수소와 금속간 화학적 반응을 통해 수소를 검출할 수 있는 센서로 활용할 수 있었다. 해당 기술은 다양한 생물의 세포외 기질에도 적용 가능할 것으로 예상되어 더 큰 규모나 더 복잡한 생체 모방 재료 합성도 가능할 것으로 생각된다. 또한, 원하는 형태로 세포외 기질을 패턴화 및 정렬함으로써 본 기술로 전기 회로 제작도 가능할 것으로 생각된다. 우리 대학 신소재공학과 송창우 박사과정, 안재완 박사가 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `어드밴스드 사이언스(Advanced Science)'에 10월 18일 자로 온라인 공개되었으며, 전면 표지 논문(Front Cover)으로 선정됐다. (논문명 : Metallization of Targeted Protein Assemblies in Cell-Derived Extracellular Matrix by Antibody-Guided Biotemplating). 제1 저자인 송창우 박사과정은 "이번 연구는 기존에 개발한 항체 유도 생체 형틀법을 세포외 기질로 확장함으로써 합성된 생체 모방 재료가 더 다양한 분야에 활용 가능하다는 것을 보였다ˮ 라며 "이를 기반으로 조직 수준의 세포외 기질 및 원하는 형태로 변형된 세포외 기질을 이용해 조직 공학(Tissue engineering) 및 생체 조직 제조(Biofabrication)으로 활용 범주를 넓힐 수 있을 것이다ˮ 라고 말했다. 한편 이번 연구는 한국연구재단 과학난제도전 융합연구개발사업, 웨어러블 플랫폼소재 기술센터, 우수신진연구사업 등의 지원을 받아 수행됐다.
2023.11.17
조회수 4004
항체를 활용한 신개념 생체 형틀법 최초 개발
우리 대학 신소재공학과 장재범 교수 연구팀이 다세포 생물이 갖는 특정 단백질 구조체를 활용할 수 있는 새로운 개념의 생체 형틀법을 최초로 개발했다고 10일 밝혔다. 긴 시간 동안 특정 기능에 최적화된 생명체가 갖는 복잡하고 정교한 구조체를 형틀로 삼아 이를 모방한 무기물 구조체를 만드는 방법을 생체 형틀법 이라고 한다. 이는 에너지, 광학, 마이크로로봇 분야 등에 응용돼왔다. 장 교수 연구팀은 항원-항체 반응에 착안해 특정 단백질을 항체로 표적화한 뒤, 항체에 붙어 있는 1.4 나노미터(nm) 크기의 금 입자에서 다양한 금속 입자들을 성장시킴으로써 특정 단백질 구조체를 모방한 금속 구조체를 합성하는 데 성공했다. 개발된 생체 형틀법은 일반적인 항원-항체 반응과 금속 입자 성장법을 기반으로 하기 때문에 다양한 생명체에 폭넓게 응용 및 적용될 수 있을 것으로 기대된다. 신소재공학과 송창우, 송대현 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 `어드밴스드 머티리얼즈(Advanced Materials)'에 7월 7일 字 온라인 출판됐다. (논문명 : Multiscale Functional Metal Architectures by Antibody-Guided Metallization of Specific Protein Assemblies in Ex Vivo Multicellular Organisms). 생명체가 갖는 특정 기능에 최적화된 다양한 구조체들은 복잡하고 계층적 구조를 기반으로 하여 인공적인 합성 방법을 통해 재현하기 어렵다. 따라서 이러한 생체 구조체를 형틀로 해 동일한 모양의 무기물 구조체를 합성하는 생체 형틀법이 개발돼왔으며, 합성된 생체 재료들은 촉매, 에너지 저장 및 생산, 센서 등 다양하게 활용돼왔다. 하지만 개발된 생체 형틀법 중 특정 단백질 구조체를 형틀로 사용한 경우는 적으며, 있다 하더라도 바이러스나 효모와 같은 단세포 생물의 특정 단백질 구조체를 형틀로 활용한 연구들 뿐이었다. 생명체의 특정 단백질 구조체를 활용하는 생체 형틀법은 원하는 생체 구조체만을 활용 가능하며 합성하고자 하는 생체 재료의 목적에 맞는 단백질을 선택해 사용할 수 있다는 장점이 있다. 연구팀은 기존의 생체 형틀법 한계를 해결을 위해 특정 단백질을 이미징할 때 활용하는 항원-항체 반응을 생체 형틀법에 적용했다. 연구팀이 사용한 항체는 1.4 나노미터(nm) 크기의 금 입자가 달려있고 이는 금속 입자 성장을 위한 종자(seed) 역할을 하게 되어 특정 단백질을 표적화한 항체로부터 다양한 금속 입자를 성장시킬 수 있다. 연구팀은 인간 세포 내부의 미세소관, 미토콘드리아, 핵, 세포막, 세포질에 존재하는 특정 단백질에서만 금 입자를 성장시키는 데 성공했으며, 세포 수준뿐만 아니라 조직 수준인 쥐의 뇌, 신장, 심장에서도 개발한 방법을 적용할 수 있다는 것을 보였다. 나아가 연구팀은 금 입자뿐만 아니라 은, 금-백금, 금-팔라듐 입자를 세포 내부 미세소관 구조체를 따라 합성함으로써 합성된 세포를 액상 반응의 촉매로 활용 가능하다는 것을 증명했다. 또한, 세포 표면에 철 입자를 성장시킨 후 자석으로 조절할 수 있음을 보여 향후 이러한 금속 입자가 성장된 세포들을 조절하거나 군집 행동을 구현하는 것이 가능함을 보였다. 연구팀이 개발한 신개념 생체 형틀법은 다세포 생물뿐만 아니라 항체 염색이 가능한 식물, 균류, 바이러스 등의 생명체에도 활용 가능해 다양한 생체 구조체를 모방한 생체 재료 합성에 이용될 것으로 기대된다. 제1 저자인 송창우 박사과정은 "이번 연구는 기존의 생체 형틀법으로 구현할 수 없었던 다세포 생물의 특정 구조체를 모방한 금속 구조체를 합성한 최초의 사례이며, 이를 통해 생체 형틀법을 활용할 수 있는 생체 구조체의 범위를 넓혔다ˮ 라며 "합성된 생체 재료는 이번 연구에서 보여준 촉매뿐만 아니라 전기화학 및 바이오센서에도 활용 가능할 것으로 예상된다ˮ 라고 말했다. 한편 이번 연구는 한국연구재단 과학난제도전 융합연구개발사업, 우수신진연구사업, 뇌과학원천기술개발사업 등의 지원을 받아 수행됐다.
2022.08.10
조회수 7201
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1