본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EB%B0%94%EC%9D%B4%EC%98%A4%ED%94%8C%EB%9D%BC%EC%8A%A4%ED%8B%B1
최신순
조회순
이산화탄소에서 바이오 플라스틱 20배 이상 뽑아내다
전 세계적으로 기후변화 문제가 심각해짐에 따라 이를 기후 위기로 인식하고 이에 대응하는 적극적인 관심과 노력이 요구되고 있다. 그중 이산화탄소를 활용해 재자원화하는 여러 방법 중에서 전기화학적 이산화탄소 전환 기술은 전기에너지를 이용해 이산화탄소를 유용한 화학물질로 전환할 수 있는 기술이다. 이는 설비 운용이 용이하고, 태양 전지나 풍력에 의해 생산된 재생 가능한 전기에너지를 이용할 수 있으므로 온실가스 감축 및 탄소 중립 달성에 기여하는 친환경 기술로 많은 관심을 받고 있다. 우리 대학 생명화학공학과 이현주 교수와 이상엽 특훈교수 공동연구팀이 전기화학적 이산화탄소 전환과 미생물 기반의 바이오 전환을 연계한 하이브리드 시스템을 개발해 이산화탄소로부터 높은 효율로 바이오 플라스틱을 생산하는 기술 개발에 성공했다고 30일 밝혔다. 유사한 시스템 대비 20배 이상의 세계 최고 생산성을 보여준 해당 연구 결과는 국제 학술지인 ‘미국국립과학원회보(PNAS)'에 3월 27일 字 온라인 게재됐다. ※ 논문명 : Biohybrid CO2 electrolysis for the direct synthesis of polyesters from CO2 ※ 저자 정보 : 이현주 (한국과학기술원, 교신저자), 이상엽(한국과학기술원, 교신저자), 임진규(한국과학기술원, 현 소속 기관 Stanford Linear Accelerator Center, 공동 제1저자), 최소영(한국과학기술원, 공동 제1저자), 이재원(한국과학기술원, 공동 제1저자) - 총 5명 이산화탄소의 효율적인 전환을 위해 고효율 전극 촉매 및 시스템 개발이 활발히 진행되고 있는데, 전환생성물로는 주로 탄소 1~3개의 화합물만이 제한적으로 생산되고 있다. 일산화탄소, 포름산, 에틸렌과 같은 탄소 1개의 화합물이 비교적 높은 효율로 생산되며, 이 밖에 에탄올, 아세트산, 프로판올과 같은 여러 개 탄소의 액상 화합물도 만들어질 수 있으나 이는 더 많은 전자를 필요로 하는 화학반응 특성상 전환 효율 및 생성물 선택성이 크게 낮다는 한계점이 있다. 이에 우리 대학 생명화학공학과 이현주 교수와 이상엽 특훈교수 공동연구팀은 전기화학적 이산화탄소 전환 기술과 미생물을 이용한 바이오 전환 기술을 연계해 이산화탄소로부터 바이오 플라스틱을 생산하는 기술을 개발했다. 이 전기화학-바이오 하이브리드 시스템은 전기화학 전환반응이 일어나는 전해조와 미생물 배양이 이루어지는 발효조가 연결된 형태로, 전해조에서 이산화탄소가 포름산으로 전환되면, 이 포름산을 발효조에 공급해 커프리아비더스 네케이터(Cupriavidus necator)라는 미생물이 탄소원으로 섭취해 미생물 유래 바이오 플라스틱인 폴리하이드록시알카노에이트(polyhydroxyalkanoate, PHA)를 생산한다. 기존 이러한 하이브리드 콘셉트의 연구 결과에 따르면, 전기화학 반응의 낮은 효율 및 미생물 배양 조건과의 차이 등의 문제로 생산성이 매우 낮거나 비연속적 공정에 그친다는 단점이 있었다. 이를 극복하기 위해 공동연구팀은 기체 상태의 이산화탄소를 이용한 기체 확산 전극(gas diffusion electrode)으로 포름산을 만들었다. 그리고 미생물의 생장을 저해하지 않으면서도 전기화학 반응이 충분히 잘 일어나도록 하는 전해액이자 동시에 미생물 배양 배지로 이용할 수 있는 ‘생리적 호환 가능한 양극 전해액(physiologically compatible catholyte)’을 개발하여 별도의 분리 및 정제과정 없이 바로 미생물에게 공급하도록 했다. 이를 통해 이산화탄소로부터 만들어진 포름산을 포함하고 있는 전해액이 발효조로 들어가 미생물 배양에 쓰이고, 전해조로 들어가 순환되도록 하여 전해액과 남은 포름산의 활용을 극대화했다. 또한, 이 과정에서 필터를 설치해 전극 반응에 영향을 줄 수 있는 미생물이 걸러진 전해액만이 전해조로 공급되고 미생물은 발효조 안에만 존재하도록 하는 두 시스템이 잘 연계되면서도 효율적으로 작동되도록 설계했다. 개발한 하이브리드 시스템을 통해 이산화탄소로부터 세포 건조 중량의 83%에 달하는 높은 함량의 바이오 플라스틱(PHB)를 생산했으며, 이는 4 cm2 전극에서 1.38g의 PHB를 생산한 결과로 세계 최초 그램(g) 수준의 생산이며 기존 연구 대비 20배 이상의 생산성이다. 또한 해당 하이브리드 시스템은 연속 배양(continuous culture)의 가능성을 보여줌으로써 추후 다양한 산업공정으로의 응용 또한 기대된다. 교신저자인 이현주 교수와 이상엽 특훈교수는 “이번 연구 결과는 바이오 플라스틱뿐만 아니라 다양한 화학물질 생산에 응용될 수 있는 기술로서 앞으로 탄소 중립을 위한 핵심 기술로 많은 활용이 기대된다”라고 밝혔다. 한편, 이번 연구는 과기정통부가 지원하는 이산화탄소 저감 촉매 및 에너지 소자 기술 개발 과제, 불균일계 원자 촉매 제어 과제와 석유대체 친환경 화학기술개발사업의 바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발 과제의 지원을 받아 수행됐다.
2023.03.30
조회수 7474
박오옥 교수, 페트병 대체 가능한 바이오플라스틱 개발
우리 대학 생명화학공학과 박오옥 교수 연구팀과 롯데케미칼(대표이사 허수영)이 산학협력 연구를 통해 기존의 플라스틱 페트 소재를 대체할 수 있는 식물 기반의 바이오 플라스틱을 수지를 개발했다. 이 기술은 식물 기반의 퓨란(furan)계 바이오 플라스틱을 고분자량으로 합성한 것으로 기존 페트 수지를 양산하는 생산 공정을 통해서 상업화가 가능할 것으로 기대된다. 이 연구는 국제 학술지 ‘그린 케미스트리(Green chemistry)’ 10월 7일자 뒷 표지 논문으로 게재됐다. 퓨란계 바이오플라스틱은 식물에서 추출한 원료로 만든 플라스틱이다. 식물을 소재로 하기 때문에 지구 온난화의 주범인 이산화탄소를 줄일 수 있고, 석유 기반의 플라스틱을 대체하기 때문에 자원도 절감할 수 있다. 또한 기체 차단성과 내열성이 좋아 기존 페트 소재가 사용되지 못했던 좀 더 넓은 분야에 사용 가능하다. 많은 연구자들이 퓨란계 바이오플라스틱이 가진 장점을 활용하기 위해 상용화가 가능하도록 연구 중이다. 그러나 퓨란계 바이오플라스틱은 분자 구조가 유연하지 않아 물성이 깨지기 쉽고 결정화(분자의 확산) 속도가 느려 고상중합을 통한 고분자량화에 한계가 있어 다양한 용도로 활용이 어렵다. 무엇보다도 결정화 속도가 느리다는 것은 기존의 상업 설비에서 양산을 할 수 없음을 의미한다. 문제 해결을 위해 연구팀은 먼저 퓨란계 플라스틱이 왜 깨지기 쉬운 특성을 갖는지 확인했다. 기존 페트는 화학구조상 선형구조이기 때문에 외부 충격에 유연하게 반응할 수 있고 결정화 속도가 빠른 편이다. 반면 퓨란계 플라스틱의 화학구조는 약간 꺾여있는 비선형 구조로 유연성이 떨어져 깨지기 쉽고 분자의 확산이 빠르지 않아 결정화 속도가 상대적으로 느리다. 연구팀은 문제 해결을 위해 육각환형의 고리 화합물을 공 단량체로 도입해 새로운 퓨란계 폴리에스터를 합성했다. 이 과정을 통해 유연성이 높아져 기계적 물성(연성, 내충격성)이 개선됐고 결정화 속도도 빨라졌다. 이 새로운 퓨란계 폴리에스터의 결정화 속도 개선으로 인해 고상중합공정이 가능해졌다. 고상중합공정이 중요한 이유는 수지의 변색 없이 분자량을 단시간에 고분자량으로 올릴 수 있기 때문이다. 고분자량으로 올리지 못하고 분자량이 낮으면 플라스틱의 모양을 형성하는 블로우 몰딩(Blow molding : 녹인 뒤 불어서 모양을 만드는 방식)과정에서 물질이 찢어지게 된다. 연구팀의 바이오플라스틱은 기존 고상중합공정에서 고분자량화에 성공해 상업적으로 활용할 수 있는 공정이 가능할 것으로 예상된다. 연구팀은 “이 기술은 병, 옷, 섬유, 필름 등 기존에 페트 소재가 사용되던 분야를 넘어 페트가 쓰이지 못했던 분야에도 적용 가능하다”며 “기존 페트보다 내열성과 기체 차단성이 높기 때문에 유리 용기를 일정 정도 대체할 수 있을 것이다”고 말했다. 1저자인 홍성민 연구원은 “학술적인 부분 뿐 아니라 상업적으로도 의미가 있는 기술이다”며 “탄탄한 기초연구를 바탕으로 실제로 우리 산업과 국가 경쟁력에 기여할 수 있는 기술이 될 것으로 기대한다”고 말했다. □ 그림 설명 그림1. 논문 표지 그림-퓨란계 수지를 성공적으로 합성, 고상중합을 통해서 고분자량화한 모식도 그림2. 퓨란계 폴리에스터의 파단면의 전자현미경 사진 그림3. 퓨란계 폴리에서트 화학 구조
2016.10.11
조회수 10789
이상엽 교수, 네이처 바이오테크놀로지 초청논문 게재
“바이오플라스틱 상용화 시대 도래” 네이처 바이오테크놀로지 10월호 초청논문에서 전문가로서의 의견 밝혀.. 독일의 훔볼트 베를린대 프리드리히 교수와 뮌스터대학의 스타인뷔헬 교수팀은 바이오플라스틱 생산의 대표 미생물인 랄스토니아 유트로파 (Ralstonia eutropha)균의 전체 게놈서열을 밝히고, 네이처 바이오테크놀로지 10월호에 논문을 발표했다. 플라스틱 생산 대표 미생물의 전체 게놈 서열이 밝혀짐에 따라 보다 체계적인 시스템 수준에서의 균주개량을 통해 바이오플라스틱의 효율적인 생산이 가능해 질 것으로 예측된다. 네이처 바이오테크놀로지社는 이 논문에 대해 해당분야의 세계적 전문가인 KAIST 생명화학공학과 이상엽(李相燁, 42세) LG화학 석좌교수에게 게놈 서열 해독에 따른 앞으로의 바이오플라스틱 생산에 관한 전문가 분석논문을 의뢰했으며, 李 교수는 지난 10일 발간된 네이처 바이오테크놀로지 10월호 ‘뉴스와 전망(News and Views)’에서 “랄스토니아균의 게놈 해독은 다양한 오믹스와 가상세포를 통한 시뮬레이션, 그리고 게놈 수준에서의 엔지니어링을 결합하여 시스템 수준에서 균주를 개량할 수 있는 토대가 마련되었음을 의미한다”라며, “앞으로 플라스틱을 구성하는 물질을 자유자재로 바꿔 우리가 원하는 물성을 가진 플라스틱의 생산이 가능할 것이며, 대사 흐름의 최적화를 통해 이제까지 보고된 것보다도 훨씬 효율적이고 경제적인 바이오플라스틱의 생산이 가능해 질 것이다”라고 밝혔다. 李 교수는 그간 바이오플라스틱 관련 SCI논문만도 70여편을 발표한 이 분야의 세계적 전문가다. 1996년 트렌즈 인 바이오테크놀로지 (Trends in Biotechnology)에 “플라스틱 박테리아 (Plastic Bacteria)”라는 신조어를 발표했으며, 1997년에도 네이처 바이오테크놀로지에 대장균 플라스틱에 관한 전문가 논문을 게재한 바 있다. 현재, 과학기술부의 시스템생물학연구개발 사업에서 시스템 기법을 동원한 연구의 응용 예로서 바이오플라스틱 생산 균주 개량 연구를 수행 중이다. 네이처 바이오테크놀로지 10월호 ‘뉴스와 전망(News and Views)’난에 게재된 미생물 플라스틱 관련 이상엽 교수 논문 내용 - 폴리하이드록시알카노에이트(polyhydroxyalkanoate, PHA)는 자연계에 존재하는 수많은 미생물들이 탄소원은 풍부하지만 다른 성장인자가 부족할 경우 자신의 세포내부에 에너지 저장물질로 축적하는 고분자이다. 이 PHA고분자는 그 고분자를 구성하고 있는 단량체(단위 화학물질)가 에스터 결합을 하고 있는 폴리에스터로서 20여년 전부터 전 세계적으로 많은 연구가 되어왔다. 하지만, PHA는 물성이 석유화학 유래의 플라스틱보다 좋지 않고, 생산 단가가 매우 높아 상용화는 되지 못했던 실정이다. 1980년대 PHA의 생산 가격은 kg당 15불 정도로서 그 당시 폴리프로필렌 가격의 20배나 되었기 때문이다. KAIST 생명화학공학과 BK21사업단 이상엽 LG화학석좌교수는 과학기술부의 지원으로 대사공학과 발효공정의 결합을 통한 미생물 플라스틱의 효율적인 생산에 관한 연구를 수행하여 왔으며, PHA생산 단가를 kg당 2-3불 정도로 낮추는 공정을 개발한 바 있다. 플라스틱을 꽉 채울 정도로 효율적인 PHA 생산 박테리아를 개발하여 “플라스틱 박테리아”라고 명명한 바 있다. - 지난 2년여 동안 유가가 유래 없이 고공행진을 함에 따라 전 세계적으로 바이오기반 에너지 및 화학물질의 생산에 관한 연구가 활발히 진행 중이다. PHA도 그간 경제성과 물성의 취약점 때문에 연구가 시들해 졌다가, 최근 다시 각광을 받고 있다. 이번 10월호 네이처 바이오테크놀로지에 독일의 연구팀이 발표한 플라스틱 생산 미생물의 대표주자 랄스토니아 유트로파(Ralstonia eutropha)의 게놈 해독 결과는 시사하는 바가 크다. 즉, 그 박테리아의 대사 활동에 관한 청사진을 얻게 됨으로서 보다 체계적인 균주개량이 가능해 지는 것을 의미한다. - 네이처 바이오테크놀로지는 바로 이 점을 주목하여 이상엽 교수에게 전문가의 분석 논문을 의뢰하였고, 이 교수는 현재 KAIST에서 활발하게 수행하고 있는 시스템생명공학 기법의 적용을 통해 미생물 플라스틱 생산의 획기적인 발전이 있을 것이라고 분석했다. 본 논문에서 李 교수는 “게놈 서열이 밝혀짐에 따라, 게놈수준에서의 대사회로 네트워크 구축이 가능해 졌고, 시뮬레이션을 행할 수 있어, 수많은 시행착오와 실험을 가상의 실험으로 빠르게 대체할 수 있게 되었으며, 이러한 결과를 실제 다양한 전사체, 단백체, 대사체 등 오믹스 결과와 융합 해석함으로서 보다 효율적인 균주의 개발이 가능하다”고 밝혔다. 또한, 플라스틱의 효율적인 생산 뿐 아니라 우리가 사용하고자 하는 용도에 맞는 물성을 가지는 “주문제작(tailor-made) PHA”의 생산도 대사공학을 통해 가능해 질 것으로 예측하였다. 그 외에도 李 교수가 전 세계 특허를 보유하고 있는 광학적으로 순수한 하이드록시카르복실산 생산연구도 탄력을 받게 되었으며, 그 외 이 균주의 특징을 살려 생물학적 수소생산, 방향족 화합물의 생산, 분해 및 응용 등에서도 기술적 발전이 빠르게 일어날 것으로 전망하였다. - 세계적으로는 최근 미국의 메타볼릭스사와 ADM사가 손을 잡고 PHA의 상용화 수준 생산에 돌입하였고, 풍부한 천연자원의 브라질에서도 바이오에탄올에 이어 PHA를 상용화하고 있다. 그 외 전통적으로 이 분야 연구를 많이 해온 일본과 독일, 그리고 풍부한 바이오매스를 가진 호주에서도 지속적인 상용화 연구를 수행 중이다. 李 교수는 “대표적인 바이오플라스틱 생산 미생물의 게놈 서열이 밝혀짐으로서 효율적인 생산 시스템의 개발을 통한 각국의 상용화 경쟁이 더욱 치열해 질 것”으로 전망했다. - 李 교수는 이렇게 효율적으로 PHA를 생산할 수 있는 것이 가능해 짐에 따라, 다양한 재생가능한 원료(셀룰로우즈, 전분, 설탕 등)로부터 미생물 발효에 의한 플라스틱의 생산이 보다 본격적으로 진행될 것으로 전망하고, 기존 화학물질의 바이오 기반 생산 기술(white biotechnology)가 보다 더 탄력을 받을 것으로 전망하며, 이에 따라 “우리나라도 일부 시스템 대사공학 기술의 우위를 바탕으로 자원 강대국들과의 전략적 제휴 등을 통해 바이오기반 화학물질 생산 기술과 산업의 확보에 박차를 가해야 할 것”이라고 말했다. - 네이처 바이오테크놀로지의 ‘뉴스와 전망(News and Views)’은 그 해당 호에 게재되는 논문들 중 영향력이 큰 몇 편의 논문에 대하여 그 분야 세계 최고의 전문가에게 분석을 의뢰하여 초청 논문을 게재하는 섹션으로, KAIST 이상엽 교수는 바이오플라스틱과 관련하여 1997년 1월호에 “대장균이 플라스틱 시대로 접어들다”에 이어 이번 2006년 10월호에 “바이오플라스틱 생산을 해독하다”라는 전문가 분석 논문을 게재하였다.
2006.10.18
조회수 25252
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1