본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%ED%99%94%ED%95%99%EA%B3%B5%ED%95%99
최신순
조회순
미생물로 자스민 향도 만든다
우리 대학 생물공정연구센터 최경록 연구교수와 생명화학공학과 이상엽 특훈교수가 ‘벤질아세테이트 생산을 위한 미생물 공정’논문을 발표했다고 26일 밝혔다. 이번 논문은 네이처(Nature) 誌가 발행하는 ‘네이처 화학공학(Nature Chemical Engineering)’의 표지논문으로 선정됐다. ※ 논문명 : A microbial process for the production of benzyl acetate ※ 저자 정보 : 최경록(한국과학기술원, 제1 저자), Luo Zi Wei(한국과학기술원, 제2 저자), 김기배(한국과학기술원, 제3 저자), Xu Hanwen(한국과학기술원, 제4 저자) 및 이상엽(한국과학기술원, 교신저자) 포함 총 5명 향은 화장품 및 식품 산업에서 중요한 요소다. 그중에서도 자스민 향과 일랑일랑 향은 각종 향수와 화장품, 개인 위생용품뿐만 아니라 식품 및 음료 제조에까지 널리 애용되고 있다. 하지만 자스민과 일랑일랑 꽃으로부터의 추출을 통해 생산되는 향료의 양이 수요를 충족시키기 못하기 때문에 산업에서는 두 향료의 향을 내는 주요한 방향성 성분인 벤질아세테이트를 석유로부터 유래한 원료를 이용해 화학적으로 합성해 첨가해 제품을 생산하고 있다. 이상엽 특훈교수 연구팀은 각종 산업에서 널리 이용되는 방향성 화합물인 벤질아세테이트를 친환경적이고 지속가능한 방식으로 생산하고자 시스템 대사공학을 통해 포도당으로부터 벤질아세테이트를 생산하는 대장균 발효 공정을 개발했다. 시스템 대사공학은 석유에 대한 의존도가 높은 기존의 화학산업을 대체할 바이오산업의 핵심인 미생물 세포공장을 보다 효과적으로 개발하기 위해 이상엽 특훈교수가 창시한 연구 분야다. 이상엽 특훈교수팀은 2019년 대장균을 대사공학적으로 개량해 포도당으로부터 벤조산을 생산하는 미생물 균주를 개발한 바 있다. 이번 연구에서는 해당 전략을 바탕으로 포도당으로부터 벤조산을 거쳐 벤질아세테이트를 생합성하는 대사 경로를 개발했다. 연구팀은 포도당으로부터 벤조산을 생합성하는 대사경로를 도입한 상단 균주와 벤조산을 벤질아세테이트로 전환하는 대사 경로가 도입된 하단 균주의 공생배양을 통해 포도당으로부터 벤질아세테이트를 생산하는 데 성공했다. 하지만 해당 공생배양 전략을 활용할 경우 벤조산을 벤질아세테이트로 전환하는 데에 이용되는 효소가 벤조산 생합성 중 생성되는 중간체에 비특이적으로 작용해 신나밀아세테이트라는 부산물을 생성하는 것이 확인됐다. 특히 이 과정에서 벤조산 생합성에 필요한 중간체가 소모되어 목표 화합물인 벤질아세테이트의 생산 효율이 감소된다. 이상엽 특훈교수 연구팀은 효소의 기질 비특이성으로 인한 부산물 생성 문제를 극복하기 위해 발효 초반에는 포도당으로부터 벤조산을 생산하는 상단 균주만을 배양해 벤조산을 우선적으로 생산하고, 하단 균주를 뒤늦게 접종해 배양액 내에 축적된 벤조산을 벤질아세테이트로 전환하는 지연 공생배양 전략을 고안했다. 하단 균주가 도입되는 시점에는 배양액 내 벤조산의 농도가 중간체의 농도보다 월등히 높아 벤조산이 벤질아세테이트로 전환되는 반응이 중간체가 부산물로 전환되는 반응보다 우세하게 진행된다. 연구진은 지연 공생배양 전략을 적용함으로써 추가적인 효소 및 균주 개량을 거치지 않고도 부산물의 생성은 억제하는 동시에 목표 화합물인 벤질아세테이트의 생산 농도는 기존 플라스크 수준의 발효 대비 10배 이상인 2.2 g/L까지 향상시킬 수 있었다. 또한 기술 경제성 분석을 통해 해당 미생물 공정을 통한 벤질아세테이트의 상업적 생산 가능성을 확인했다. 이번 논문의 제1 저자인 최경록 연구교수는 “이번 연구는 벤질아세테이트라는 산업적으로 유용한 화합물을 효과적으로 생산하는 미생물 공정을 개발함과 동시에, 대사공학을 연구 중 효소의 기질 비특이성으로 인해 빈번하게 발생하는 부산물 생성 및 이로 인한 목표 화합물 생산 효율의 저하 문제를 극복하는 새로운 접근을 제시했다는 데 큰 의의가 있다”고 말했다. 또한 이상엽 특훈교수는 “산업적으로 유용한 화합 물질을 지속가능한 방식으로 생산할 수 있는 미생물 공정의 종류와 수를 늘려 나감과 동시에 미생물 균주 개발 중 고질적으로 필연적으로 발생하는 여러 문제를 해결하는 효과적인 전략의 개발에도 힘쓴다면 석유화학산업의 친환경적이고 지속가능한 바이오산업으로의 전환을 더욱 앞당길 수 있을 것”이라고 밝혔다. 한편, 이번 연구는 과기정통부가 지원하는 바이오의료기술개발사업의 ‘지능형 세포공장기술 구현’ 과제 (과제책임자 KAIST 이상엽 특훈교수) 및 농촌진흥청이 지원하는 농업미생물사업단(단장 장판식)의 ‘미생물 대사 시스템 제어를 통한 무기물로부터의 단백질 생산 기술 개발’ 과제 (과제책임자 KAIST 최경록 연구교수)의 지원을 받아 수행됐다.
2024.02.26
조회수 4551
암의 조기 진단, 치료방향 결정 등을 위한 표적 마이크로RNA 다중 검출 기술 개발
우리 대학 생명화학공학과 박현규 교수, 신소재공학과 정연식 교수 공동 연구팀이 암 관련 마이크로RNA를 다중 검출할 수 있는 다색 양자점(퀀텀닷) 어레이를 개발했다고 20일 밝혔다. 신소재공학과 남태원 박사와 생명화학공학과 박연경 박사가 공동 제1 저자로 참여한 이번 연구는 미국화학회(American Chemical Society)가 발행하는 국제 학술지 `ACS 나노(ACS Nano)'에 2022년도 6월 15일 字 온라인판에 게재됐다. (논문명: Polychromatic quantum dot array to compose a community signal ensemble for multiplexed miRNA detection) 마이크로RNA는 18~25개의 염기서열로 이루어진 짧은 RNA로, 유전자 발현을 조절함으로써 세포 성장 및 분화와 같은 다양한 세포 활동을 제어한다. 마이크로RNA의 비정상적인 발현은 암을 포함한 다양한 질병과 밀접하게 연관돼있어, 여러 가지 질병을 진단하는 차세대 바이오마커로 크게 주목을 받고 있다. 마이크로RNA를 검출하는 가장 일반적인 기존의 방법은 역전사 중합효소 연쇄반응(qRT-PCR)이다. 하지만 이 기술은 역전사 반응을 수반하기 때문에 정량의 정확도가 떨어지고 다중 분석이 제한된다. 다중 핵산 분석에 특화되어 개발된 마이크로 어레이 기술 또한 여전히 역전사 단계를 수반하고 있으며 민감도와 특이도에 있어서 한계가 있다. 연구팀은 이러한 현행 기술의 한계를 극복하기 위해서, 트랜스퍼 프린팅 기법을 활용해 초고해상도의 다색 양자점 어레이(이하 PQDA)를 제작했고 이를 마이크로RNA를 분석하는 기술로 발전시켰다. 그 결과 연구팀은 표적 마이크로RNA를 높은 민감도와 특이도로 다중 검출하는 데 성공하였다. PQDA는 표적 마이크로RNA에 상보적인 DNA프로브/양자점 복합체가 고정된 고분자 패턴으로, 이중가닥 특이적 뉴클레아제(이하 DSN) 효소에 의해서 표적 마이크로RNA에 특이적인 양자점을 방출하도록 설계됐다. 연구팀은 방출된 양자점들의 형광 신호 앙상블을 기반으로 유방암에 관련된 세 종류의 마이크로RNA를 펨토(10-15) 몰 수준으로 검출하는 데 성공했다. 또한, 혈청과 유방암세포로부터 마이크로RNA를 검출함으로써 기술의 임상 활용도를 입증했다. PQDA는 각각 독립적인 정량화가 가능한 DNA프로브-양자점 모듈로 이뤄져 있다는 점에서 다중 분석에 적합하다. 특히, PQDA 기반 검출은 역전사 단계 없이 원상태의 마이크로RNA에서 수행하기 때문에 정확한 정량 분석이 가능하고, DSN 효소를 활용해 별도의 증폭 절차 없이 높은 감도를 달성했다. 또한, DSN 효소의 우수한 표적 식별 능력을 이용해 매우 높은 특이도로 표적 마이크로RNA를 검출할 수 있었다. 연구팀 관계자는 "특히 마이크로RNA는 혈액, 타액 및 소변과 같은 체액에도 존재하기 때문에 액체생검(Liquid biopsy)을 위한 핵심 바이오마커로 작용할 수 있다ˮ며 "따라서 이번 기술은 암의 조기 진단, 치료 방향 결정, 치료 효과 모니터링 등을 위한 액체생검 기술로 널리 활용될 수 있을 것으로 기대된다ˮ고 연구의 의의를 설명했다. 한편 이번 연구는 한국연구재단의 기초연구사업, 글로벌프론티어사업, 중견연구자지원사업의 일환으로 수행됐다.
2022.07.20
조회수 7286
생명화공 장호남 교수팀, 음식물 쓰레기 완전 소멸기술 개발
- 한국 아파트에도 선진국 형 無수거 시스템 도입 가능해져 - 지하실에 완전 밀폐식 소규모 시설 설치로 위생적 처리 가능 - 현장 실험 성공, 국내 특허 취득, 미국 등 국제 특허 출원 중 아파트 주방에서 나오는 음식물 쓰레기를 수거하지 않고 소규모 처리 시설만으로 효과적으로 정화할 수 있는 획기적인 기술이 개발되었다. 생명화학공학과 장호남(張虎男, 61) 교수팀은 공동주택 주방에서 분쇄기(디스포저)를 통해 음식물 쓰레기를 분쇄한 뒤, 지하실에 설치된 완전 밀폐식 소규모 처리조에서 정화해 생활하수와 함께 배출할 수 있는 처리 기술(HEROS)을 개발했다고 밝혔다. 이 기술은 미세스크린 고속분리장치에서 하수를 분리 배출하고, 분리된 음식물쓰레기는 고농도 미생물 반응기에서 혐기성 소멸 처리법을 통해 정화한다. 이 처리법은 에너지 소모가 거의 없으며 화학 약품을 전혀 사용하지 않는 친환경적인 정화 기술이다. 주방에 설치된 디스포저로 분쇄된 후 0.1~0.3mm 크기의 미세 스크린 고속분리장치로 분리된 하수는 BOD 150mg/L. SS250mg/L로 추가 처리 없이 도시 하수관로로 바로 배출할 수 있다. 이는 일본에서 정한 도시 하수관로 배출기준인 BOD 300mg/L. SS 300mg/L 보다 훨씬 낮은 수치다. 이렇게 처리된 하수는 분쇄기 처리 기법에 의한 처리 시에 문제가 되는 하수관로 침적을 일으키지 않으며, 하수 종말 처리장 용량에도 전혀 영향을 미치지 않는다. 또한, 아파트에서 음식물 쓰레기를 처리하는 전용 하수관의 별도 설치 없이 기존의 하수관을 사용할 수 있어 신설 아파트는 물론이고 기존 아파트에도 활용이 가능한 기술로 평가되고 있다. 지난 3월부터 9개월간 張 교수팀은 KAIST 교수 아파트에서 이 음식물 쓰레기 처리 기술 현장 실험을 실시하여 성공적인 결과를 얻었다. 이 실험 결과를 바탕으로 내년에는 서울 강남 소재 아파트에서 실용화 추진을 위한 본격적인 실증 실험을 실시할 예정이다. 張 교수는 “HEROS 처리 기술이 본격적으로 활용되면 음식물 쓰레기가 더 이상 생활에 불편과 환경을 오염시키는 것을 막을 수 있을 것”이라고 밝혔다. 이 연구결과는 최근 국내 특허를 취득했으며, 미국, 일본, 싱가폴 등에 국제 특허를 출원 중에 있다. <HEROS공정도>
2005.12.08
조회수 15878
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1