본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%83%9D%EB%AA%85%EA%B3%BC%ED%95%99%EA%B3%BC
최신순
조회순
대규모 한국인 자폐증 가족 유전체 연구를 통한 새로운 자폐 유전변이 최초 발견
우리 대학 의과학대학원 이정호 교수와 바이오및뇌공학과 최정균 교수, 생명과학과 김은준 교수(IBS 시냅스뇌질환연구단장), 분당서울대병원 유희정 교수, KISTI 공동 연구팀이 아시아 최초로 대규모 한국인 자폐증 가족 코호트를 모집하고 전장 유전체 분석을 실시해 자폐증 유발 유전변이가 단백질을 암호화하지 않는 유전체 영역인 비-부호화 영역에서 발생할 수 있다는 사실을 규명했고, 이를 통해 자폐증 원인의 새로운 이해와 치료 전기를 마련했다고 19일 밝혔다. 이번 연구내용은 세계적 정신의학 학술지 ‘분자 정신의학(Molecular Psychiatry)’에 7월 15일 자에 게재됐다. 자폐증은 사회적 의사소통 결핍이나 이상, 반복적이거나 틀에 박힌 행동 문제가 유아 시절 시작돼 거의 평생 지속되는 뇌 신경 발달장애로, 질환 발생의 근본적인 원인에 대한 이해가 매우 부족하며, 공식적으로 인정된 치료 약제가 전무하다. 자폐증 원인에 대한 이해의 필요성은 대중들의 높은 관심을 통해서도 가늠해볼 수 있는데, 예를 들어 최근 세간의 이목이 집중된 드라마 ‘이상한 변호사 우영우’의 주인공이 자폐증을 앓고 있다. 연구진은 자폐증 유발 유전변이가 비-부호화 유전체 영역에서 발생한다는 사실을 발견했으며, 이를 세계 최초로 한국인 자폐증 샘플로 제작한 인간 줄기세포를 이용해 증명했다. 자폐증의 근본 원인을 규명한 획기적인 연구 결과로서, 기존 연구의 한계를 뛰어넘어 그간 유전체 분야의 난공불락으로 여겨졌던 비-부호화 영역에 초점을 맞춘 혁신적인 발상으로 자폐증 치료의 새로운 전기가 마련될 것으로 예상된다. 연구진은 IBS와 한국연구재단, 국가바이오빅데이터 사업단의 지원을 통해 2011년부터 현재 3,708명에 달하는 자폐 환자와 그 가족들로 구성된 대규모 한국인 코호트를 구축하고 유전체 분석을 진행하고 있으며, 이번 연구 결과는 813명의 전장 유전체 염기서열 분석을 바탕으로 이뤄졌다. (그림 1) 유전체 데이터의 98% 이상을 차지하고 있으나 그간 자폐증 유전체 연구에서 조명받지 못했던 비-부호화 영역을 집중적으로 규명하고자, 연구진은 3차원 공간상의 염색질 상호작용(three-dimensional chromatin interaction)이라는 새로운 분석 방식을 사용했으며 (그림 2), 비-부호화 영역에서 발생한 유전변이가 멀리 떨어져 있는 자폐 유전자의 기능에 심각한 이상을 초래할 수 있음을 증명했다. (그림 3) 특히, 본 코호트의 한국인 자폐증 가족으로부터 직접 인간 줄기세포를 제작해 태아기 신경세포를 재현했으며, 이러한 생애 초기 신경 발달단계에서 비-부호화 영역의 유전변이에 의해 최대 500,000 base-pair(유전체 거리 단위) 이상 떨어져 있는 유전자의 발현이 비정상적으로 낮아지거나 높아질 수 있음을 세계 최초로 증명했다 (그림 4) 이번 연구 성과는 자폐증 유발 유전변이가 단백질을 부호화하지 않는 비-부호화 영역에서 발생해, 멀리 떨어져 있는 유전자의 기능에 영향을 미침으로써 신경 발달단계 초기부터 질병 발병에 기여한다는 획기적인 자폐증 원인에 대한 발견이다. 연구팀은 그간 단백질을 부호화하는 영역에만 쏠려 있던 정신질환 연구 풍토 속에서, 비-부호화 영역을 규명하는 방향으로 전환해야 자폐증 치료의 비밀을 풀 수 있다는 새로운 접근법을 제시했다. IBS 시냅스뇌질환연구단(김은준 교수팀 프로젝트 제안 및 개시), 서울의대 및 분당서울대병원(유희정교수팀 코호트 구축 및 임상 평가), KISTI(대용량 컴퓨팅 리소스 및 유전체 데이터 분석 파이프라인 제공), KAIST (이정호 교수팀, 최정균 교수팀 비-부호화 영역 유전변이 분석) 공동 연구팀이 통합된 유전체-임상 데이터에 대해 3차원 공간상의 염색질 상호작용 분석을 통해 비-부호화 영역에서 발생한 유전변이가 자폐증 발병에 기여함을 규명했다. 이는 순수 국내의 임상가와 기초과학자, 생물정보학 전문가의 융합연구로 이루어낸 성과이며, 아시아 최초의 대규모 전장-유전체 데이터 기반 코호트 구축과 유전체 분석 모델의 기틀을 마련함으로써 대한민국 유전체 연구의 선도적인 역할을 한 것이다. 자폐 유전체 연구는 지난 10년간 북미와 유럽을 위주로 대규모로 진행됐으나, 한국을 비롯한 아시아에서는 상대적으로 연구가 덜 진행됐다. 논문의 공동 제1 저자인 KAIST 의과학대학원 졸업생 김일빈 박사는 “신경발달장애 중 자폐증은 특히 치료가 어려운 것으로 알려져 있는데, 발병 원인 중 하나로 지목되는 유전체 영역의 이상을 한국인 고유의 데이터를 사용해 순수 국내 연구진들의 힘으로 발견해냈다는 데 큰 의미가 있으며, 이 연구 성과가 언젠가는 이루어질 자폐증 치료제 개발을 위한 작은 발판이 되길 바란다”라고 말했다. 분당서울대병원의 유희정 교수도 “우리나라 연구진의 힘을 모아 자폐증의 비밀을 풀기 위한 첫걸음을 내딛었다. 연구에 참여해 준 당사자와 가족들의 헌신으로 이룬 일이라고 생각한다. 하지만 우리가 자폐증의 발병 기전을 완전히 이해하고 나아가 치료제를 개발하기 위해서는 아직 연구해야 할 것이 많다. 유전체 연구에 대한 국가 차원의 지원이 절실하며, 자폐증을 가진 분들과 가족들의 관심도 꼭 필요하다”는 점을 강조했다. 한편 이번 연구는 서경배과학재단, 한국연구재단, 보건산업진흥원사업을 통해 수행됐다.
2022.07.19
조회수 8458
꽃향기, 이젠 눈으로 보세요!
우리 대학 기계공학과 유체 및 계면 연구실 김형수 교수와 생명과학과 생태학 연구실 김상규 교수 연구팀이 공동 융합연구를 통해 세계 최초로 꽃향기가 나오는 것을 실시간으로 가시화하여 측정하는 데 성공했다고 10일 밝혔다. 두 연구팀은 기존 꽃향기 측정 방법과 완전히 다른 레이저 간섭계 기반의 휘발성 유기물 증기(VOCs, Volatile Organic Compounds)의 상대 굴절율 측정을 통해 백합에서 나오는 꽃향기를 시공간으로 직접 측정할 수 있는 결과를 획득했다. 기존 향기 측정 방법은 물질 포집 후 질량분석을 통해 양을 측정했기 때문에 꽃이 어떤 주기로 향기를 뿜어내는지 직접 알 수가 없었다. 꽃향기는 인간의 삶과 밀접한 화장품, 향수, 장식용 꽃 사업 등에서 중요한 요소 중 하나이기도 하지만 동시에 현화 식물이 여러 화분매개곤충과 교류하는 대표적인 수단 중 하나이기 때문에 꽃의 생식 및 진화에 큰 영향을 미친다. 꽃향기 분비 주기를 직접 관찰할 수 있는 이번 기술은 꽃향기 합성 및 분비에 관여하는 유전자를 찾고 화분매개곤충과 상호작용을 통한 꽃향기 물질 진화 연구에 활용될 것이다. 또한 향기 물질 분비를 제어할 수 있다면 원예 및 농작물 생산 증진에 영향을 끼칠 것으로 기대된다. 기계공학과 이길구 박사과정이 공동 제1 저자로 참여한 이번 연구 결과는 국제학술지 `프론티어스 인 플랜트 사이언스(Frontiers in Plant Science)' 2022년 4월호에 출판됐다(논문명 : Real-Time Visualization of Scent Accumulation Reveals the Frequency of Floral Scent Emissions, https://doi.org/10.3389/fpls.2022.835305). 기계공학과 김형수 교수는 "공기 중 증기나 가스를 가시화할 수 있는 기술이 더욱 발전될 수 있다면 위험 유해물질(HNS, Hazardous Noxious Substances)이 한정된 공간에 얼마나 노출됐는지 직접 알 수 있어 산업용이나 군사용으로도 확장이 가능하다ˮ고 말했다. 한편 생명과학과 김상규 교수는 "이번 기술을 활용해 향기 물질 분비에 관여하는 유전자를 찾고 그 메커니즘을 밝혀나갈 것ˮ이라고 언급했다. 이번 연구는 KAIST 글로벌특이점 프렙 연구를 통해서 시작됐고, 연구재단의 중견연구와 농진청의 부분 지원으로 수행됐다.
2022.05.10
조회수 7224
인공지능 이용 면역항암 세포 3차원 분석기술 개발
우리 대학 물리학과 박용근, 생명과학과 김찬혁 교수 공동연구팀이 면역항암 세포의 활동을 정밀하게 측정하고 분석할 수 있는 새로운 3차원 인공지능 분석기술을 개발했다고 28일 밝혔다. 체내에서 면역세포를 추출한 후, 외부에서 면역 능력을 강화시키고 다시 환자에게 주입해 암을 치료하는 방식을 `입양전달 면역세포 치료(adoptive immune cell therapy)'라고 부른다. 이 치료방식은 면역세포 치료법 중 가장 많은 주목을 받는 기술이다. `키메릭 항원 수용체' 또는 `CAR(Chimeric Antigen Receptor)'라고도 불리는 데 유전자 재조합기술을 이용해 T세포와 같은 면역세포를 변형해 암세포와의 반응을 유도해 사멸시키는 치료 방법이다. 특히 CAR-T세포 치료는 높은 치료 효과를 보여 차세대 암 치료제로 급부상하고 있다. 2017년 난치성 B세포 급성 림프구성 백혈병 치료제 판매 승인을 시작으로 현재 3종의 CAR-T 치료제가 판매 승인을 받았으며, 전 세계적으로 약 1,000건 이상의 임상 시험이 진행 중이다. 그러나 아직 우리나라에서는 진행 중인 임상 시험이 전무한 실정이다. CAR-T 기술을 이용한 암 치료 방법들이 속속 개발되고 있지만, CAR-T세포에 대한 세포‧분자 생물학적 메커니즘은 아직 많은 부분이 알려지지 않았다. 특히, CAR-T세포가 표적 암세포를 인지해 결합한 후 `면역 시냅스 (immunological synapse, 이하 IS)'를 형성해 물질을 전달하고 암세포의 사멸을 유도하는데, 두 세포 간의 거리와 같은 IS의 형태 정보는 T세포 활성화 유도와 관련이 높다고 알려져 있지만 구체적인 내용을 파악하기 어렵기 때문에 이에 대한 연구가 활발히 진행 중이다. 우리 대학 물리학과 박용근, 생명과학과 김찬혁 교수 공동연구팀은 CAR-T세포의 IS를 정밀하고 체계적으로 연구할 수 있는 새로운 기술을 개발했다. 3D 홀로그래피 현미경 기술을 이용해, 염색이나 전처리 없이 살아있는 상태의 CAR-T세포와 표적 암세포 간의 상호작용을 고속으로 측정하고 기존에는 관찰하기 어려운 CAR-T와 암세포 간의 IS를 고해상도로 실시간 측정했다. 또한 이렇게 측정한 3D 세포 영상을 인공지능 신경망(Convolutional Neural Network, CNN)을 이용해 분석하고, 3차원 공간에서 정확하게 IS 정보를 정량적으로 추출할 수 있는 기술을 자체 개발했다. 공동연구팀은 또 이 기술을 활용해 빠른 CAR-T 면역 관문 형성 메커니즘을 추적할 수 있었을 뿐만 아니라, IS의 형태학적 특성이 CAR-T의 항암 효능과 연관이 있음을 확인했다. 연구팀은 3차원 IS 정보가 새로운 표적 항암 치료제의 초기 연구에 필요한 정량적 지표를 제공할 것이라고 기대하고 있다. 이번 연구에는 우리 대학 기술을 바탕으로 창업한 2개 기업이 공동으로 참여했다. 3차원 홀로그래픽 현미경을 상업화한 토모큐브 社의 현미경 장비를 이용해 면역세포를 측정하는 한편 토모큐브 社의 인공지능 연구팀이 알고리즘 개발에 참여했다. 이밖에 국내 최초 CAR-T 기반 치료제 기업인 ㈜큐로셀도 연구에 함께 참여해 이 같은 성과를 거두는 데 성공했다. 물리학과 이무성 박사과정 학생, 생명과학과 이영호 박사, 물리학과 송진엽 학부생 (現 메사추세츠 공과대학(MIT) 물리학과 박사과정)이 공동 제1 저자로 참여한 이번 연구는 국제적으로 권위를 인정받는 생물학술지인 `이라이프(eLife)' 12월 17일 字 온라인판을 통해 공개됐으며 지난 21일 字에 공식 게재됐다. (논문명 : Deep-learning based three-dimensional label-free tracking and analysis of immunological synapses of CAR-T cells) 한편 이번 연구는 한국연구재단 리더연구사업, 바이오·의료기술개발사업, 중견연구자지원사업, KAIST Up program의 지원을 받아 수행됐다.
2021.01.29
조회수 74094
항암제 표적 단백질을 약물 전달체로 쓴다?
우리 대학 바이오및뇌공학과와 생명과학과 공동연구팀이 항암제의 표적 단백질을 전달체로 이용하는 역발상 연구결과를 내놨다. 항암제를 이용한 암 치료에 새로운 가능성이 열릴 전망이다. 우리 대학 생명과학과 김진주 박사·바이오및뇌공학과 이준철 박사과정 학생이 공동 제1 저자로 그리고 생명과학과 전상용·바이오및뇌공학과 최명철 교수가 공동 교신저자로 참여한 이번 연구결과는 국제학술지 ‘어드밴스드 머티리얼스(Advanced Materials, IF=27.4)’ 8월 20일 字 표지논문으로 게재됐다. (논문명: Tubulin-based Nanotubes as Delivery Platform for Microtubule-Targeting Agents) 우리 몸속 세포가 분열할 때 염색체*들은 세포 한가운데에 정렬해 두 개의 딸세포로 나눠지는데 이 염색체들을 끌어당기는 끈이 바로 `미세소관(microtubule)'이다. 미세소관은 `튜불린(tubulin)' 단백질로 이루어진 긴 튜브 형태의 나노 구조물이다. ☞ 염색체(Chromosome): DNA와 단백질이 응축하여 만드는 막대 형태의 구조체로 생명체의 모든 유전 정보를 지니고 있다. 미세소관을 표적으로 하는 항암 약물인 ‘미세소관 표적 치료제(microtubule-targeting agents)’는 임상에서 다양한 암의 치료에 활용되고 있다. 이들은 암세포 미세소관에 결합해 앞서 언급한 끈 역할을 방해함으로써, 암세포의 분열을 억제, 결국 사멸을 유도한다. 튜불린 단백질에는 이 약물이 강하게 결합하는 고유의 결합 자리(binding site)가 여럿 존재한다. 연구진은 이 점에 착안해 표적 물질인 튜불린 단백질을 약물 전달체로 사용한다는 획기적인 아이디어를 세계 최초로 구현했다. 공동연구팀은 튜불린 나노 튜브(Tubulin-based NanoTube), 약자로 TNT로 명명한 전달체를 개발하고 항암 효능을 실험으로 확인한 것이다. TNT라는 이름에는 암 치료를 위한 폭발물이라는 의미도 담고 있다. 미세소관 표적 치료제는 TNT에 자발적으로 탑재된다. 약물 입장에서는 세포 내 미세소관에 결합하는 것과 다를 바가 없기 때문이다. 이는 항암제마다 적합한 전달체를 찾아야 했던 기존의 어려움을 해소해준다. 즉 TNT는 미세소관을 표적으로 하는 모든 약물을 탑재할 수 있는 잠재력을 가진‘만능 전달체’인 셈이다. 연구진은 먼저 튜불린 단백질에 블록 혼성 중합체*인 PEG-PLL(pegylated poly-L-lysine)을 섞어 기본적인 TNT 구조를 만들었다. 여기서 튜불린은 빌딩 블록, PEG-PLL은 이들을 붙여주는 접착제이다. 그 다음, 도세탁셀(docetaxel), 라우리말라이드(laulimalide), 그리고 모노메틸아우리스타틴 E(monomethyl auristatin E) 3종의 약물이 TNT에 탑재됨을 보였다. 이 약물들은 실제 유방암, 두경부암, 위암, 방광암 등의 화학요법에 활용되고 있는 항암제들이다. ☞ 블록 혼성 중합체(Block copolymer): 두 종류 이상의 단위체로 이루어진 고분자 화합물로, 각 단위체들이 길게 반복되는 특징이 있다. 연구팀은 또 탑재되는 약물의 종류와 개수에 따라 TNT의 구조가 변할 뿐 아니라 약물 전달체로서의 물리·화학적 특성도 달라진다는 사실을 밝혀냈다. 이는 TNT가 탑재하려는 약물에 맞춰 자발적으로 형태를 변형하는‘적응형 전달체’임을 보여주고 있다. 연구팀은 특히 항암제가 탑재된 TNT가 엔도좀-리소좀 경로(endo-lysosomal pathway)로 암세포에 들어가 뛰어난 항암 및 혈관 형성 억제 효과를 보인다는 점을 세포 및 동물을 대상으로 한 실험을 통해 확인했다. 적응형 만능 약물 전달체가 성공적으로 구현이 가능했던 배경에는 연구진이 보유한 튜불린 분자 제어 기술력 때문이다. 연구진은 튜불린 단백질을 일종의 레고 블록으로 보았다. 블록의 형태를 변형하고 쌓아 올리는 방식을 제어하여, 튜브 형태의 구조체를 조립하는 노하우를 축적해왔다. 연구팀은 이번 연구에서 포항 방사광 가속기의 소각 X-선 산란 장치를 이용해 TNT 구조를 나노미터(nm, 10억 분의 1미터) 이하의 정확도로 분석했다. 공동연구팀은 "이번 연구결과는 지금까지 학계에 보고되지 않은 완전히 새로운 방식의 약물 전달체를 구현했다는 점에서 의미가 크다ˮ고 밝혔다. 연구팀은 이어 "TNT는 현재까지 개발된, 또 향후 개발예정인 미세소관 표적 치료제까지 운송할 수 있는 범용적인 전달체이며, 다양한 항암제들의 시너지 효과(synergy effect)를 기대할 수 있는 `플랫폼 전달체'가 될 것ˮ이라고 강조했다. 이번 연구는 한국연구재단 (중견연구, 리더연구, 방사선기술, 바이오의료기술개발사업) 한국원자력연구원, KUSTAR-KAIST의 지원으로 수행됐다.
2020.08.25
조회수 29631
중증 코로나19 환자의 사이토카인 폭풍 원인 찾았다
우리 대학 의과학대학원 신의철 교수와 생명과학과 정인경 교수 연구팀이 서울아산병원 김성한 교수·연세대 세브란스병원 최준용·안진영 교수, 충북대병원 정혜원 교수와의 공동연구를 통해 중증 코로나19 환자에서 나타나는 과잉 염증반응을 일으키는 원인을 발견했다. 과잉 염증반응이란 흔히 '사이토카인 폭풍'이라고도 불리는 증상인데 면역 물질인 사이토카인(cytokine)이 과다하게 분비돼 이 물질이 정상 세포를 공격하는 현상이다. ☞ 사이토카인(cytokine): 면역세포로부터 분비되는 단백질 면역조절제로서 자가분비형 신호전달(autocrine signaling), 측분비 신호전달(paracrine signaling), 내분비 신호전달(endocrine signaling) 과정에서 특정 수용체와 결합하여 면역반응에 관여한다. 세포의 증식, 분화, 세포사멸 또는 상처 치료 등에 관여하는 다양한 종류의 사이토카인이 존재하며, 특히 면역과 염증에 관여하는 것이 많다. 세포를 의미하는 접두어인 ‘cyto’와 그리스어로 ‘움직이다’를 의미하는 ‘kinein’으로부터 cytokine이 명명됐다. ☞ 사이토카인 폭풍(cytokine storm): 인체에 바이러스가 침투하였을 때 면역 물질인 사이토카인이 과다하게 분비되어 정상 세포를 공격하는 현상 빠르게 확산하고 있는 코로나19 바이러스는 전 세계적으로 이미 1,300만 명 이상이 감염됐고 이 중 50만 명 이상이 사망했다. 코로나19 바이러스에 감염된 환자들은 경증 질환만을 앓고 자연적으로 회복되는 경우가 많으나, 어떤 환자들은 중증 질환으로 발전해 심한 경우 사망하기도 한다. 흔히 사이토카인 폭풍 때문에 중증 코로나19가 유발된다는 사실이 널리 알려져 있다. 하지만 어떤 이유에서 과잉 염증반응이 일어나는지 구체적인 원인은 아직도 알려지지 않아 중증 코로나19 환자의 치료에 많은 어려움을 겪고 있다. 우리 대학 의과학대학원 이정석 연구원 및 생명과학과 박성완 연구원이 주도한 이번 연구에서 공동연구팀은 중증 및 경증 코로나19 환자로부터 혈액을 얻은 후 면역세포들을 분리하고 단일 세포 유전자발현 분석이라는 최신 연구기법을 적용해 그 특성을 상세히 분석했다. 그 결과, 중증 또는 경증을 막론하고 코로나19 환자의 면역세포에서 염증성 사이토카인의 일종인 종양괴사인자(TNF)와 인터류킨-1(IL-1)이 공통으로 나타나는 현상을 발견했다. 연구팀은 특히 중증과 경증 환자를 비교 분석한 결과, 인터페론이라는 사이토카인 반응이 중증 환자에게서만 특징적으로 강하게 나타남을 확인했다. ☞ 인터페론(interferon): 사이토카인(cytokine)의 일종으로 숙주 세포가 바이러스, 세균, 기생균 등 다양한 병원체에 감염되거나 혹은 암세포 존재 하에서 합성되고 분비되는 당단백질이다. 일반적으로 바이러스에 감염된 세포에서 분비되는 제 1형 인터페론이 많이 알려져 있으며 주변 세포들이 항바이러스 방어 효과를 나타낼 수 있도록 돕는다. 지금까지 인터페론은 항바이러스 작용을 하는 착한(?) 사이토카인으로 알려져 있으나, 공동연구팀은 인터페론 반응이 코로나19 환자에서는 오히려 과도한 염증반응을 촉발하는 원인이 될 수 있다는 사실을 다양한 방법을 통해 이를 증명했다. 삼성미래기술육성재단과 서경배과학재단의 지원을 받아 수행한 공동연구팀의 이번 연구결과는 면역학 분야 국제 학술지인 사이언스 면역학(Science Immunology)誌 7월 10일 字에 게재됐다(논문명: Immunophenotyping of COVID-19 and Influenza Highlights the Role of Type I Interferons in Development of Severe COVID-19). 연구팀은 중증 코로나19 환자의 과잉 염증반응 완화를 위해 현재에는 스테로이드제와 같은 비특이적 항염증 약물이 사용하고 있는데 이번 연구 성과를 계기로 인터페론을 표적으로 하는 새로운 치료방법도 고려할 수 있음을 보여준다며 중증 코로나19 환자 치료에 새로운 패러다임을 제시한 획기적인 연구라고 이 연구에 대한 의미를 부여했다. 관련 학계와 의료계에서도 코로나19의 재확산 등 팬데믹이 지속되는 현 상황에서 KAIST와 대학병원 연구팀이 긴밀한 협력을 통해 코로나19의 면역학적 원리를 밝히고 새로운 치료전략을 제시한 이번 연구를 중개 연구(translational research)의 주요 성과로 높게 평가했다. 공동연구팀은 현재 중증 코로나19 환자의 과잉 염증반응을 완화해 환자 생존율을 높일 수 있는 약물을 시험관 내에서 효율적으로 검색하고 발굴하는 방법을 개발하는 후속연구를 진행중에 있다. 이번 연구를 주도한 이정석 연구원은 내과 전문의로서 의과학대학원 박사과정에 재학 중인데 "중증 코로나19 환자의 의료적 문제를 해결하기 위해 정인경 교수 연구팀과 함께 이번 연구를 긴박하게 시작했는데 서울아산병원과 연세대 세브란스병원·충북대병원의 적극적인 지원에 힘입어 불과 3개월 만에 마칠 수 있게 됐다ˮ고 말했다. 정인경 교수는 "코로나19와 같은 신규 질환의 특성을 신속하게 규명하는데 있어 최신 단일세포 전사체 빅데이터 분석법이 매우 효과적ˮ이었음을 밝혔다. 신의철 교수도 "이번 연구는 코로나19 환자의 면역세포에서 어떤 일이 벌어지는지 상세히 연구함으로써 향후 치료전략을 설계할 수 있는 토대를 마련했다는 점에서 매우 중요하고 의미가 있는 연구ˮ라고 평가했다. 신의철 교수와 정인경 교수는 이와 함께 "중증 코로나19 환자의 생존율을 높일 수 있도록 새로운 면역기전 연구 및 환자 맞춤 항염증 약물 사용에 관한 연구를 지속적으로 수행할 것ˮ이라고 강조했다.
2020.07.14
조회수 27651
소금 섭취 제어할 수 있는 신체 메커니즘 규명
우리 대학 생명과학과 손종우 교수 연구팀이 각종 성인병의 원인으로 알려진 과도한 소금 섭취를 제어할 수 있는 메커니즘을 규명하는 데 성공했다. 이번 연구를 통해 향후 소금의 섭취를 적절하게 제한하는 전략 수립에 도움을 줌으로써 고혈압, 신부전 등 소금 섭취와 밀접하게 관련된 각종 질병 치료에 이바지할 수 있을 것으로 기대된다. 박시형 박사과정이 1 저자로 참여하고, 미국 텍사스 주립대학 사우스웨스턴 메디컬 센터 첸 리우(Chen Liu) 교수와의 공동연구로 진행한 이번 연구 결과는 국제 학술지 ‘네이처 뉴로사이언스(Nature Neuroscience)’ 1월 20일 자 온라인판에 게재됐다. (논문명 : A Neural Basis for Tonic Suppression of Sodium Appetite) 우리 몸의 체액은 혈액, 간질액 등을 포함하는 세포외액과 세포내액으로 구성돼 있다. 소금의 주요 성분인 나트륨 이온은 세포외액에 분포돼 삼투 현상에 의해 세포내액에 있는 수분을 끌어당긴다. 체내에 나트륨 이온이 과량 존재하면 혈액과 간질액의 부피가 증가해 혈압 상승, 부종 발생 등이 일어날 수 있어 적정한 수준으로 소금을 섭취하는 것이 중요하다. 특히 신부전 등과 같이 체액량 조절이 중요한 질병이 있는 환자의 경우 과도한 소금 섭취가 치명적임에도 적절한 조절이 어려운 것이 현실이다. 따라서 많은 의사와 과학자들이 소금 섭취를 효과적으로 제어할 방법에 대해 고민해 왔다. 손종우 교수 연구팀은 중요한 신경 전달 물질 중 하나인 세로토닌의 기능에 주목했다. 뇌줄기 안에 있는 세로토닌 반응성 신경 세포가 평상시에도 활성화돼 있어 이 세포가 소금의 섭취를 억제한다는 사실을 밝혀냈다. 그리고 세로토닌에 반응하는 현상을 재현하면 이 신경 세포의 활성이 억제돼 소금 섭취가 증가하는 현상을 확인했다. 최근 미국의 연구팀 등이 체액량이 감소했을 때 활성화돼 소금의 섭취를 증가시키는 신경 회로를 제시한 바 있으나, 평상시에 소금 섭취를 억제하는 메커니즘이 존재하고 이를 활용해 소금 섭취를 제어할 수 있다는 것은 손 교수 연구팀이 최초로 발견했다. 손종우 교수는 "소금 섭취를 제어할 수 있는 메커니즘을 분자 수준에서 규명한 것으로 향후 고혈압, 신부전 등 과도한 소금 섭취와 관련된 각종 질환 치료에 도움이 될 것으로 기대된다"라고 말했다. 또한, "소금 섭취 욕구와 세로토닌 신경회로 간의 상관관계를 규명했으나, 어떤 상황에서 세로토닌이 분비되는지는 아직 밝혀지지 않아 이 부분에 대한 연구에 집중할 계획이다"라고 밝혔다. 이번 연구는 삼성미래기술육성재단과 KAIST 시스템헬스케어사업 및 석박사모험연구사업의 지원을 통해 수행됐다. □ 그림 설명
2020.02.12
조회수 8246
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1