본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%ED%99%80%EB%A1%9C%EA%B7%B8%EB%9E%98%ED%94%BC
최신순
조회순
인공지능 이용해 3차원 홀로그래피 현미경의 박테리아 신속 식별 기술 개발
우리 대학 물리학과 박용근 교수 연구팀이 홀로그래피 현미경과 인공지능을 이용한 신속 박테리아 병원균 식별 기술을 개발했다고 27일 밝혔다. 병원균의 조기 식별은 감염질환 치료에 필수적이다. 치명적인 상태로 진행되기 전에 감염균에 맞는 효과적인 항생제의 선택과 투여가 가능해지기 때문이다. 하지만 현재의 일상적 병원균 식별은 통상 수일이 소요된다. 이로 인해 감염 초기 식별 결과 없이 실증적인 처방으로 항생제를 투여하는 사례가 빈번하며, 이로 인해 패혈증의 경우 치명률이 50%에 달하며 항생제 남용으로 인한 슈퍼박테리아 문제도 발생한다. 기존 방법으로 병원균 식별이 오래 걸리는 원인은 긴 박테리아 배양 시간이다. 질량 분석기로 대표되는 식별 기술들은 일정량 이상의 박테리아 표본이 확보되어야 균종과 관련된 분자적 신호를 검출할 수 있다. 이로 인해, 환자에서 추출한 시편을 하루 이상 배양해야만 검출이 될 정도의 박테리아 개수가 확보된다. 광학 분야의 저명 학술지인 `빛: 과학과 응용(Light: Science & Applications), (IF = 17.782)'에 게재된 이번 연구(논문명: Rapid species identification of pathogenic bacteria from a minute quantity exploiting three-dimensional quantitative phase imaging and artificial neural network)에서 박용근 교수 연구팀은 3차원 홀로그래피 현미경과 인공지능 알고리즘을 활용해서 단일 세포 수준의 표본으로도 병원균의 균종을 정확히 알아낼 수 있음을 입증했다. 홀로그래피 현미경으로 측정되는 3차원 굴절률 영상 정보에 내재된 균종과 관련된 특성을 인공지능 알고리즘으로 학습해 종을 구분하는 것이 핵심 아이디어다. 연구팀은 종별로 500개 이상의 박테리아의 3차원 굴절률 영상을 측정했고, 이를 인공지능 신경망을 통해 학습시켰다. 연구팀은 개발한 방법을 이용해 주요한 혈액 감염균을 신속하게 식별함으로써 실제 진단에도 응용될 가능성을 검증했다. 구체적으로 그람 음성 및 양성, 구균 및 간균을 모두 포함한 총 19가지 균종으로 혈액 감염 사례의 90% 이상의 원인이 되는 균들이다. 한 개의 병원균 혹은 병원균 덩어리를 측정한 단일 3차원 굴절률 영상에서는 약 82.5%의 정확도로 균종 판별이 가능했다. 연구팀은 또한 여러 영상을 확보할 수 있을 때 정확도가 증가해, 7개의 박테리아 영상이 확보된다면 99.9%의 정확도를 얻을 수 있었다. 연구진의 책임자이자 논문의 교신저자인 박용근 교수는 "홀로그래피 현미경의 세포 감별 능력을 인공지능으로 극대화해 감염 진단 기술로서의 가능성을 확인한 것이 의미ˮ라고 말했다. 제1 저자인 물리학과 김건 박사과정 학생은 "100,000분의 1 수준의 표본량으로도 질량 분석기의 균종 검출률과 비슷한 정확도를 얻었고 환자 시편에서 다양한 병원균을 식별하는 플랫폼 기술이 될 것으로 기대된다ˮ라고 덧붙였다. 이번 연구는 KAIST-삼성서울병원-토모큐브 팀의 수년간의 공동 연구를 통해 진행됐다. 물리학과 박용근 교수 연구팀의 기술에 다양한 기관의 경험과 비전을 반영함으로써 완성할 수 있었다. 삼성서울병원 진단검사의학과 이남용 교수, 진단검사의학과 허희재 교수, 감염내과 정두련 교수 연구팀, 서울성모병원 진단검사의학과 유인영 교수, 분당 차병원 응급의학과 김규석 교수, 우리 대학 나노과학기술대학원 정현정 교수 등 다양한 분야와 기관이 모여, 실험적 검증을 효과적으로 진행할 수 있었다. 또한 KAIST 교원 창업 기업인 ㈜토모큐브의 3차원 홀로그래피 기술 지원도 필수적인 역할을 했다. 한편 이번 연구는 한국연구재단 창의연구사업, 과학기술일자리진흥원의 지원을 받아 수행됐다.
2022.06.27
조회수 7136
적외선 세기·위상 제어 가능한 메타표면 개발
우리 대학 전기및전자공학부 장민석 교수와 미국 위스콘신 대학 브라(Victor Brar) 교수 연구팀이 적외선의 세기와 위상을 독립적으로 제어하는 동시에 전기 신호로 광학적 특성을 조절할 수 있는 그래핀 기반 메타 표면을 이론적으로 제안했다. 이번 연구를 통해 기존 능동 메타 표면 분야의 난제였던 빛의 세기와 위상의 독립적 제어 문제를 해결해 중적외선 파면을 더 정확히 고해상도로 변조할 수 있을 것으로 기대된다. 한상준 석사과정과 위스콘신 대학교 김세윤 박사가 공동 1 저자로 참여한 이번 연구는 국제 학술지 ‘ACS 나노(ACS Nano)’ 1월 28일 자 전면 표지논문으로 게재됐다. (논문명 : Complete complex amplitude modulation with electronically tunable graphene plasmonic metamolecules) 광변조기술은 홀로그래피, 고해상도 이미징, 광통신 등 차세대 광학 소자 개발에 필수적인 기반 기술이다. 기존 광변조기술에는 액정을 이용한 방식과 미세전자기계시스템(MEMS)을 이용한 방식이 있다. 그러나 두 방식 모두 단위 픽셀의 크기가 회절 한계보다 크고, 구동 속도에 제한이 있다는 문제가 있었다. 메타표면은 이러한 문제들을 해결할 수 있기에 차세대 광변조기술의 강력한 후보이다. 메타표면은 자연계의 물질이 가질 수 없는 광학적 특성을 가지며, 회절 한계를 극복한 고해상도의 상을 맺는 등 전통적인 광학 시스템의 한계를 극복할 수 있다는 장점이 있다. 특히, 능동 메타표면은 전기 신호로 그 광학적 특성을 실시간 제어할 수 있어 적용 범위가 넓은 기술로 평가받고 있다. 그러나 기존에 연구되던 능동 메타표면은 빛의 세기 조절과 위상 조절 간의 불가피한 상관관계 문제가 있다. 기존 메타표면들은 개별 메타 원자가 하나의 공진 조건만을 가지도록 설계됐으나, 단일 공진 설계는 빛의 진폭과 위상을 독립적으로 제어하기에는 자유도가 부족하다는 한계점이 있다. 연구팀은 두 개의 독립적으로 제어 가능한 메타 원자를 조합해 단위체를 구성함으로써 기존 능동 메타표면의 제한적 변조 범위를 획기적으로 개선했다. 연구팀이 제안한 메타표면은 중적외선의 세기와 위상을 독립적으로 회절 한계 이하의 해상도로 조절할 수 있어 광 파면의 완전한 제어가 가능하다. 연구팀은 제안된 능동 메타표면의 성능과 이러한 설계 방식을 응용한 파면 제어의 가능성을 이론적으로 확인했다. 특히, 복잡한 전자기 시뮬레이션이 아닌 해석적 방법으로 메타표면의 광학적 특성을 예측할 수 있는 이론적 기법을 개발해 직관적, 포괄적으로 적용 가능한 메타표면의 설계 지침을 제시했다. 연구팀의 기술은 기존 파면 제어 기술 대비 월등히 높은 공간 해상도로 정확한 파면 제어가 가능할 것으로 기대된다. 이 기술을 기반으로 향후 적외선 홀로그래피, 라이다(LiDAR)에 적용 가능한 고속 빔 조향 장치, 초점 가변 적외선 렌즈 등의 능동 광학 시스템에 적용 가능할 것으로 보인다. 장민석 교수는 “이번 연구를 통해 기존 광변조기 기술의 난제인 빛의 세기와 위상의 독립제어가 가능함을 증명했다”라며 “앞으로 복소 파면 제어를 활용한 차세대 광학 소자 개발이 더욱 활발해질 것으로 예상된다”라고 말했다.
2020.02.18
조회수 13601
박용근 교수, 세포 자유롭게 변형 가능한 홀로그래피 기술 개발
우리 대학 물리학과 박용근 교수 연구팀이 세포와 같이 복잡한 3차원 물체를 빛을 통해 자유자재로 제어할 수 있는 홀로그래피 기술을 개발했다. 이 기술은 복잡한 형상을 갖는 물체들을 포획하고 조립하면서 실시간 촬영이 가능해 세포들 간의 상호를 연구하거나 미세한 물체를 제작하고 조립하는 새로운 응용 분야를 개척할 수 있을 있을 것으로 보인다. 이번 연구 결과는 네이처 자매지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 5월 22일자 온라인 판에 게재됐다. 광학 집게라고 불리는 기존 광 제어 기술은 레이저로 광 초점을 만들어 그 초점에 구형 물체를 포획하는 방식이다. 렌즈를 이용해 작은 레이저 광 초점을 만들면 이 광초점에 자석에 철가루가 끌려오듯 주변 미세 물체를 달라붙게 하는 기술이다. 또한 이 기술은 초점의 위치를 옮기거나 힘을 가하는 방식으로 포획된 구형 물체의 3차원 위치를 조절할 수 있다. 1997년 노벨 물리학상의 공적인 이 기술은 물리학 및 광학 분야 등에 널리 이용된다. 그러나 이 광학 집게 기술은 물체의 모양이 복잡해지는 경우에는 물체를 안정적으로 포획하기 어렵다. 제어할 수 있는 물체의 방향이 제한적이기 때문에 생명 세포처럼 복잡한 3차원 형상을 가진 미세 물체를 광 제어하는 데는 한계가 있었다. 연구팀은 문제 해결을 위해 임의의 형상을 가진 복잡한 물체도 포획할 수 있는 새로운 레이저 포획 기술을 개발했다. 이 기술은 우선 3차원 홀로그래픽 현미경을 이용해 물체의 3차원 정보를 실시간 측정한 뒤 그 정보를 바탕으로 물체를 효과적으로 제어할 수 있는 광학 패턴을 정밀히 계산해 입사하는 방식이다. 기존 광학 집게 기술이 단순한 광 초점을 이용한 수동적 방식이라면 이 기술은 물체에 따라 능동적으로 적용할 수 있다. 빛과 물체의 모양이 같아질 때 물체가 갖는 에너지가 최소화돼 복잡한 형상의 물체더라도 안정적으로 포획할 수 있음을 확인했다. 이는 물리적으로는 에너지를 최소화하는 방향으로 현상이 발생하는 원리와 같다. 연구팀은 물체가 다양한 위치, 방향, 모양을 갖게 제어해 물체의 3차원 운동을 자유자재로 제어하고 원하는 모양으로 만들 수 있었다. 마치 거푸집을 자유롭게 제작해 원하는 석고상을 만들어내는 것과 같다. 연구팀은 이 기술을 통해 적혈구 세포를 안정적으로 집어 원하는 각도로의 회전, 기역자 모양으로 변형, 두 개의 적혈구를 조립해 새로운 구조물 제작 등을 구현하는 데 성공했다. 또한 복잡한 구조인 대장암 세포를 안정적으로 포획하고 원하는 각도로 회전시킬 수 있었다. 이 기술은 안정적인 상태에서 세포를 원하는 모양으로 변형시킬 수 있어 세포에 힘을 가하여 변형시킬 때의 세포 반응을 정량적으로 분석할 수 있다. 논문의 1저자인 김규현 박사는 “복잡한 형상을 가진 물체의 모양, 특성 등 사전 정보를 몰라도 물체의 운동을 자유자재로 제어할 수 있는 기술이다”며 “생물 물리학 연구, 부유 물질 및 나노 물체 조립 등의 다양한 분야에 응용 가능할 것이다”고 말했다. □ 그림 설명 그림1. 3차원 능동 광 제어 기술의 모식도 그림2. 복잡한 형태의 생명 세포들의 3차원 운동 및 모양 제어 결과
2017.05.25
조회수 12228
박용근 교수, 홀로그래픽 촬영 카메라 개발
우리 대학 물리학과 박용근 교수 연구팀이 간유리(optical diffuser, 광 디퓨저)를 이용한 홀로그래픽 카메라를 개발했다. 연구팀의 홀로그래픽 카메라는 어떠한 가정도 필요 없이 일반적인 홀로그램을 측정하는 기술로 사진 찍듯 홀로그램을 측정할 수 있는 이상적인 홀로그래피에 근접한 기술이다. 이번 연구 결과는 네이처 자매지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 10월 28일자 온라인 판에 게재됐다. 사진은 실제 눈으로 보는 것과 같은 원근감과 볼륨감을 표현할 수 없다. 그 이유는 현존하는 전자기기의 대역폭(~100 GHz)이 가시광의 진동수(~100 THz)에 훨씬 미치지 못하기 때문이다. 따라서 사진 기술로는 빛의 세기만 측정 가능하고, 원근감과 입체감 정보를 담은 빛의 파면 정보는 직접적으로 측정할 수 없다. 위상 문제(phase problem)라고 불리는 이 현상은 가시광 뿐 아니라 적외선, 자외선, 엑스레이 등 전자기파를 다루는 방대한 분야 전반에 큰 걸림돌로 남아 있었다. 이러한 위상 문제를 피해 간접적으로 빛의 파면을 측정하는 기술을 홀로그래피라고 한다. 그러나 이 홀로그래피 기술은 추가적인 참조 빛을 필요로 해 사진기술처럼 빠르게 전파되지 못했다. 수 세기동안 과학자들은 사진 찍듯 홀로그램을 찍기 위해 연구했으나 제안된 기술들은 대부분 특수한 입사 빛을 가정한 상황에서만 작동해 일반적인 상황에서 널리 사용되지 못했다. 연구팀은 입사 빛의 특수한 상황을 가정하는 대신 간유리를 활용해 입사 빛을 무작위로 산란시켰다. 무작위로 산란된 빛의 결맞음(파동이 간섭 현상을 보이는 성질) 정도에 대한 수학적 상관관계를 활용해 입사한 빛의 파면을 온전히 측정할 수 있음을 이론적으로 제안했다. 연구팀은 이론에 따라 렌즈 대신 간유리를 삽입한 홀로그래픽 카메라를 제작했고 실험을 통해 성공적으로 작동하는 것을 확인했다. 일상에서 쉽게 볼 수 있는 물체를 홀로그램으로 측정했고, 초점 위치를 자유자재로 바꿈으로써 이 기술이 일반적인 경우에도 작동함을 증명했다. 연구팀의 홀로그래피 카메라는 그 형태와 구성이 간단해 렌즈 대신 간유리를 카메라 센서 앞에 대는 것만으로 홀로그램의 측정이 가능해진다. 핸드폰 카메라 등에 적용해 상용화가 가능할 것으로 기대된다. 같은 원리를 활용해 다른 대역의 위상 문제도 해결할 수 있다. 특히 엑스레이 영역의 문제를 해결한다면 초고해상도 엑스레이 현미경의 구현이 가능해져 과학계 전반에 큰 발전을 가져올 수 있을 것으로 예상된다. 논문의 1저자인 이겨레 학생은 “이번 기술은 사진을 찍듯 홀로그램을 측정할 수 있는 이상적인 홀로그래픽 카메라에 가장 근접한 기술이다”며 “핸드폰 카메라 등에 쉽게 적용해 홀로그래피의 대중화가 가능할 것으로 기대된다”고 말했다. □ 그림 설명 그림1. 제안된 홀로그래픽 카메라. 일반적인 광 디퓨저를 홀로그래픽 렌즈로서 활용 그림2. 입사한 빛의 파면 (왼쪽, incident field)과 제안된 기술로 측정된 파면 (오른쪽, retrieved field) 그림3. 일반적인 물체의 (주사위) 홀로그램
2016.11.01
조회수 14092
박용근, 정용 교수, 알츠하이머 정량화 가능한 홀로그래피영상 기술 개발
우리 대학 물리학과 박용근 교수와 바이오및뇌공학과 정용 교수(KI 헬스사이언스 연구소) 공동 연구팀이 홀로그래피 영상 기술을 이용해 알츠하이머 질환을 정량적으로 연구할 수 있는 광학 기술을 개발했다. 이무성 연구원과 이익성 박사가 공동 1저자로 참여한 이번 연구 결과는 네이처 자매지 ‘사이언티픽 리포트(Scientific Reports)’ 8월 3일자 온라인 판에 게재됐다. 뇌의 구조는 뇌 기능 및 질병과 밀접한 관련을 갖고 있다. 특히 알츠하이머에 걸린 뇌는 회백질 및 해마에 아밀로이드 반점이나 신경 섬유 엉킴과 같은 비정상적 구조를 갖기 때문에 뇌 영상 촬영 기술 신경과학에서 꼭 필요한 기술이다. 뇌 관련 질병의 치료를 위해 자기공명영상(MRI)이나 양전자 단층 촬영(PET)과 같은 기존 영상 촬영 기술들을 많이 활용하고 있지만 0.1밀리미터 이하의 세밀한 구조는 관찰하기 힘들다는 한계를 갖는다. 이를 보완하기 위해 조직 병리학 기법을 이용해 뇌의 단면 구조를 관찰했지만, 뇌 조직이 투명하기 때문에 촬영을 위해선 염색 과정을 거쳐야 한다. 이 과정에서 왜곡이 발생할 수 있다. 또한 조직 병리로 얻은 정보는 정성적 정보가 대부분이기 때문에 질병 진단에 필요한 정량적, 객관적 기준을 제공하기 어려웠다. 문제 해결을 위해 연구팀은 먼저 홀로그래피 현미경 기술을 통해 뇌 구조의 정보를 정량적으로 분석했다. 연구팀의 홀로그래피 현미경은 빛의 간섭을 이용해 별도의 염색 과정 없이 조직의 굴절률 분포 수치 영상을 계산할 수 있다. 조직 샘플을 투과한 빛은 굴절률 분포에 따라 특정한 산란 과정을 겪는다. 위에서 얻은 굴절률 분포를 토대로 연구팀은 뇌 조직 내에서 빛이 산란되는 평균 거리와 산란광이 퍼지는 방향성을 정량화했다. 연구팀은 산란 평균 거리와 방향성 분포를 이용해 알츠하이머 인자를 가진 쥐의 뇌 조직에서 발생하는 구조 변화 및 정도를 정량적으로 수치화했다. 그 결과 알츠하이머 모델의 해마 및 회백질의 산란 평균 거리와 방향성이 정상 모델에 비해 더 낮아지는 것을 확인했다. 특히 해마 내 산란되는 평균 거리는 약 40%가 감소했다. 이는 해마와 회백질 구조가 알츠하이머병에 의해 손상되고 불균일해지기 때문으로 해석된다. 연구팀은 이번 연구가 알츠하이머 뿐 아니라 파킨슨 병 등 다른 질병 연구에도 광범위하게 활용될 수 있을 것이라고 내다봤다. 박 교수는 “최근 창업한 Tomocube(토모큐브) 사의 제품을 이용해 관련 연구자들이 보다 쉽게 새로운 방법을 적용시켜 다양한 조직 병리 연구에 활용할 수 있을 것으로 기대된다” 고 말했다. □ 그림 설명 그림1. 홀로그래피 현미경 모식도 그림2. 기존 현미경과 홀로그래피 현미경 성능 비교 그림3. 정상 모델과 알츠하이머병 모델의 뇌 조직의 산란 계수, 이방성 분포
2016.08.17
조회수 10580
홀로그래피 이용한 빛 산란 제어기술 개발
- 산란 제어를 통해 감추어진 물체를 볼 수 있는 기술 - - 네이처 사이언티픽 리포트 5월 29일자 온라인판 게재 - 최근 ‘투명테이프의 재발견’이라는 게시물이 인터넷을 뜨겁게 달궜다. 불투명한 유리창에 투명테이프를 부착하자 흐릿하게 보이던 유리가 투명해지는 현상이었다. 투명테이프로 불투명한 유리의 요철이 메워져 빛 산란이 줄여진 간단한 과학의 원리다. 이처럼 우리 실생활에서 쉽게 접할 수 있는 빛의 산란을 홀로그래피를 이용해 손쉽게 제어할 수 있는 기술이 KAIST와 MIT 공동연구팀에 의해 개발됐다. KAIST(총장 강성모)는 물리학과 박용근 교수가 미국 MIT 분광학 연구소와 공동으로 홀로그래피를 활용해 빛 산란을 제어하는 기술에 개발에 성공했다고 29일 밝혔다. 연구 결과는 세계적인 과학저널 네이처(Nature)가 발행하는 ‘사이언티픽 리포트(Scientific Report)’ 5월 29일자 온라인판에 게재됐다. 이 기술을 이용하면 구름, 연기와 같은 장애물 때문에 보이지 않던 건너편의 물체를 또렷하게 볼 수 있다. 게다가 사람의 피부와 같이 산란이 심한 물체 뒤에 숨어있는 대상까지도 선명하게 관찰할 수 있다. 연구팀은 관찰하고자 하는 물체 중간에 위치한 장애물의 빛 산란을 제어하기 위해 빛의 방향과 세기를 모두 기록하는 홀로그래피 기술을 활용했다. 연구팀은 이를 통해 산란된 빛의 정보를 기록한 후 각각의 빛을 정확하게 반대편으로 다시 빛을 반사해 원래의 이미지를 얻어내는데 성공했다. 예를 들어, 복잡한 궤적으로 당구공이 당구대에서 굴러갈 때 공을 멈추고 반대 방향으로 공을 굴리면 다시 이전의 궤적으로 가는 것과 같은 원리다. 이러한 현상은 물리학에서 위상 공액(phase conjugation)으로 알려져 있는데, 박 교수팀은 세계 최초로 위상 공액과 디지털 홀로그래피 기술을 이용해 산란이 심한 벽 뒤에 있는 물체의 2차원 이미지를 관찰하는데 성공했다. 박용근 교수는 “빛의 산란을 제어해 불투명해 보이는 벽 뒤를 볼 수 있는 이 기술은 앞으로 물리학, 광학, 나노기술, 의학은 물론 군사적인 용도 등 다양한 분야에 응용될 수 있을 것”이라고 말했다. 또 “이번 기술은 일반적으로 알려진 투시카메라 또는 투명망토 기술과는 다르다”며 “현재로선 빛의 산란을 정밀하게 제어한 원천기술 개발에 의미를 두고 있다”며 개발된 기술에 대한 확대 해석을 경계했다. 그림1. 관찰영상 그림2. 빛 산란 제어의 원리
2013.05.29
조회수 11562
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1