-
세계 최초 원자 편집으로 신약 발굴 패러다임 바꿔
선도적 신약 개발에서는 약효의 핵심 원자를 손쉽고 빠르게 편집하는 신기술은 의약품 후보 발굴 과정을 혁신하는 원천 기술이자, 꿈의 기술로 여겨져 왔다. 우리 대학 연구진이 약효를 극대화하는 단일 원자 편집 기술 개발에 세계 최초 성공했다.
우리 대학 화학과 박윤수 교수 연구팀이 오각 고리 화합물인 퓨란의 산소 원자를 손쉽게 질소 원자로 편집·교정하여, 제약 분야에서 널리 활용되는 피롤 골격으로 직접 전환하는 원천 기술 개발에 성공했다고 8일 밝혔다.
해당 연구성과는 그 중요성을 인정받아 과학 분야 최고권위 학술지인 ‘사이언스(Science)’誌 에 지난 10월 3일 게재됐다. (논문명: Photocatalytic Furan-to-Pyrrole Conversion)
많은 의약품은 복잡한 화학 구조를 갖지만, 정작 이들의 효능은 단 하나의 핵심 원자에 의해 결정되기도 한다. 대표적으로, 산소, 질소와 같은 원자는 바이러스에 대한 약리 효과를 극대화 하는데 중추적인 역할을 한다.
이처럼 약물 분자 골격에 특정 원자를 도입했을 때 나타나는 효능을 ‘단일 원자 효과(Single Atom Effect)'라 한다. 선도적 신약 개발에서는 수많은 원자 종류 중 약효를 극대화하는 원자를 발굴하는 것이 핵심으로 여겨진다.
하지만, 단일 원자 효과를 평가하기 위해서는 다단계·고비용의 합성 과정이 필연적으로 요구되어 왔다. 산소 혹은 질소 등을 포함한 고리 골격은 고유의 안정성(방향족성)으로 인해 단일 원자만 선택적으로 편집하기 어렵기 때문이다.
박 교수 연구팀은 빛에너지를 활용하는 광촉매를 도입하여 해당 기술을 구현했다. 분자 가위 역할을 하는 광촉매 개발을 통해 오각 고리를 자유자재로 자르고 붙임으로써 상온·상압 조건에서 동작하는 단일 원자 교정 반응을 세계 최초로 성공시켰다.
들뜬 상태의 분자 가위가 단전자 산화 반응을 통해 퓨란의 산소를 제거하고, 질소 원자를 연이어 추가하는 새로운 반응 메커니즘을 발견했다고 연구팀 관계자는 전했다.
이번 연구의 제1 저자인 KAIST 화학과 김동현, 유재현 석박사통합과정 학생은 “빛에너지를 활용해 가혹한 조건을 대체하여 해당 기술이 높은 활용성을 가질 수 있었다”며, “복잡한 구조로 이루어진 천연물이나 의약품들을 기질로 활용해도 선택적으로 목표 편집이 수행된다”고 이번 연구의 범용성을 설명했다.
이번 연구를 이끈 박윤수 교수는 “오각 고리형 유기 물질의 골격을 선택적으로 편집할 수 있게 됨에 따라, 제약 분야의 중요한 숙제였던 의약품 후보 물질의 라이브러리 구축에 새로운 장을 열 것”이라 언급하며, “해당 기반 기술이 신약 개발 과정을 혁신하는데 쓰이기를 바란다”고 덧붙였다.
해당 내용은 ‘사이언스(Science)’誌 내의 퍼스텍티브(Perspective) 섹션에 추가로 선정되어 연구의 의의가 소개되기도 하였다. 이는 해당 연구에 참여하지 않은 저명한 과학자가 파급력 있는 연구를 선별하여 해설을 제공하는 코너다.
한편 이번 연구는 한국연구재단의 우수신진연구, KAIST 교내연구사업 도약연구 및 초세대협업연구실, 포스코청암재단의 포스코 사이언스펠로십의 재원을 바탕으로 수행됐다.
2024.10.10
조회수 2548
-
마그논 오비탈 홀 효과로 반도체 발열문제 실마리
기존 정보처리 기술을 혁신적으로 발전시켜 초고속 초고집적 차세대 반도체 기술을 구현할 것으로 기대되는 스핀트로닉스와 오비트로닉스는 줄발열*로 인한 에너지 소모 문제가 필연적으로 동반되는 치명적인 결점이 있었다. 한국 연구진이 초저전력 오비탈** 기반 정보처리 기술의 기틀을 세울 수 있을 기술을 개발하여 화제다.
*줄 발열: 도체에 전류가 흐를 때 일어나는 발열 현상.
**오비탈: 입자 회전 운동으로 발생되는 각운동량을 뜻함.
우리 대학 물리학과 김세권 교수 연구팀이 포항공과대학교 물리학과 이현우 교수팀과의 공동 연구로 반강자성체*에서 마그논 오비탈 홀 효과**를 세계 최초로 발견해 물리 및 화학 분야 세계적인 학술지 `나노 레터스(Nano Letters)'에 게재했다고 17일 밝혔다.
*반강자성체: 인접한 원자의 전자스핀이 서로 반대로 정렬하여 순 자성이 없는 물질을 말함.
*마그논 오비탈 홀 효과: 축구의 바나나킥처럼, 마그논이 회전방향(오비탈)에 따라 진행궤적이 휘어지는 현상을 의미한다. 마그논계에서의 오비탈 홀 효과는 기존에 예측된 바가 없는 새로운 현상이기에 학문적으로 흥미로우며, 기존 스핀 자유도에 국한되었던 마그논 동역학을 오비탈 자유도를 통해 한 단계 확장하는 의의가 있음.
마그논*을 이용한 스핀트로닉스 소자의 경우 줄 발열로 인한 에너지 소모 없이 기존의 컴퓨팅 기술을 대체할 수 있다는 장점이 있어 전 세계 각국 학계에서 경쟁적으로 연구가 이뤄지고 있다. 마그논 스핀에 관해서는 지난 수십 년간 활발히 연구됐으나, 마그논 오비탈의 특성에 관한 이론 정립은 아직 아무도 시도하지 않은 문제였다.
*마그논: 양자화된 스핀 파동을 뜻함.
물리학과 김세권 교수 연구팀은 MnPS3(삼황화린망간)와 같이 벌집 격자를 이루는 2차원 반강자성체에서 강한 마그논 오비탈 홀 효과가 나타난다는 것을 세계 최초로 발견했다.
기존에 알려진 마그논 홀 효과는 스핀궤도결합에 기인하기에 그 크기가 작은 데 반해, 이번 연구를 통해 발견된 마그논 오비탈 홀 효과는 스핀궤도결합과 무관하게 결정구조에서 기인해 크기가 상당히 크다는 것을 연구팀이 이론적으로 보였다. 또한 연구팀은 전기적으로 마그논 오비탈 홀 효과를 측정할 수 있는 실험방법도 제시했다. 이는 스핀 자유도에만 국한되어 있던 마그논 연구의 범위를 스핀과 오비탈로 확장한 연구 결과로 마그논 오비트로닉스라는 연구의 새 장을 열어 줄 것으로 예상된다.
김세권 교수는 "마그논 오비탈과 그 수송이론의 정립은 아직 세계적으로 아무도 시도하지 않은 독창적이고 도전적인 문제이고, 기존 정보처리 기술의 한계를 혁신적으로 뛰어넘는 초저전력 오비탈 기반 정보처리 기술의 기틀을 세울 수 있을 것ˮ이라고 기대감을 내비쳤다.
이번 연구는 우리 대학 김세권 교수, 고경춘 박사, 안대현 학생, 그리고 포항공과대학교 이현우 교수의 공동 연구로 진행되었으며, 삼성미래기술육성사업, 한국연구재단 해외우수과학자 유치사업 플러스(브레인 풀 플러스), 세종과학펠로우십의 지원을 받아 수행됐다.
2024.06.17
조회수 2752
-
화학물질 없이 식각하는 반도체 기술 최초 개발
차세대 반도체 메모리의 소재로 주목을 받고 있는 강유전체는 차세대 메모리 소자 혹은 작은 물리적 변화를 감지하는 센서로 활용되는 등 그 중요성이 커지고 있다. 이에 반도체의 핵심 소자가 되는 강유전체를 화학물질없이 식각할 수 있는 연구를 성공해 화제다.
우리 대학 신소재공학과 홍승범 교수가 제네바 대학교와 국제공동연구를 통해 강유전체 표면의 비대칭 마멸* 현상을 세계 최초로 관찰 및 규명했고, 이를 활용해 혁신적인 나노 패터닝 기술**을 개발했다고 26일 밝혔다.
*마멸: 물체 표면의 재료가 점진적으로 손실 또는 제거되는 현상
**나노 패터닝 기술: 나노스케일로 소재의 표면에 정밀한 패턴을 생성하여 다양한 첨단 기술 분야에서 제품 성능을 향상시키는데 사용되는 기술
연구팀은 강유전체 소재의 표면 특성에 관한 연구에 집중했다. 이들은 원자간력 현미경(Atomic Force Microscopy)을 활용해 다양한 강유전체의 트라이볼로지(Tribology, 마찰 및 마모) 현상을 관찰했고, 강유전체의 전기적인 분극* 방향에 따라 마찰되거나 마모되는 특성이 다르다는 것을 세계 최초로 발견했다. (그림 1) 아울러, 이러한 분극 방향에 따라 달라지는 트라이볼로지의 원인으로 변전 효과(Flexoelectric effect)*에 주목했다.
*전기적 분극(electric dipole): 자석의 북극과 남극처럼 전기적으로 양극과 음극이 있는 것을 의미함
*변전 효과: 물질이 휘어졌을 때 분극이 발생하는 현상이지만, 거시 규모에서 물질을 구부렸을 때 유도되는 분극의 크기가 매우 작아 그동안 큰 주목을 받지 못했다. 그러나 2010년대 들어서 물질이 나노스케일로 미세화될 경우, 매우 큰 변전 효과가 발생할 수 있다는 연구 결과가 나오면서 많은 연구자의 주목을 받기 시작했다.
연구진은 강유전체의 트라이볼로지 특성이 나노 단위에서 강한 응력이 가해질 때 발생하는 변전 효과로 인해 강유전체 내부의 분극 방향에 따른 상호작용으로 트라이볼로지 특성이 바뀌게 된다는 것을 발견했다. 또한 이러한 새로운 강유전체 트라이볼로지 현상을 소재의 나노 패터닝에 응용했다.
이러한 패터닝 방식은 기존의 반도체 패터닝 방식과는 다르게 화학 물질 및 고비용의 리소그래피 장비가 필요하지 않고, 기존 공정 대비 매우 빠르게 나노 구조를 제작할 수 있는 장점이 있다.
이번 연구의 제1 저자인 신소재공학과 졸업생 조성우 박사는 “이번 연구는 세계 최초로 강유전체 비대칭 트라이볼로지를 관찰하고 규명한 데 의의가 있고, 이러한 분극에 민감한 트라이볼로지 비대칭성이 다양한 화학적 구성 및 결정 구조를 가진 강유전체에서 널리 적용될 수 있어 많은 후속 연구를 기대할 수 있다”고 밝혔다.
공동교신저자로 본 연구를 공동 지도한 제네바 대학교 파루치(Paruch) 교수는 “변전 효과를 통해 강유전체의 도메인이 분극 방향에 따라 서로 다른 표면 특성을 나타내는 것을 활용함으로써, 다양하고 유용한 기술들을 개발할 수 있을 것이다”며 이번 연구가 앞으로 뻗어나갈 분야에 대한 강한 자신감을 피력했다.
연구를 이끈 홍승범 교수는 “이번 연구에서 개발된 패터닝 기술은 기존 반도체 공정에서 쓰이는 패터닝 공정과 달리 화학 물질을 사용하지 않고, 매우 낮은 비용으로 대면적 나노 구조를 만들 수 있어 산업적으로 활용될 수 있는 잠재력을 가지고 있다”고 전망했다.
한편, 이번 연구는 한국연구재단(2020R1A2C2012078, NRF-2022K1A4A7A04095892, RS-2023-00247245), KAIST 글로벌특이점 사업의 지원 및 스위스, 스페인 연구진과의 국제공동연구를 통해 수행됐으며, 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’에 1월 9일 자 출판됐다. (논문 제목: Switchable tribology of ferroelectrics)
2024.03.26
조회수 4264
-
항암 효과 낮추는 ‘세포 간 이질성’ 극복 전략 찾았다
효과가 높은 신약 및 치료법 개발을 위한 단서가 제시됐다. 우리 대학 수리과학과 김재경 교수(기초과학연구원(IBS) 수리 및 계산 과학 연구단 의생명 수학 그룹 CI(Chief Investigator)) 연구팀은 인공지능(AI)을 이용해 동일 외부 자극에 개별 세포마다 반응하는 정도가 다른 ‘세포 간 이질성’의 근본적인 원인을 찾아내고, 이질성을 최소화할 수 있는 전략을 제시했다.
우리 몸속 세포는 약물, 삼투압 변화 등 다양한 외부 자극에 반응하는 신호 전달 체계(signaling pathway)가 있다. 신호 전달 체계는 세포가 외부 환경과 상호작용하며 생존하는 데 핵심적인 역할을 한다. 세포의 신호 전달 체계는 노벨생리의학상의 단골 주제일 정도로 중요하지만, 규명을 위해서는 수십 년에 걸친 연구가 필요하다.
신호 전달 체계는 세포 간 이질성에도 영향을 미친다. 세포 간 이질성은 똑같은 유전자를 가진 세포들이 동일 외부 자극에 다르게 반응하는 정도를 뜻한다. 하지만 복잡한 신호 전달 체계의 전 과정을 직접 관측하는 일이 현재 기술로는 어렵기 때문에 지금까지는 신호 전달 체계와 세포 간 이질성의 명확한 연결고리를 알지 못했다.
세포 간 이질성은 질병 치료에 있어 더욱 중요한 고려 요소다. 가령, 항암제를 투여했을 때 세포 간 이질성으로 인해 일부 암세포만 사멸되고, 일부는 살아남는다면 완치가 되지 않는다. 세포 간 이질성의 근본적인 원인을 찾고, 이질성을 최소화할 수 있는 전략을 도출해야 치료 효과를 높인 신약 설계가 가능해진다.
제1 저자인 홍혁표 IBS 전(前) 학생연수원(現 미국 위스콘신 메디슨대 방문조교수)은 “우리 연구진은 선행 연구(Science Advances, 2022)에서 세포 내 신호 전달 체계를 묘사한 수리 모델을 개발한 바 있다”며 “당시엔 신호 전달 체계의 중간 과정이 한 개의 경로만 있다고 가정해 얻을 수 있는 정보도 한계가 있었지만, 이번 연구에서는 AI를 활용해 중간 과정의 비밀까지 풀어냈다”고 말했다.
연구진은 기계 학습 방법론인 ‘Density-PINNs(Density Physics-Informed Neural Networks)’를 개발해 신호 전달 체계와 세포 간 이질성의 연결고리를 찾았다. 세포가 외부 자극에 노출되면 신호 전달 체계를 거쳐 반응 단백질이 생성된다. 시간에 따라 축적된 반응 단백질의 양을 이용하면 신호 전달 소요 시간의 분포를 추론할 수 있다. 이 분포는 신호 전달 체계가 몇 개의 경로로 구성됐는지를 알려준다. 즉, Density-PINNs를 이용하면 쉽게 관측할 수 있는 반응 단백질의 시계열 데이터로부터 직접 관찰하기 어려운 신호 전달 체계에 대한 정보를 추정할 수 있다는 의미다.
이어 연구진은 실제 대장균의 항생제에 대한 반응 실험 데이터에 Density-PINNs를 적용하여 세포 간 이질성의 원인도 찾았다. 신호 전달 체계가 단일 경로로 이뤄진 때(직렬)에 비해 여러 경로로 이뤄졌을 때(병렬)가 세포 간 이질성이 적다는 것을 알아냈다.
제1 저자인 조현태 연구원은 “추가 연구가 필요하지만, 신호 전달 체계가 병렬 구조일 경우 극단적인 신호가 서로 상쇄되어서 세포 간 이질성이 적어지는 것으로 보인다”며 “신호 전달 체계가 병렬 구조를 보이도록 약물이나 화학 요법 치료 전략을 세우면 치료 효과를 높일 수 있다는 의미”라고 설명했다.
연구를 이끈 김재경 교수는 “복잡한 세포 신호 전달 체계의 전 과정을 파악하려면 수십 년의 연구가 필요하지만, 우리 연구진이 제시한 방법론은 수 시간 내에 치료에 필요한 핵심 정보만 알아내 치료에 활용할 수 있다”며 “이번 연구를 실제 현장에서 사용되는 약물에 적용하여 치료 효과를 개선할 수 있기를 기대한다”고 말했다.
연구 결과는 지난해 12월 26일 국제학술지 셀(Cell)의 자매지인 ‘패턴스(Patterns)’에 실렸다.
※ 논문명: Density physics-informed neural networks reveal sources of cell heterogeneity in signal transduction
2024.01.17
조회수 3149
-
강한 빛에서 0.02초 내에 새로운 촉매를 합성하다
대면적의 빛을 활용하고 대기 중의 환경에서 0.02초 이내에 연료전지 등 차세대 에너지 저장 및 발전에 광범위하게 적용되는 고엔트로피 촉매 및 단일원자 촉매의 합성을 세계 최초로 구현했다.
우리 대학 전기및전자공학부 최성율 교수 연구팀과 신소재공학과 김일두 교수 연구팀이 공동연구를 통해 강한 빛을 다양한 탄소 기반 소재에 조사해, 0.02초 이내에 나노입자 촉매와 단일원자(single atom) 촉매를 진공 시설이 없는 대기 조건에서 합성하고 우수한 촉매 성능을 구현하는데 성공했다고 6일 밝혔다.
연구팀은 2022년 4월 제논 램프 빛을 조사해 금속산화물의 상(phase) 변화와 표면에 촉매 입자가 생성될 수 있음을 최초로 밝혔고 그 후속으로 소재의 광열효과를 유도하는 합성법에 대한 연구를 진행했다. 이에 초고온(1,800~3,000oC)과 빠른 승/하온 속도(105 oC/초)를 통해 기존의 합성법으로는 구현할 수 없는 촉매 입자를 합성하는 데 성공했다.
이번 기술은 대면적의 빛을 활용하고 대기 중의 환경에서 매우 빠른 시간(0.02초 이내)에 고엔트로피 촉매 및 단일원자 촉매의 합성을 세계 최초로 구현한 기술이다. 광열효과가 뛰어난 소재(탄소 나노섬유, 그래핀 산화물, 맥신(Mxene))에 다종 금속 염을 고르게 섞어주고 빛을 가하게 되면 초고온 및 매우 빠른 승/하온 속도를 기반으로 최대 9성분계의 합금 촉매를 합성할 수 있음을 밝혔다. 합금 촉매는 연료전지, 리튬-황전지, 공기 전지, 물 분해 수소 생산 등 저장 및 발전에 광범위하게 적용되며, 비싼 백금의 사용량을 획기적으로 줄이는데 유리하다.
연구팀은 광열효과를 통해 단일원자 촉매의 신규 합성법에도 성공했다. 그래핀 산화물에 멜라민 및 금속염을 동시에 혼합하여 빛을 조사하게 되면 단일원자 촉매가 결합된 질소 도핑 그래핀을 합성할 수 있음을 최초로 밝혔다. 백금, 코발트, 니켈 등의 다양한 단일원자 촉매가 고밀도로 결착되어 다양한 촉매 응용 분야에 활용할 수 있다.
최성율 교수와 김일두 교수는 "강한 빛을 소재에 짧게(0.02초 이내) 조사하는 간편한 합성기법을 통해 단일 원소 촉매부터 다성분계 금속 나노입자 촉매의 초고속, 대면적 합성을 가능하게 하는 새로운 촉매 합성 공정 플랫폼이 될 것으로 기대된다ˮ고 밝혔다. 특히, "매우 빠른 승/하온 속도를 기반으로 기존에 합성하기 어려웠던 고엔트로피 다성분계 촉매 입자를 대기 중 조건에서 균일하게 합성해 고성능 물 분해 촉매로 응용했다는 점에서 매우 의미있는 연구 결과이며, 응용 분야에 따라 촉매 원소의 크기와 조성을 자유롭게 조절해 제작할 수 있는 신개념 광 기반 복합 촉매 소재 합성 플랫폼을 구축했다ˮ고 밝혔다.
고엔트로피 촉매 제조 관련 연구는 공동 제1 저자인 차준회 박사(KAIST 전기및전자공학부, 現 SK하이닉스 미래기술연구원), 조수호 박사(KAIST 신소재, 現 나노펩 선임연구원), 김동하 박사(KAIST 신소재, 현 MIT 박사후 연구원, 한양대학교 ERICA 재료화학공학과 교수 임용)의 주도하에 진행됐으며, 최성율 교수(KAIST 전기및전자공학부), 김일두 교수(KAIST 신소재), 정지원 교수(KAIST 신소재, 現 울산대학교 신소재 교수)가 교신저자로 참여했다.
단일원자 촉매 제조 관련 연구는 공동 제1 저자인 김동하 박사와 차준회 박사의 주도하에 진행됐으며, 김일두 교수, 최성율 교수가 교신저자로 참여했다.
이번 연구 결과는 나노 분야의 권위적인 학술지인 `어드밴스드 매트리얼즈(Advanced Materials)' 11월호에 속표지 논문으로 선정되었으며, `에이씨에스 나노(ACS Nano)' 12월호에 속표지 논문으로 출간 예정이다.
한편 연구는 한국연구재단 중견연구자지원 사업, 과학기술정보통신부와 산업통상자원부 사업, 한국연구재단 미래소재디스커버리 사업의 지원, 과학기술정보통신부 반도체-이차전지 인터페이싱(InterFacing) 플랫폼 기술개발사업을 받아 수행됐다.
2023.12.06
조회수 5866
-
말기 고형암 표적 2세대 면역치료제 개발
암은 현대인의 건강을 위협하는 대표적인 질병으로 꼽히고 있다. 최근의 암 연구 중에서 가장 많은 진전이 있었던 분야는 암 환자가 갖고 있는 면역체계를 활용해 암을 극복하는 면역 항암치료다. 여기 기존의 모든 항암 치료에 불응한 말기 고형암 환자들에게 적용 가능한 차세대 면역 항암 치료법이 개발되어 화제다.
우리 대학 생명과학과 김찬혁 교수 연구팀이 면역시스템이 억제되는 종양미세환경을 극복하는 ‘2세대 T세포 수용체 T (T cell receptor specific T, 이하 TCR-T) 세포’ 치료제를 개발했다고 20일 밝혔다.
연구팀은 유전자 조작을 통해 암세포를 직접 파괴할 수 있도록 하는 TCR-T 세포 치료제 제작에 크리스퍼-캐스9 유전자 편집 기술을 이용해 T 세포 수용체 신호전달의 핵심적인 CD247 유전자에 추가신호 전달체인 트레프2-결합 도메인이 포함되도록 개량했다. 이러한 유전자 편집을 통한 개량은 TCR-T 세포의 증식 및 지속성을 향상시켰고, 생쥐를 이용한 악성 흑색종 모델에서 탁월한 항암 효과를 보임을 확인했다.
KAIST 생명과학과 나상준 박사와 김세기 박사가 공동 제1 저자로 참여한 이번 연구는 국제 학술지 '저널 포 이뮤노쎄라피 오브 캔서 (Journal for Immunotherapy of Cancer)'에 지난 4월 5일 출판됐다. (논문명: Engineering second-generation TCR-T cells by site-specific integration of TRAF-binding motifs into the CD247 locus)
초기 미비한 항암 효과를 보이던 1세대 키메라 항원 수용체 (chimeric antigen receptor, 이하 CAR)를 장착한 CAR-T 세포와 다르게, 추가신호 전달체가 포함된 2세대 CAR-T 세포는 말기 백혈병 환자들을 대상으로 80% 이상의 높은 치료 효과를 보이며 ‘기적의 항암제’로 불리고 있다. 하지만 현 CAR-T 치료제는 B세포성 급성 백혈병과 다발 골수종 같은 혈액암에만 치료 효과가 국한돼 있으며, 고형암 환자들을 대상으로 높은 치료효과를 보이는 CAR-T 치료제가 아직까지 없다는 점이 해결해야 할 과제로 대두되고 있다. 또한 TCR-T 치료제는 CAR-T와는 다르게 아직 1세대 구조에 머물고 있다.
이러한 관점에서, 연구진은 고형암을 표적으로 하는 TCR-T 세포에 추가 신호 전달체인 트레프2-결합 도메인이 포함된 2세대 TCR-T 세포 치료제를 개발했다. 단일 단백질로 이뤄진 CAR와 다르게 단백질 복합체를 형성하는 TCR에 추가신호 전달체를 포함시키는 엔지니어링은 훨씬 도전적이다. 연구진은 다양한 시도 끝에 TCR의 형성과 기존 신호전달에 영향을 주지 않으면서 동시에 추가 신호가 유발되는 최적의 TCR 모듈을 구축했다.
제1 저자인 나상준 박사는 “고형암이 형성하는 면역억제 환경에서, 기존 1세대 TCR-T 세포의 항암효과는 제한될 수 밖에 없다”라며 “반면 2세대 TCR-T 세포는 면역억제 환경에서도 지속적인 항암효과를 유지하도록 고안된 기술 전략으로, 기존 치료제의 효과를 기대하기 어려운 고형암 환자들에게 필요한 치료제가 될 것으로 기대한다”라고 말했다.
이번 연구는 삼성전자 미래기술육성센터의 지원을 받아 수행됐다.
2023.04.20
조회수 5498
-
획기적 음의 정전용량 플래시 메모리 최초 개발
우리 대학 전기및전자공학부 전상훈 교수 연구팀이 `음의 정전용량 효과(Negative Capacitance Effect, 이하 NC 효과)*'를 활용해 기존 플래시 메모리의 물리적 성능 한계를 뛰어넘는 음의 정전용량 플래시 메모리 (NC-Flash Memory)를 세계 최초로 개발했다고 18일 밝혔다.
*음의 정전용량 효과: 음의 정전용량 현상은 인가되는 전압이 증가하면 전하량이 감소함을 의미한다. 음의 정전용량 특성을 가지는 유전체 사용시, 트랜지스터에 인가되는 전압을 내부적으로 증폭하여 상대적으로 낮은 동작전압을 사용할 수 있어, 파워소모를 줄일 수 있다.
전기및전자공학부 김태호 박사과정과 김기욱 박사과정이 공동 제1 저자로 수행한 이번 연구는 저명 국제 학술지 `어드밴스드 펑셔널 머터리얼즈(Advanced Functional Materials)' 2022년 12월호에 출판됐다. (논문명 : The Opportunity of Negative Capacitance Behavior in Flash Memory for High-Density and Energy-Efficient In-Memory Computing Applications) 이 국제학술지는 독일 와일리 출판사(Wiley-VCH)에서 발행하는 피어리뷰 과학 저널이다. (Impact Factor : 19.924)
현대 전자 소자에서 축전기(Capacitor)는 매우 중요한 구성 요소의 하나로, 전자 소자가 소형화되고 수직 방향으로 적층 되면서 축전기에 저장되는 전하량(Charge, Q)이 감소하는 문제가 생기므로 높은 정전용량(Capacitance, C)을 가진 유전체 물질이 필수적으로 요구되고 있다. 여기에 일반적인 축전기와 다르게 정전용량이 음의 값을 갖는(Negative Capacitance) 축전기를 활용한다면 다층의 축전기의 전체 정전용량을 오히려 더 증가시킬 수 있고, 차세대 소자에 적합한 높은 정전용량 소자 개발 난제를 해결할 수 있을 것이라는 가설이 제안되었다.
최근 메모리 공급업체들은 데이터의 폭발적 증가와 더 높은 용량의 솔리드 스테이트 드라이브(SSD) 및 더 빠른 액세스 시간에 대한 요구로 인해 기술 경쟁을 치열하게 하고 있다. 스토리지의 핵심 기술인 3D 낸드 플래시는 지속적으로 더 높은 층을 적층할 수 있는 기술을 요구하고 있고, 2028년에는 1,000단 이상의 메모리 적층이 필요할 것으로 예상되고 있다.
한편, 강유전체* 물질에서 보이는 `음의 정전용량 효과(NC 효과)'은 전자 소자에 인가된 외부 전압을 내부적으로 증폭해 전력 소모를 줄이는 특성이 있어, 전자 소자의 물리적 성능 한계를 극복할 수 있다는 가능성이 제시됐다. 최근 페로브스카이트 강유전체에서 NC 효과를 실험적으로 관찰했으나, 페로브스카이트 강유전체의 소형화 한계 및 CMOS 공정과의 부적합성으로 인해 NC 효과를 활용한 전자 소자의 구현에 대해 상당한 회의론을 불러일으켰다.
*강유전체: 전기적으로는 절연체이지만 자연상태에서 외부 전기장이 없어도 전기 편극을 지닐 수 있는 특이한 물리적 성질을 가진 물질
전상훈 교수 연구팀은 기존 플래시 메모리의 물리적 성능 한계를 극복하고 동작전압을 낮추기 위해, 반도체 공정에 사용되는 하프늄옥사이드(HfO2) 강유전체 박막의 NC 효과를 안정화해 저전압 구동이 가능한 강유전체 소재의 NC-플래시 메모리를 세계 최초로 개발했다. 개발된 NC-플래시 메모리는 기존 플래시 메모리 대비 전력 소모가 10,000배 이상 낮은 저전력 고성능 특성을 달성했다.
연구팀은 그뿐만 아니라 기존 컴퓨팅 구조인 폰노이만 아키텍처를 대체하여 새롭게 지향하는 인메모리 컴퓨팅을 NC-플래시 메모리를 기반으로 구현해 세계 최고 수준의 에너지 효율 또한 달성했다.
이번 연구 결과는 빠른 스토리지를 필요로 하는 최신 컴퓨팅과 네트워킹의 요구를 충족하는 차세대 낸드 플래시 메모리 개발에 있어 핵심 역할을 할 것이다.
한편, 이번 연구는 연세대학교와 협업을 통해서 이루어졌고, 한국 연구재단 지능형 반도체 기술개발사업의 지원을 받아 수행됐다.
2023.01.18
조회수 5876
-
항암효과 갖는 세큐리네가 천연물의 총괄적 합성 원천기술 개발
우리 대학 화학과 한순규 교수 연구팀이 항암효과를 가지는 고산화준위 세큐리네가 알칼로이드*의 총괄적인 합성 방법을 개발했다고 30일 밝혔다.
* 알칼로이드란 질소를 함유하는 알칼리성의 유기물질을 말하는데 그 중 한국에서도 자생하는 식물인 광대싸리(학명: Securinega Suffruticosa)에서 주로 추출되고 이 식물 내에서 생합성적인 산화 대사가 일어난 알칼로이드를 통틀어 고산화준위 세큐리네가 알칼로이드라고 칭한다.
한 교수 연구팀은 반응 조건의 세심한 설계를 통해 세큐리네가 골격의 특정 위치에 원하는 반응이 일어나도록 해 7종의 세큐리네가 알칼로이드를 총괄적으로 합성하는 데 성공했다. 합성 천연물 중 세큐린진(securingine) D는 다양한 암세포에 대해 높은 항암 활성을 가지는 만큼, 이번 연구 결과에 기반한 항암제 개발연구도 기대된다.
화학과 박상빈 석박사통합과정이 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications)' 9월 2일자에 게재됐다. (논문명 : Collective total synthesis of C4-oxygenated securinine-type alkaloids via stereocontrolled diversifications on the piperidine core)
천연물 전합성(total synthesis)은 쉽게 구할 수 있는 시작 물질로부터 여러 단계의 화학반응을 통해 자연에 존재하는 복잡한 천연물을 인위적으로 합성하는 학문 분야다. 목표 물질의 가능한 합성 경로를 찾으면서 각 단계의 화학반응이 모두 성공적으로 이뤄져야만 목표하는 천연물에 도달할 수 있는 하이-리스크 하이-리턴의 연구 분야다.
한 교수 연구팀은 자연에서 여러 효소의 작용을 통해 이루어지는 세큐리네가 골격의 산화, 원자 재배열 등을 인공적으로 구현해 천연물의 합성을 이뤄냈을 뿐만 아니라 기본 골격의 탄소 배열을 상호변환하는 기법을 최초로 개발해내 세큐리네가 화학에 새로운 지평을 열었다.
이번 연구를 통해 합성에 성공한 천연물로 세큐리티닌(securitinine), 세큐아마민(secu'amamine) D, 세큐린진(securingine) A, C, D, 필란틴(phyllanthine), 4-에피-필란틴(4-epi-phyllanthine)이 있으며, 이 중 필란틴을 제외하고는 모두 세계 최초의 합성이다.
그 중 세큐린진 D는 높은 항암효과를 가져 의약적 연구가 수반돼야 하지만 자연계에서 극소량만 추출돼 추가적인 생리활성 연구에 어려움이 있었다. 한 교수 연구팀에서 이를 인공적으로 합성하는 방법을 개발하면서 그러한 연구에도 박차를 가할 수 있게 됐다.
천연물은 처음 추출된 뒤 분광학적 기법을 통해 그 구조를 밝히는데, 이 과정에서 오류가 생기는 경우가 종종 있다. 천연물 전합성은 이러한 오류를 해결하는 데에 있어 `최종 병기'와 같은 역할을 한다. 세큐린진 A, C, D의 경우, 계산 화학적 기법을 통해 기존과 다른 구조 후보가 제안된 바 있는데, 연구팀은 이번 합성 연구를 통해 새로 제안된 구조가 천연물의 실제 구조라는 것을 입증해냈다.
화학과 한순규 교수는 "이번 연구를 통해 모든 고산화준위 세큐리네가 알칼로이드의 합성 전략을 세우는 기반을 마련할 수 있었다ˮ며 "연구팀은 여기서 멈추지 않고 이 연구 성과를 퇴행성 신경질환 치료 효과가 있다고 알려진 더욱 복잡한 이합체 고산화준위 세큐리네가 알칼로이드의 합성 연구에도 활발히 응용할 계획이다ˮ라고 밝혔다.
한편 이번 연구는 한국연구재단 이공분야 기초연구사업 중견연구자지원사업과 선도연구센터지원사업의 지원을 받아 수행됐다.
2022.09.30
조회수 7063
-
강한 빛을 쏘아 나노 촉매 제조해 황 기반 가스 검출센서 구현 성공
우리 대학 신소재공학과 김일두 교수 연구팀과 전기및전자공학부 최성율 교수 연구팀이 공동연구를 통해 강한 빛(400 나노미터~900 나노미터 파장)을 금속산화물 나노 시트에 짧게 조사해, 0.02초 만에 다성분계 금속 합금 나노입자 촉매를 합성하고, 이를 극미량의 황 기반 생체지표(biomarker) 가스를 감지할 수 있는 가스 센서 플랫폼에 성공적으로 적용했다고 18일 밝혔다.
이 가스 센서 플랫폼은 사람의 날숨에 포함된 다양한 질병과 관련된 미량의 생체지표 가스를 선택적으로 감지해 관련된 특정 질병을 실시간 모니터링할 수 있는 기술이다. 날숨만으로 각종 질병 여부를 파악하는 비침습적 호흡 지문 센서 기술은 핵심 미래 기술이다. 날숨 속 특정 가스들의 농도변화를 검사해 건강 이상 여부를 판단할 수 있다.
날숨 가스의 성분에는 수분 외에도 구취의 생체지표 가스인 황화수소(hydrogen sulfide), 메틸머캅탄(methyl mercaptan), 디메틸설파이드(dimethyl sulfide)의 3종 황 화합물이 포함된다. 그중에서 황화수소는 구취, 메틸머캅탄 가스는 잇몸병 환자에게서 높은 농도로 배출되는 생체지표 가스로서 상기 3종 황화합물 가스를 선택적으로 감지하는 것이 매우 중요하다.
공동연구팀은 이번 연구에서 전자(electron)가 속박 상태에서 자유롭게 벗어나기 위해 필요한 에너지 차를 의미하는 밴드 갭(band gap, 물질의 전기적, 광학적 성질을 결정하는 요인)이 커 빛 흡수율이 낮은 백색 산화물 나노소재에서의 광열효과를 극대화하는 전략을 최초로 제시했다. 일반적으로 소재의 밴드갭이 커질수록 빛 흡수율이 낮아지며, 유리와 같이 밴드 갭이 매우 큰 물질은, 빛이 투과되어 투명하게 보이게 된다. 연구팀은 주석산화물(SnO2)이 10 나노미터 이하의 나노 결정립들로 구성된 나노 시트 형상을 나타낼 때, 흡수된 빛에너지가 열에너지로 효과적으로 전환됨을 최초로 관찰하였다. 또한, 높은 기공 구조와 나노 시트 내 다수의 결함을 통해 열 전도도를 인위적으로 낮춰 발생 된 열이 소재 외부로 잘 빠져나가지 않게 했다. 대면적 제논 램프(Xenon lamp)의 빛이 조사된 부분은 소재의 온도가 1,800oC 이상까지 급격하게 상승하는 것을 적외선 센서 시스템을 통해 확인했다.
공동연구팀은 이를 활용해 금속산화물의 상을 제어함과 동시에 다성분계 금속 나노입자 촉매를 대기 중에서 0.02초 만에 광열 합성하는 데 성공했다. 합성한 다성분계 입자 촉매들이 결착된 금속산화물 나노 시트를 센서 소재로 활용해 세계 최고 수준의 황 기반 가스 감지 성능을 구현했다. 특히, 백금(Pt)과 3성분계 백금-루테늄-이리듐(PtRuIr) 촉매가 각각 결착된 주석산화물의 경우 1ppm(백만분의 일) 수준의 황화수소 (H2S)와 디메틸 설파이드 (C2H6S)가스에 대해 약 3,165배, 6,080배의 세계 최고 수준의 저항 변화비 특성을 나타냄을 확인했다.
추가로, 연구팀은 미세전자기계시스템(MEMS) 기반 휴대용 가스 센서를 개발했다. MEMS 센서는 센서부 크기가 0.1밀리미터 크기로 작아서, 1g의 감지 소재로 8천여 개 정도의 센서를 제작할 수 있다. 연구팀은 MEMS 가스 센서 어레이화와 모바일 기기와의 연동을 통해 초저전력(< 10 mW), 초소형 생체지표 검출 가스 센서 플랫폼을 개발했다.
우리 대학 최성율 교수와 김일두 교수는 "강한 빛을 1초도 안되는 짧은 시간동안 간편하게 조사하는 방식과 소재의 광열효과를 극대화하는 합성기법은 금속산화물의 상(phase) 조절과 촉매 기능화를 초고속, 대면적으로 가능하게 하는 새로운 공정 플랫폼이 될 것으로 기대된다ˮ고 밝혔다. 특히, "램프 조사 횟수에 따라 단일원자 촉매의 대기 중 합성도 성공해, 세계 최고 수준의 가스 감지 성능 결과를 유도했다는 측면에서 매우 의미가 있는 연구 결과이며 매일같이 호흡 가스를 분석해 질병을 조기 모니터링하는 자가 진단 호흡 센서기기의 상용화에 효과적으로 적용될 수 있는 기술이 될 것이다ˮ고 밝혔다.
이번 연구는 공동 제1 저자인 김동하 박사(우리 대학 신소재, 현 MIT 박사후 연구원)와 차준회 박사(KAIST 전기및전자공학부)의 주도하에 진행됐으며, 최성율 교수(KAIST 전기및전자공학부)와 김일두 교수(KAIST 신소재)가 교신저자로 참여했다.
이번 연구 결과는 나노 및 화학 분야의 권위적인 학술지이자 Cell지의 자매지인 `켐(Chem)' 4월호에 표지 논문으로 선정됐으며, ‘광열램핑(Flash-Thermal Lamping) 합성’으로 켐 프리뷰(Chem Preview)로도 소개되었다. 본 연구는 한국연구재단 중견연구자지원 사업, 과학기술정보통신부와 산업통상자원부 사업, 한국연구재단 미래소재디스커버리 사업의 지원을 받아 수행됐다.
2022.04.19
조회수 10334
-
자성메모리 기반 지능형 반도체 소재 기술 개발
우리 대학 신소재공학과 박병국 교수 연구팀이 차세대 비휘발성(Non-volatile) 메모리인 *스핀궤도토크 자성메모리(SOT-MRAM)의 스위칭 분극을 전기장 인가를 통해 임의로 제어하는 소재 기술을 개발했다고 21일 밝혔다.
* 스핀궤도토크 자성메모리: 면방향 전류에서 발생하는 스핀전류를 이용해 자화 방향을 제어하는 동작 방식으로 기존의 스핀전달토크 자성메모리(STT-MRAM) 보다 동작 속도가 10배 이상 빠른 장점이 있다.
연구팀은 이 결과를 이용해 하나의 소자에서 다양한 논리연산이 가능함을 보임으로, 기억과 연산 기능을 동시에 수행하는 스마트 소자의 개발 가능성을 높였다. 특히 이 기술은 차세대 지능형 반도체로 개발되는 프로세싱-인-메모리 (PIM)에 적용할 수 있을 것으로 기대된다. PIM (processing-In-Memory) 기술은 메모리 공간에서 로직 기능을 수행해 프로세서에서 처리하는 데이터양을 획기적으로 줄임으로써, 기존 컴퓨팅 기술인 폰노이만 구조의 한계를 극복하는 기술로 여겨지고 있다.
신소재공학과 강민구 박사과정과 최종국 박사과정이 공동 제1 저자로 참여하고 신소재공학과 육종민 교수, 물리학과 이경진, 김갑진 교수, 충남대학교 정종율 교수, 고려대학교 박종선 교수와 공동으로 수행한 이번 연구는 국제 학술지 `네이처 커뮤니케이션스(Nature Communications)'에 12월 7일 字 온라인 게재됐다. (논문명 : Electric-field control of field-free spin-orbit torque switching via laterally modulated Rashba effect in Pt/Co/AlOx structures)
스핀궤도토크 자성메모리(SOT-MRAM)는 고속 동작 및 높은 안정성 특성으로 차세대 자성메모리 기술로 개발되고 있다. 하지만 이 메모리는 정보 기록을 위해서 외부자기장을 인가해야 하는데, 이는 고집적 소자에 치명적인 단점으로 작용한다. 따라서 외부자기장 없이 자화 방향을 제어하는 무자기장 스위칭 기술의 개발이 요구되고 있다.
연구팀은 자성메모리에 측면 게이트 구조를 도입해 계면의 라쉬바 효과를 제어함으로 무자기장 스핀 궤도 토크 스위칭 소재 기술을 개발했다. 또한, 게이트 전압의 부호에 따라 스위칭 방향을 제어하는 결과를 보였고, 이를 이용해 하나의 소자에서 배타적 논리합(XOR), 논리곱(AND) 등의 다양한 논리연산을 구현하는 데 성공했다. 이 기술은 데이터를 저장하는 메모리 반도체와 연산 기능을 수행하는 로직 반도체가 융합된 MRAM 기반 프로세싱-인-메모리(PIM) 소자의 원천 기술로써 활용될 수 있을 것으로 기대된다.
제1 저자인 강민구 연구원은 "이번 연구는 차세대 자성메모리 내에서 프로그램이 가능한 논리연산을 실험으로 규명해, 향후 미래 컴퓨팅 기술로 여겨지는 지능형 반도체 소자 개발에 응용될 수 있을 것이다ˮ 라고 밝혔다.
한편 이번 연구는 삼성미래기술육성재단의 지원을 받아 수행됐다.
2021.12.21
조회수 8079
-
커피링 얼룩 없는 디스플레이용 퀀텀닷 균일 코팅 기술 개발
우리 대학 기계공학과 김형수 교수 연구팀이 커피링 얼룩 자국이 남지 않는 균일 코팅 기술을 개발했다고 3일 밝혔다. 이는 디스플레이용 양자점(퀀텀닷)을 균일하게 코팅해 유연 디스플레이 소자 등에 적용할 수 있는 기술이다.
커피 한 방울이 고체 표면 위에서 마르면 액적(물방울) 표면의 상대적 증발률 차로 인해서 커피링 얼룩 자국이 남게 된다. 이를 커피링 효과라고 한다.
액적의 증발은 잉크젯 프린팅과 같은 기술에서 기능성 유연 재료의 균일 코팅이라는 문제와 직결된다. 최근 잉크젯 프린팅 기술은 단순 패턴 인쇄를 넘어 차세대 에너지 및 디스플레이를 포함한 전기‧전자 소자의 융복합 생산시스템 기술에 활용되고 있다.
그동안 과학기술계에서는 액적의 커피링 패턴을 제어하고 균일 마름 자국을 얻기 위해서 계면활성제를 사용하거나 부분적인 표면장력 변화를 발생시켜 *마랑고니 효과를 이용한 여러 방법이 소개돼왔다.
☞ 마랑고니 효과(Marangoni effect): 서로 다른 액체 등이 경계면을 따라 표면장력의 크기가 일정하지 않을 때 발생하는 현상을 말한다. 흔히 알려진 ‘와인의 눈물’ 현상이 대표적인 예다.
특히, 김형수 교수는 박사후연구원(프린스턴 대학 소속) 때부터 커피링을 효과적으로 제어하는 방법에 관한 연구를 해왔고, 2016년에는 위스키가 특이하게 마르는 현상을 규명해 획기적으로 커피링을 없애는 연구를 해왔다. 하지만, 물방울의 접촉선 위치에서의 커피링 효과는 줄일 수 있으나 여전히 효과가 존재한다는 문제가 있다.
김 교수 연구팀의 편정수 석사과정은 액적이 증발하는 공간을 한시적으로 밀폐시켜 커피링을 완전히 소멸시키는 방법을 개발했다. 이 기술은 증발율이 다른 두 액체를 효과적으로 혼합하고, 먼저 증발하는 휘발성 액체의 몰 분자량이 공기보다 큼을 이용해 밀폐된 공간에 갇힌 휘발성 증기가 연속적으로 용질성 마랑고니 효과(Solutal Marangoni effects)를 일으켜 커피링을 완전히 사라지게 만드는 기술이다.
김형수 교수는 "증발 물질을 잘 이해하고 물질전달 메커니즘을 활용해 증발 시스템을 최적화하면, 디스플레이 원료 퀀텀닷과 태양광 패널 원료 페로브스카이트와 같은 기능성 소자들을 대량 생산이 가능한 잉크젯 프린팅 기술로 균일한 패터닝을 가능하게 할 수 있다ˮ라며, "현재 해당 기술을 특허 출원했고 유연 디스플레이 소자에 적용하기 위해 연구를 진행하고 있다ˮ라고 덧붙였다.
이번 연구 결과는 국제적 권위 학술단체 `영국왕립화학회(Royal Society of Chemistry)'의 저명학술지 `Soft Matter(연성물질)' 誌 가 특별 기획한 `신진과학자 특집호(2021 Soft Matter Emerging Investigator Special Issue)'에 초청되어 지난달 7일 字 표지논문으로 게재됐다.
(논문명: Uniform coating pattern of multi-component droplets in a confined geometry)
(DOI: https://doi.org/10.1039/D0SM01872D)
2021.05.03
조회수 27373
-
차세대 양자광원을 위한 반도체 양자점 대칭성 제어기술 개발
우리 대학 물리학과 조용훈 교수 연구팀이 LED에 널리 사용되는 질소화합물 반도체를 이용해 대칭성이 매우 높은 삼각형 형태의 양자점(퀀텀닷)을 형성하고 제어하는 데 성공, 광자들 사이에 얽힘을 발생시키는 차세대 양자광원 개발에 핵심적인 양자점 제어 기술을 갖추게 됐다고 13일 밝혔다.
‘얽힘(entanglement)’은 입자들이 쌍으로 상관관계를 가져 거리에 상관없이 얽혀 있는 쌍의 한쪽 특성을 측정하면 나머지 한쪽의 특성을 즉시 알게 되는 현상으로, 전문가들은 얽힘이라는 양자역학적인 현상을 활용하면 양자통신과 양자컴퓨팅과 같은 양자정보에 필요한 기술 개발과 함께 물리학적으로 새로운 주제들이 개척될 것으로 기대하고 있다.
반도체 양자점(Quantum Dot)은 원하는 순간에 광자를 한 개씩 방출하는 대표적인 고체 기반의 양자광 방출 소자로써 널리 연구되고 있다. 특히, 반도체 양자점의 대칭성을 제어해 양자점 내부의 미세 에너지 구조를 정교하게 조절할 수 있다면, 두 개의 광자를 양자얽힘 상태로 만드는 편광얽힘 광자쌍 방출이 원리적으로 가능하므로 이를 이용한 양자통신 및 양자컴퓨팅 분야에서 주목받고 있다.
격자구조를 갖는 반도체는 일반적으로 원자들을 한 층씩 천천히 쌓아 올리는 박막 증착기술을 통해 제작된다. 이때 발광층을 형성하기 위해 격자크기가 다른 층을 쌓게 돼 반도체 내부에 응력이 발생하게 되는데, 발광층이 갖는 응력을 에너지로 사용해 양자점이 무작위적으로 형성되므로 양자점의 크기의 균질성과 대칭성이 떨어지고 근본적으로 양자점의 위치와 모양을 제어할 수 없는 한계를 가진다. 따라서 얽힘 광자쌍 방출소자를 제작하기 위해서는 제작단계에서 위치와 대칭성을 제어할 수 있는 기술이 필수적이다.
한편, 청⦁녹색 LED에 사용되는 물질로 잘 알려진 질소화합물 반도체는 상온에서도 양자적인 특성을 유지할 수 있어 상온에서 안정적으로 구현할 수 있는 양자광원 소자의 후보 물질로도 주목받고 있다. 그러나, 이 물질계는 양자점의 대칭성이 조금만 무너져도 양자역학적 얽힘 특성을 쉽게 잃어버리게 되므로 높은 수준의 대칭성 제어 기술을 확보하지 않고는 실질적으로 구현이 쉽지 않은 한계가 있었다.
조용훈 교수 연구팀은 양자점의 위치와 대칭성을 높은 수준으로 제어하기 위해, 삼각형 형태의 나노 배열 패턴을 갖는 기판 위에 삼각 피라미드 형태를 갖는 질소화합물 반도체 나노 구조를 우선 제작했다. 이후 양자점을 성장하는 단계에서 나노 피라미드 꼭지점 부분의 기하학적 형태를 조절하면서, 열역학적 안정성에 의해 자체적으로 성장 방식이 조절되는 자기제한적 성장메커니즘을 적용했다.
그 결과 육각형 결정구조를 갖는 질소화합물 반도체에서 일반적으로 나타나는 육각 대칭성을 갖는 비균일한 양자점 대신, 삼각 대칭성을 갖는 고품위의 양자점을 최초로 구현함으로써 질소화합물 반도체 양자점의 대칭성을 정교하게 제어하는 데 성공했다.
연구팀은 제작된 나노 구조체의 발광을 분석하기 위해 공간분해능이 수 나노미터 수준으로 좋은 주사전자현미경을 이용해 발광을 측정, 삼각 피라미드의 꼭지점에 양자점이 안정적으로 형성되었음을 확인했고, 시간에 따른 광자 간 상관관계 측정을 통해 양자광이 방출되는 것을 실험적으로 관측했다.
또한, 성장된 양자점의 비대칭성 정도를 가늠할 수 있는 양자광의 편광도와 미세구조 분리 정도를 측정해 높은 대칭성을 갖는 삼각 양자점이 형성되었음을 실험적으로 확인했으며, 이를 이론적 계산 결과와 비교함으로써 측정 결과의 타당성을 확보했다.
이번 연구에서는 기존에 질화물 반도체 양자점의 비대칭성과 높은 편광도를 이용해 상온 단일광자 방출기 제작에 집중해 오던 방식에서 벗어나, 양자점의 대칭성을 정밀하게 조절해 편광얽힘 광자쌍 방출기로도 응용 가능함을 제안했다. 또한 범용 반도체 박막 증착장비와 미세 패턴 기술을 사용했기 때문에 산업적인 측면에서 확장성이 높을 것으로 기대된다.
연구를 주도한 조용훈 교수는 "반도체 양자점을 제작하는 과정에서 발생하는 양자점의 비대칭성을 효과적으로 제어하여 양자점 내부의 미세 에너지 구조를 정교하게 조절할 수 있음을 보여준 결과”라며, “상온에서도 동작이 가능한 질소화합물 반도체 양자점을 이용해 편광얽힘 광자쌍 방출소자와 같은 차세대 양자광원 개발에 활용될 수 있을 것”이라고 의미를 말했다.
우리 대학 물리학과 여환섭 박사가 제1 저자로 참여한 이번 연구 결과는 삼성미래기술육성사업 등의 지원을 받아 수행됐으며, 나노분야 국제 학술지인 `나노 레터스(Nano Letters)' 12월 9일 字에 보충 표지와 함께 정식 출간됐다. (논문명: Control of 3-fold symmetric shape of group III-nitride quantum dots: Suppression of fine structure splitting / 질소화합물 반도체 양자점의 삼각 대칭적 모양 제어: 미세구조 분리현상의 완화)
2020.12.14
조회수 47198