-
인공지능 챗봇 이미지 데이터 훈련 비용 최소화하다
최근 다양한 분야에서 인공지능 심층 학습(딥러닝) 기술을 활용한 서비스가 급속히 증가하고 있다. GPT와 같은 거대 언어 모델을 훈련하기 위해서는 수백 대의 GPU와 몇 주 이상의 시간이 필요하다고 알려져 있다. 따라서, 심층신경망 훈련 비용을 최소화하는 방법 개발이 요구되고 있다.
우리 대학 전산학부 이재길 교수 연구팀이 심층신경망 훈련 비용을 최소화할 수 있도록 훈련 데이터의 양을 줄이는 새로운 데이터 선택 기술을 개발했다고 2일 밝혔다.
일반적으로 대용량의 심층 학습용 훈련 데이터는 레이블 오류(예를 들어, 강아지 사진이 `고양이'라고 잘못 표기되어 있음)를 포함한다. 최신 인공지능 방법론인 재(再)레이블링(Re-labeling) 학습법은 훈련 도중 레이블 오류를 스스로 수정하면서 높은 심층신경망 성능을 달성하는데, 레이블 오류를 수정하기 위한 추가적인 과정들로 인해 훈련에 필요한 시간이 더욱 증가한다는 단점이 있다. 한편 막대한 훈련 시간을 줄이려는 방법으로 중복되거나 성능 향상에 도움이 되지 않는 데이터를 제거해 훈련 데이터의 크기를 줄이는 핵심 집합 선별(coreset selection) 방식이 큰 주목을 받고 있다. 그러나 기존 핵심 집합 선별 방식은 훈련 데이터에 레이블 오류가 없다고 가정한 표준 학습법을 위해 개발됐고, 재레이블링 학습법을 위한 핵심 집합 선별 방식에 관한 연구는 부족한 실정이다.
이재길 교수팀이 개발한 기술은 레이블 오류를 스스로 수정하는 최신 재레이블링 학습법을 위해 핵심 집합 선별을 수행하여 심층 학습 훈련 비용을 최소화할 수 있도록 해준다. 따라서, 레이블 오류가 포함된 현실적인 훈련 데이터를 지원하므로 실용성이 매우 높다.
또한 이 교수팀은 특정 데이터의 레이블 오류 수정 정확도가 해당 데이터의 이웃 데이터의 신뢰도와 높은 상관관계가 있음을 발견했다. 즉, 이웃 데이터의 신뢰도가 높으면 레이블 오류 수정 정확도가 커지는 경향이 있다. 이웃 데이터의 신뢰도는 심층신경망의 충분한 훈련 전에도 측정할 수 있으므로, 각 데이터의 레이블 수정 가능 여부를 예측할 수 있게 된다. 연구팀은 이러한 발견을 기반으로 전체 훈련 데이터의 총합 이웃 신뢰도를 최대화하는 데이터 부분 집합을 선별해 레이블 수정 정확도와 일반화 성능을 최대화하는 `재레이블링을 위한 핵심 집합 선별'을 제안했다. 총합 이웃 신뢰도를 최대화하는 부분 집합을 찾는 조합 최적화 문제의 효율적인 해법을 위해 총합 이웃 신뢰도를 가장 증가시키는 데이터를 차례차례 선택하는 탐욕 알고리즘(greedy algorithm)을 도입했다.
연구팀은 이미지 분류 문제에 대해 다양한 실세계의 훈련 데이터를 사용해 방법론을 검증했다. 그 결과, 레이블 오류가 없다는 가정에 따른 표준 학습법에서는 최대 9%, 재레이블링 학습법에서는 최대 21% 최종 예측 정확도가 기존 방법론에 비해 향상되었고, 모든 범위의 데이터 선별 비율에서 일관되게 최고 성능을 달성했다. 또한, 총합 이웃 신뢰도를 최대화한 효율적 탐욕 알고리즘을 통해 기존 방법론에 비해 획기적으로 시간을 줄이고 수백만 장의 이미지를 포함하는 초대용량 훈련 데이터에도 쉽게 확장될 수 있음을 확인했다.
제1 저자인 박동민 박사과정 학생은 "이번 기술은 오류를 포함한 데이터에 대한 최신 인공지능 방법론의 훈련 가속화를 위한 획기적인 방법ˮ 이라면서 "다양한 데이터 상황에서의 강건성이 검증됐기 때문에, 실생활의 기계 학습 문제에 폭넓게 적용될 수 있어 전반적인 심층 학습의 훈련 데이터 준비 비용 절감에 기여할 것ˮ 이라고 밝혔다.
연구팀을 지도한 이재길 교수도 "이 기술이 파이토치(PyTorch) 혹은 텐서플로우(TensorFlow)와 같은 기존의 심층 학습 라이브러리에 추가되면 기계 학습 및 심층 학습 학계에 큰 파급효과를 낼 수 있을 것이다ˮ고 말했다.
우리 대학 데이터사이언스대학원에 재학 중인 박동민 박사과정 학생이 제1 저자, 최설아 석사과정, 김도영 박사과정 학생이 제2, 제3 저자로 각각 참여한 이번 연구는 최고권위 국제학술대회 `신경정보처리시스템학회(NeurIPS) 2023'에서 올 12월 발표될 예정이다. (논문명 : Robust Data Pruning under Label Noise via Maximizing Re-labeling Accuracy)
한편, 이 기술은 과학기술정보통신부 재원으로 정보통신기획평가원의 지원을 받아 SW컴퓨팅산업원천기술개발사업 SW스타랩 과제로 개발한 연구성과 결과물(2020-0-00862, DB4DL: 딥러닝 지원 고사용성 및 고성능 분산 인메모리 DBMS 개발)이다.
2023.11.02
조회수 3777
-
2.4배 가격 효율적인 챗GPT 핵심 AI반도체 개발
오픈AI가 출시한 챗GPT는 전 세계적으로 화두이며 이 기술이 가져올 변화에 모두 주목하고 있다. 이 기술은 거대 언어 모델을 기반으로 하고 있다. 거대 언어 모델은 기존 인공지능과는 달리 전례 없는 큰 규모의 인공지능 모델이다. 이를 운영하기 위해서는 수많은 고성능 GPU가 필요해, 천문학적인 컴퓨팅 비용이 든다는 문제점이 있다.
우리 대학 전기및전자공학부 김주영 교수 연구팀이 챗GPT에 핵심으로 사용되는 거대 언어 모델의 추론 연산을 효율적으로 가속하는 AI 반도체를 개발했다고 4일 밝혔다.
연구팀이 개발한 AI 반도체 ‘LPU(Latency Processing Unit)’는 거대 언어 모델의 추론 연산을 효율적으로 가속한다. 메모리 대역폭 사용을 극대화하고 추론에 필요한 모든 연산을 고속으로 수행 가능한 연산 엔진을 갖춘 AI 반도체이며, 자체 네트워킹을 내장하여 다수개 가속기로 확장이 용이하다. 이 LPU 기반의 가속 어플라이언스 서버는 업계 최고의 고성능 GPU인 엔비디아 A100 기반 슈퍼컴퓨터보다 성능은 최대 50%, 가격 대비 성능은 2.4배가량 높였다. 이는 최근 급격하게 생성형 AI 서비스 수요가 증가하고 있는 데이터센터의에서 고성능 GPU를 대체할 수 있을 것으로 기대한다.
이번 연구는 김주영 교수의 창업기업인 ㈜하이퍼엑셀에서 수행했으며 미국시간 7월 12일 샌프란시스코에서 진행된 국제 반도체 설계 자동화 학회(Design Automation Conference, 이하 DAC)에서 공학 부문 최고 발표상(Engineering Best Presentation Award)을 수상하는 쾌거를 이뤘다.
DAC은 국제 반도체 설계 분야의 대표 학회이며, 특히 전자 설계 자동화(Electronic Design Automation, EDA)와 반도체 설계자산(Semiconductor Intellectual Property, IP) 기술 관련하여 세계적인 반도체 설계 기술을 선보이는 학회다. DAC에는 인텔, 엔비디아, AMD, 구글, 마이크로소프트, 삼성, TSMC 등 세계적인 반도체 설계 기업이 참가하며, 하버드대학교, MIT, 스탠퍼드대학교 등 세계 최고의 대학도 많이 참가한다.
세계적인 반도체 기술들 사이에서 김 교수팀이 거대 언어 모델을 위한 AI 반도체 기술로 유일하게 수상한 것은 매우 의미가 크다. 이번 수상으로 거대 언어 모델의 추론에 필요한 막대한 비용을 획기적으로 절감할 수 있는 AI 반도체 솔루션으로 세계 무대에서 인정받은 것이다.
우리 대학 김주영 교수는 “미래 거대 인공지능 연산을 위한 새로운 프로세서 ‘LPU’로 글로벌 시장을 개척하고, 빅테크 기업들의 기술력보다 우위를 선점하겠다”라며 큰 포부를 밝혔다.
2023.08.04
조회수 5634
-
약물 부작용 및 용해도 예측 그래프 신경망 기술 개발
최근 화학, 생명과학 등 다양한 기초과학 분야의 문제를 해결하기 위해 그래프 신경망 (Graph Neural Network) 기술이 널리 활용되고 있다. 그 중에서도 특히 두 물질의 상호작용에 의해 발생하는 물리적 성질을 예측하는 것은 다양한 화학, 소재 및 의학 분야에서 각광을 받고 있다. 예를 들어, 어떠한 약물 (Drug)이 용매 (Solvent)에 얼마나 잘 용해되는지 정확히 예측하고, 동시에 여러 가지 약물을 투여하는 다중약물요법 (Polypharmacy)의 부작용을 예측하는 것이 신약 개발 등에 매우 중요하다.
우리 대학 산업및시스템공학과 박찬영 교수 연구팀이 한국화학연구원(원장 이영국)과 공동연구를 통해 물질 내의 중요한 하부 구조(Substructure)를 탐지하여 두 물질의 상호작용에 의해 발생하는 물리적 성질 예측의 높은 정확도를 달성할 수 있는 새로운 그래프 신경망 기법을 개발했다고 18일 밝혔다.
기존 연구에서는 두 분자 쌍이 있을 때, 각 분자내에 존재하는 원자들 사이의 상호 작용만을 고려해 그래프 신경망 모델을 학습하였다. 예를 들어 특정 발색체의 물(H2O)에 대한 용해도를 예측하고자 할 때, 발색체 내의 각 원자들에 대해 물 분자의 원자들 (즉, H, O)이 갖는 영향력을 고려하는 것이다. 연구팀이 이에 반해, 연구팀이 착안한 점은 분자 구조의 화학적 특성을 결정하는 데 있어서 원자뿐만 아니라 작용기(Functional group)와 같은 분자내 하부 구조들이 중요한 역할을 한다는 점이었다. 예를 들어, 알코올이나 예를 들어, 알코올이나 포도당과 같이 하이드록실기 (Hydroxyl group)를 포함하는 분자들은 일반적으로 물에 대한 용해도가 높은 것으로 알려져 있다. 즉, 하이드록실기라는 작용기가 물에 대한 용해도를 결정하는데 중요한 역할을 한다는 것이다.
연구팀은 분자의 특성을 결정하는데 큰 영향을 끼치는 하부 구조를 추론하는 기술을 분자내의 중요한 정보를 최대한 압축하여 보존하는 ‘정보 병목 이론’과, 분자 내의 어떤 하부 구조가 분자의 고유한 특성을 결정 짓는데 큰 역할을 했는지 대한 인과 관계를 추론하는 ‘인과 추론 모형’을 활용하여 개발했다. 이를 통해 분자의 고유한 특성에 가장 큰 영향을 미치는 하부 구조를 찾아내었다. 또한 분자 간 관계를 추론하는 문제에서는 상대방 분자에 따라 대상 분자의 중요한 하부 구조가 달라질 수 있다는 점을 착안하여 물질 간 관계를 예측하는 모델을 제안했다.
이번 새로운 그래프 신경망 기법을 의학에 적용하여 정보 병목 현상을 기반으로 한 연구는 기존 연구에 비해 약물 용해도 예측에서 11%의 성능 향상, 다중약물요법 부작용 예측에서 4%의 정확도 향상을 이뤄냈다. 또한, 인과 추론 모형을 기반으로 한 연구는 약물 용해도 예측에서 17%의 성능 향상, 약물 부작용 예측에서 2%의 정확도 향상을 이뤄냈다.
박찬영 교수팀은 정보 병목 이론을 기반으로 중요한 하부 구조를 탐지해 분자 구조 관계의 높은 예측 정확도를 달성할 수 있는 그래프 신경망 모델을 개발해 기계학습 분야 최고권위 국제학술대회 ‘국제 기계 학습 학회 International Conference on Machine Learning (ICML 2023)’에서 올 7월 발표할 예정이다. (논문명: Conditional Graph Information Bottleneck for Molecular Relational Learning). 또한 인과 추론 모형을 기반으로 중요한 하부 구조를 탐지해 분포 변화에도 모델의 성능이 강건하게 유지되는 그래프 신경망 모델을 개발해 데이터마이닝 최고권위 국제학술 대회 ‘국제 데이터 마이닝 학회 ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2023)’에서 올 8월에 발표할 예정이다. (논문명: Shift-Robust Molecular Relational Learning with Causal Substructure). 두 연구 모두 KAIST 산업및시스템공학과 대학원에 재학 중인 이남경 박사과정 학생이 제1 저자, 화학연구원의 나경석 연구원이 공동 저자, 우리 대학 산업및시스템공학과의 박찬영 교수가 교신저자로 참여했다.
두 연구의 제1 저자인 이남경 박사과정은 “제안한 기술은 분자의 성질을 결정하는 데 있어 큰 영향을 미치는 하부 구조가 존재한다는 화학적 지식에 기반해 그래프 신경망을 학습할 수 있는 새로운 방법”이라면서 “상대편 분자를 고려해 대상 분자의 중요한 구조를 찾는 방법론은 이미지-텍스트 멀티 모달 학습 방법에서도 적용될 수 있어, 심층 학습 전반적인 성능 개선에 기여할 수 있다”고 밝혔다.
연구팀을 지도한 박찬영 교수도 “제안한 기술은 화학과 생명과학을 포함한 다양한 분야에서 새로운 물질을 발견하는데 널리 사용될 것으로 기대하며, 특히 환경 친화적인 소재 개발, 질병 치료를 위한 신약 발굴 등에 있어서 본 기술의 가치가 더욱 부각될 것으로 보인다”라고 밝혔다.
한편 이번 연구는 정보통신기획평가원의 지원을 받은 사람중심 인공지능 핵심원천기술개발 사업과 한국화학연구원 기본사업 (KK2351-10)의 지원을 받아 수행됐다.
2023.07.18
조회수 5230
-
전산학부 박종철 교수 연구팀, ACL2023 Outstanding Paper Award 수상
우리 대학 전산학부 박종철 교수 연구팀이 2023년 7월 9일~13일 토론토에서 열린 ACL 2023 에서 Outstanding Paper Award를 수상했다.
연구팀의 획기적인 논문인 “Question-Answering in a Low-resourced Language: Benchmark Dataset and Models for Tigrinya“는 저자원 언어이며 동아프리카의 에리트레아와 에티오피아에서 사용되는 티그리냐를 다룬다.
연구팀은 티그리냐 질문-답변 데이터셋을 세계 최초로 구축하고 티그리냐로 작성된 문서를 읽고 답할 수 있는 언어모델을 만들었다.
이 상은 학회에 제출한 연구 중 상위 1.5~2.5%에게만 주어지는 의미 있는 상이다.
이 연구팀은 티그리냐와 다른 동아프리카 언어들에 대한 사전학습 언어 모델과 언어 식별 방법에 대한 연구를 LREC2022와 EMNLP2021 등 저명한 NLP 학회에 소개한 경험이 있다.
본 연구의 첫 번째 저자인 Fitsum은 전산학부 NLP*CL 연구실의 박사과정 학생이다. 그의 연구는 현재 티그리냐 언어에 초점을 맞추고 있지만, 특정 언어를 넘어 연구의 지평을 확장하기 위해 노력하고 있다.
이 연구팀이 개발한 방법론, 데이터수집 방법, 어노테이션 툴, 그리고 모델은 언어 자원이 부족한 언어들에 대한 유용한 참고자료로 활용될 것으로 기대된다. 특히 이들의 연구는 최근 심각해 지고 있는 디지털 격차를 해소하기 위해 언어적으로 다양하고, 역사적으로 혜택을 받지 못했던 커뮤니티에 대등한 연구가 가능한 디지털 표현 방법을 제공하였다는 의미가 있다.
본 연구는 NLP*CL 연구실에서 ACL 2023을 통해 발표한 다섯 편의 Long Paper (세 편은 메인 학술대회, 두 편은 Findings) 중 하나이다.
2023.07.18
조회수 2371
-
리던던트 로봇 매니퓰레이터를 사용한 최적화 기반의 경로 추종 문제에 대한 학습 기반 초기화 기술 개발
자율 로봇이 일상적인 작업을 수행하기 위해 6차원 카르테시안 경로 추종은 중요한 능력이지만, 리던던트 로봇 매니퓰레이터(Redundant Robot Manipulator)의 사용에는 다양한 제약 조건과 무한한 역기구학 솔루션으로 인해 연속적인 제어는 어렵다.
이에 장기적 의존성을 고려하는 경로 계획 기술이 필요하지만 경로의 길이와 환경의 복잡성이 증가하면 생성 시간이 오래 걸리게 되고, 국소 최적 경로 도출의 가능성이 커지게 된다. 이는 용접, 수술 로봇 등과 같이 정확도와 실시간성을 모두 요구하는 분야에서 리던던트 매니퓰레이터의 사용에 병목이 되고 있기에, 우리 대학 전산학부 윤성의 교수 연구팀은 다양한 문제에 적용성을 높이는 학습 기반과 최적성을 보장하는 최적화 기반 방식의 결합을 통해 각각의 방식이 갖는 이점을 유지하고 단점을 상호 보완하는 구조를 개발했다. 이러한 모델은 리던던트 매니퓰레이션의 경로 추종 문제에 적용되어 추종에 걸리는 시간, 정확도 등 다양한 평가 지표에 성능 향상을 보였다.
연구팀은 고차원의 탐색 공간에서 효율적인 강화 학습을 위해 최적화 기반의 방식으로부터 파생된 국소 최적의 사전 지식 정보를 활용하는 구조를 도입했다. 국소 최적 지식을 모방함으로써 성능 하락 문제를 해결하기 위해 리던던트 매니퓰레이터의 구조적 특성을 고려한 영공간 투영 (Null-space projection) 기법을 제안했다.
연구팀은 제안한 방식으로부터 생성된 초기 궤적과 최적화 기법에 대표적으로 사용되는 초기화 방식들을 다양한 평가 지표를 통해 비교하고, 제약조건 매니폴드 상에서 움직임을 확인하여 초기 궤적의 성능을 검증했다. 또한 본 방식의 사용을 통해 최적화 기법에 향상된 최적성, 효율성, 다양한 문제에 적용성을 보인다.
연구팀은 연구를 통해 리던던트 매니퓰레이터를 활용한 경로 추종 문제에 있어 강화 학습 프레임워크를 제안하고, 충돌 위험을 낮추기 위한 여분 자유도 제어 기법을 제시했으며 학습 기반과 최적화 기반 방식의 결합이 속도와 최적성을 모두 요구하는 문제에 중요한 전략이 될 수 있음을 보여주었다.
이는 협동 로봇, 수술 로봇 등 고자유도의 매니퓰레이터 모션을 요구하는 상황에 적용 가능하고, 이를 통해 다양한 도메인에서 고차원 매니퓰레이터의 사용성을 높여줄 것으로 기대한다.
해당 연구는 지난 2023년 5월 29일 ~ 6월 2일 영국 런던에서 진행된 로보틱스 분야 최대 국제 학회인 IEEE International Conference on Robotics and Automation (ICRA) 2023에서 Outstanding Planning Paper Award를 수상했다.
ICRA 2023 Award는 1,341편의 논문 중 15편에 수여되었으며, Planning 분야에서는 1편이 선정됐다.
2023.06.23
조회수 3404
-
111배 빠른 검색엔진용 CXL 3.0 기반 AI반도체 세계 최초 개발
최근 각광받고 있는 이미지 검색, 데이터베이스, 추천 시스템, 광고 등의 서비스들은 마이크로소프트, 메타, 알리바바 등의 글로벌 IT 기업들에서 활발히 제공되고 있다. 하지만 실제 서비스에서 사용되는 데이터 셋은 크기가 매우 커, 많은 양의 메모리를 요구하여 기존 시스템에서는 추가할 수 있는 메모리 용량에 제한이 있어 이러한 요구사항을 만족할 수 없었다.
우리 대학 전기및전자공학부 정명수 교수 연구팀(컴퓨터 아키텍처 및 메모리 시스템 연구실)에서 대용량으로 메모리 확장이 가능한 컴퓨트 익스프레스 링크 3.0 기술(Compute eXpress Link, 이하 CXL)을 활용해 검색 엔진을 위한 AI 반도체를 세계 최초로 개발했다고 25일 밝혔다.
최근 검색 서비스에서 사용되는 알고리즘은 근사 근접 이웃 탐색(Approximate Nearest Neighbor Search, ANNS)으로 어떤 데이터든지 특징 벡터로 표현할 수 있다. 특징 벡터란 데이터가 가지는 특징들 각각을 숫자로 표현해 나열한 것으로, 이들 사이의 거리를 통해 우리는 데이터 간의 유사도를 구할 수 있다. 하지만 벡터 데이터 용량이 매우 커서 이를 압축해 메모리에 적재하는 압축 방식과 메모리보다 큰 용량과 느린 속도를 가지는 저장 장치를 사용하는 스토리지 방식(마이크로소프트에서 사용 중)이 사용되어 왔다. 하지만 이들 각각은 낮은 정확도와 성능을 가지는 문제가 있었다.
이에 정명수 교수 연구팀은 메모리 확장의 제한이라는 근본적인 문제를 해결하기 위해 CXL이라는 기술에 주목했다. CXL은 CPU-장치 간 연결을 위한 프로토콜로, 가속기 및 메모리 확장기의 고속 연결을 제공한다. 또한 CXL 스위치를 통해 여러 대의 메모리 확장기를 하나의 포트에 연결할 수 있는 확장성을 제공한다. 하지만 CXL을 통한 메모리 확장은 로컬 메모리와 비교해 메모리 접근 시간이 증가하는 단점을 가지고 있다.
데이터를 책으로 비유하자면 기존 시스템은 집에 해당하는 CPU 크기의 제한으로 서재(메모리 용량)를 무한정 늘릴 수 없어, 보관할 수 있는 책 개수에 제한이 있는 것이다. 이에 압축 방식은 책의 내용을 압축하여 더 많은 책을 보관하는 방법이고, 스토리지 방식은 필요한 책들을 거리가 먼 도서관에서 구해오는 것과 비슷하다. CXL을 통한 메모리 확장은 집 옆에 창고를 지어 책을 보관하는 것으로 이해될 수 있다.
연구진이 개발한 AI 반도체(CXL-ANNS)는 CXL 스위치와 CXL 메모리 확장기를 사용해 근사 근접 이웃 탐색에서 필요한 모든 데이터를 메모리에 적재할 수 있어 정확도를 높이고 성능 감소를 없앴다. 또한 근사 근접 이웃 탐색의 특징을 활용해 데이터 근처 처리 기법과 지역성을 활용한 데이터 배치 기법으로 CXL-ANNS의 성능을 한 단계 향상했다. 이는 마치 창고 스스로가 필요한 책들의 내용을 요약하고 정리해 전달하고, 자주 보는 책들은 서재에 배치해 집과 창고를 오가는 시간을 줄이는 것과 유사하다.
연구진은 CXL-ANNS의 프로토타입을 자체 제작해 실효성을 확인하고, CXL-ANNS 성능을 기존 연구들과 비교했다. 마이크로소프트, 메타, 얀덱스 등의 글로벌 IT 기업에서 공개한 검색 데이터 셋을 사용한 근사 근접 이웃 탐색의 성능 비교에서 CXL-ANNS는 기존 연구들 대비 평균 111배 성능 향상이 있었다. 특히, 마이크로소프트의 상용화된 서비스에서 사용되는 방식과 비교하였을 때 92배의 성능 향상을 보여줬다.
정명수 교수는 "이번에 개발한 CXL-ANNS는 기존 검색 엔진의 문제였던 메모리 용량 제한 문제를 해결하고, CXL 기반의 메모리 확장이 실제 적용될 때 발생하는 메모리 접근 시간 지연 문제를 해결했다ˮ며, “제안하는 CXL 기반 메모리 확장과 데이터 근처 처리 가속의 패러다임은 검색 엔진뿐만 아니라 빅 데이터가 필요한 고성능 컴퓨팅, 유전자 탐색, 영상 처리 등의 다양한 분야에도 적용할 수 있다ˮ라고 말했다.
이번 연구는 미국 보스턴에서 오는 7월에 열릴 시스템 분야 최우수 학술대회인 유즈닉스 연례 회의 `USENIX Annual Technical Conference, 2023'에 ‘CXL-ANNS’이라는 이름으로 발표된 예정이다. (논문명: CXL-ANNS: Software-Hardware Collaborative Memory Disaggregation and Computation for Billion-Scale Approximate Nearest Neighbor Search)
한편 해당 연구는 파네시아(http://panmnesia.com)의 지원을 받아 진행됐다.
2023.05.25
조회수 5191
-
세계 최고 수준의 이벤트 카메라 기반 비디오 보간 기술 개발
비디오 보간은 비디오 사이의 새로운 프레임을 생성하여 프레임률을 높이고 비디오 내 부드러운 모션을 구현하는 기술이다. 전 세계적으로 많은 연구진이 RGB 카메라만을 사용하여 비디오 보간을 수행하였다. 하지만, 프레임 사이의 움직임 정보의 부재로 인하여 복잡한 상황에서 비디오 보간 성능의 한계를 지닌다. 특히, 현실적인 상황에서 발생하는 비선형적인 움직임에 대해서는 비디오 보간 성능이 크게 하락하는 문제점이 존재한다.
우리 대학 기계공학과 윤국진 교수팀은 인간의 시신경을 모방한 이벤트 카메라와 RGB 카메라를 동시에 사용할 수 있는 하이브리드 카메라 시스템을 구축하고 세계 최고 수준의 이벤트 카메라 기반 초고속 비디오 보간 기술을 개발했다. 본 연구는 기존의 비디오 보간 방법 대비 35% 이상의 세계 최고 성능을 달성하였고, 복잡하고 극심한 움직임 속에서도 높은 성능으로 30FPS 비디오를 10000FPS 이상의 초고속 비디오로 합성할 수 있다.
이벤트 카메라는 인간의 시신경을 모방한 카메라로서, 영상의 밝기 변화만을 감지한다. 이러한 특성으로 인하여 이벤트 카메라는 micro 초 단위의 시간 해상도와 높은 dynamic range의 정보를 제공하여 기존의 RGB 카메라가 가지지 못하는 장점을 가지고 있다. 따라서, 이벤트 카메라는 RGB video 프레임 사이의 정확한 움직임 정보를 포착할 수 있어 일반 RGB 카메라와 이벤트 카메라를 동시적으로 사용하면 정확도 높은 초고속 비디오를 생성할 수 있다.
기존의 이벤트 카메라 기반 비디오 보간 연구는 이벤트 카메라에서 나오는 이벤트 정보만을 사용하여 프레임 사이의 광학 흐름을 추정하거나 프레임 사이의 움직임을 근사하는 방법을 사용하였다. 하지만, 이벤트 정보는 공간적으로 희박하고 밝기 정보만을 기록하기 때문에 이벤트만을 사용한 광학 흐름 추정 방법의 결과가 좋지 못한 점을 연구팀은 주목했다. 이를 극복하기 위해 연구팀은 기존의 RGB 이미지와 이벤트 정보를 동시적으로 사용하는 이미지-이벤트 비대칭 양방향 움직임 추정 기법을 제안하였다. 이벤트는 풍부한 움직임의 궤적정보를 제공하는 장점과 이미지의 풍부한 시각 정보의 각 장점을 잘 융합하여 서로 다른 정보의 장단점을 보완 및 융합한 광학 흐름 추정 방법을 제안하여 그 우수성을 입증하였다.
또한, 설계 및 제작한 빔 스플리터 기반 이벤트-RGB 하이브리드 카메라 시스템을 사용하여 이벤트 카메라를 이용한 모션-기반 비디오 보간 기술 데이터셋을 구축하였다. 기존의 이벤트 카메라를 이용한 비디오 보간 데이터셋의 경우, 카메라 움직임이 존재하지 않는 문제와 낮은 프레임 레이트/해상도로 인하여 딥러닝 알고리즘의 학습 및 이벤트 카메라 기반 비디오 보간 기술 개발 및 평가에 한계점을 지닌다. 제안된 데이터셋의 경우 이벤트 카메라 기반 비디오 향상 연구 커뮤니티에 큰 기여를 할 수 있을 것으로 예상된다.
이번 연구는 고품질의 높은 프레임률을 가지는 비디오 생성이 가능하여, 기존의 초고속 카메라로 비디오 촬영이 어려운 광량이 부족한 환경 및 아주 빠른 물체의 움직임을 분석이 필요한 여러 상황 등에서 널리 사용될 수 있을 것으로 기대된다.
이번 연구는 윤국진 교수 연구실의 김태우 박사과정(제1 저자), 채유정 박사과정(제2 저자), 장현걸 석사과정(제3 저자)이 참여하였고, 올해 캐나다 밴쿠버에서 6월 18일에 열릴 컴퓨터 비전 및 패턴인식 분야의 국제 저명학술지인 CVPR 2023(IEEE Conference on Computer Vision and Pattern Recognition)에 highlight 논문(2.5% acceptance rate)으로 게재될 예정이다.
이 연구는 중견 연구자개발 과제의 지원을 받아 수행되었다. 윤국진 교수 연구팀은 다년간 이벤트 카메라에 관련된 연구를 수행해오면서 이벤트 카메라를 이용한 여러 가지 컴퓨터 비전 분야에 핵심 연구 들을 수행하여 오고 있으며, 앞으로도 이벤트 카메라 연구 커뮤니티에 이바지하기 위하여 지속적인 연구를 수행할 예정이다.
※ 논문명 : Event-based Video Frame Interpolation with Cross-Modal Asymmetric Bidirectional Motion Fields
※ 저자 정보 : 윤국진 (KAIST, 교신저자), 김태우(KAIST, 제1 저자), 채유정(KAIST, 제2 저자), 장현걸(KAIST, 제3 저자) - 총 4명
2023.04.05
조회수 4497
-
보이스피싱 심박스 탐지 원천 기술 개발
보이스피싱에 심박스가 악용될 경우 해외에서 온 인터넷전화가 한국 내의 번호로 인식되는 발신 번호 조작에 활용될 수 있다.
우리 대학 전기및전자공학부 김용대 교수 연구팀이 이동통신사가 보이스피싱에 사용되는 심박스를 식별할 수 있는 원천기술을 개발했다고 21일 밝혔다.
휴대전화 등 모든 단말기는 이동통신망에 접속할 때 지원 가능한 기능을 이동통신망에 전달한다. 김용대 교수 연구팀은 이러한 기능 중 1,000여 개를 이용해 이동통신 단말 기종을 구분하는 방법을 제안했고 100여 개의 이동통신 단말들의 기종을 분류할 수 있음을 입증했다. 또한, 이 기술을 보이스피싱에 사용되는 심박스에 적용했을 때 일반 휴대전화와 심박스를 명확히 구분할 수 있음을 확인했다.
현재 이동통신사들은 단말기 구분 및 단말 기종의 식별을 위해 모든 단말에 부여된 고유한 15자리 숫자인 단말기고유식별번호(이하 IMEI: International Mobile Equipment Identity)를 사용한다. IMEI는 이동통신망에서 단말 기종을 나타내기 위해 사용되는 8자리 숫자인 TAC(Type Allocation Code, 타입 할당 코드)를 포함한다.
이번 기술의 특징은 일반적인 단말뿐 아니라 악의적인 목적을 가진 다른 기종의 TAC로 변조한 단말들도 이동통신망에서 그 기종을 식별할 수 있다는 것이다. 이러한 특징은 현재 보이스피싱에 악용되고 있는 심박스들을 탐지하기에 유용하다. 심박스들은 IMEI 변조 기능을 지원하기 때문에 이동통신사가 심박스를 휴대전화로 오분류하도록 만들 수 있는데, 기존과 같이 TAC만을 이용해서는 이러한 심박스들을 탐지할 수 없기 때문이다. 이번 기술에서는 단말 기종 식별을 위해 TAC를 사용하지 않기 때문에, 그러므로 심박스가 이를 변조해 이동통신망에 접속하더라도 효과적으로 식별할 수 있다.
휴대전화와 심박스는 개발 과정에서 큰 차이를 보인다. 퀄컴, 삼성 같은 이동통신 칩 개발사는 매년 새로운 기능을 갖는 최신 사양의 칩셋을 제작하고, 이는 최신 휴대전화 제작에 사용된다. 반면 심박스의 경우 전화 기능을 위주로 한 장비이기 때문에, 비교적 저사양의 칩셋을 사용한다. 또한 일반적으로 휴대전화 제조사들은 심박스 제조사들과 달리 칩셋에 존재하는 다양한 기능들을 단말기에 구현한다. 이러한 개발 과정의 차이는 곧 휴대전화와 심박스가 지원하는 기능들의 차이로 이어진다. 연구팀이 개발한 기술에서는 이러한 단말들의 기능 정보들을 기기별 고유정보로 이용해 단말 기종을 분류했다. 그 시험 결과, 100여 종의 휴대전화 모델들이 잘 구분되는 것을 확인했고, 나아가 휴대전화와 심박스 또한 명확히 구분되는 것을 확인했다. 따라서 이번 기술이 이동통신사에 적용되더라도 심박스 탐지에 충분히 사용될 수 있을 것으로 보인다.
전기및전자공학부 오범석, 안준호 연구원이 공동 제1 저자로 참여하고 배상욱, 손민철, 이용화 연구원과 우리 대학 강민석 교수가 함께 참여한 이번 연구는 보안 최우수학회 중 하나인 `NDSS(Network and Distributed System Security)' 심포지움 2023에 채택됐다. (논문명 : Preventing SIM Box Fraud Using Device Model Fingerprinting)
한편 김용대 교수 연구팀은 2012년부터 현재까지 이동통신 보안 분야에서 다양한 연구를 진행했다. 2015년에는 상용 VoLTE 서비스의 10가지 구현 취약점들을 발견해 미국 컴퓨터 침해 사고 대응반(CERT)에 제보했고, 2019년에는 LTE 이동통신 취약점 자동분석 시스템을 개발, 51개의 새로운 취약점을 발견해 통신사 및 제조사들에 해당 문제들을 보고했다. 2022년에는 43개의 휴대전화 이동통신 칩에서 26개의 보안 취약점을 찾아 휴대전화 제조사들에게 보고했다.
공동 제1 저자인 오범석 연구원은 "100여 개의 이동통신 단말들을 이용해 휴대전화와 심박스가 잘 구분되는 것을 확인한 상태다ˮ며, "실제 보이스피싱 기술에 적용하기 위해서는 이동통신사와의 협력을 통해 상용 데이터를 활용한 검증과 기술 고도화가 필요하다ˮ 라고 말했다.
김용대 교수는 "합법적으로 심박스를 사용하는 사업 또한 존재하며 이동통신사에서 심박스를 탐지하는 것도 중요하지만 이 중 불법적으로 이용되는 심박스를 골라내는 것이 더 중요하다”며, "이 기술을 효과적으로 적용하기 위해서는 심박스 등록제가 필요한데 보이스피싱 목적이 아닌 합법적으로 사용되고 있는 심박스들은 사업 목적에 대해 등록을 하면 되고 그렇지 않은 심박스는 미등록 심박스이므로 적발이 가능하다”라고 말했다.
이번 연구는 경찰청 국가개발연구사업 <네트워크 기반 보이스피싱 탐지 및 추적 기술 개발>과 정보통신기획평가원 <정형 및 비교 분석을 통한 자동화된 이동통신 프로토콜 보안성 진단 기술> 사업 그리고 융합보안대학원 사업의 지원을 받아 수행됐다. 아울러, 현재 연구팀은 실제 고객의 피해 방지로 이어질 수 있도록 SK Telecom과 협업 중에 있다.
2023.03.21
조회수 4725
-
도심에서 무력화 가능한 안티드론 기술 개발
최근 각국 정부는 공항과 국가 중요 시설에서 무인 항공기를 이용한 테러를 방지하기 위해 다양한 안티드론 시스템을 구축하고 있다. 드론을 추락시키거나 원하는 방향으로 제어하는 안티드론 기술은 드론의 다양한 보안 취약점을 이용하여 구현이 가능하다. 우크라이나-러시아 전쟁은 안티드론 기술의 평가장이 되고 있다.
우리 대학 전기및전자공학부 김용대 교수 연구팀이 도심에서 사용이 가능한 협대역 전자기파*를 원격에서 드론의 회로에 주입해 드론을 즉각적으로 무력화하는 안티드론 기술을 개발했다고 31일 밝혔다.
* 기존에 사용되는 광대역 전자기파을 이용한 안티드론 기술은 주변의 전자·전기 장치에 피해를 일으켜, 도심사용이 어렵다는 점을 개선하여 매우 좁은 대역의 협대역전자기파를 이용한 안티드론 기술은 목표 드론 기종에만 그 효과를 한정할 수 있게 해준다.
김 교수 연구팀은 드론 제조사의 제어 유닛 보드가 전자파 주입에 따른 민감도가 다르다는 것을 발견하였고 각 제조사별 수집된 민감도를 극대화한 주파수를 분석하였다. 이를 통하여 매우 좁은 대역의 협대역전자파를 주입하더라도 원격에서 드론을 즉각적으로 무력화시킬 수 있음을 입증했다.
이번 기술의 특징은 이렇게 좁은 대역으로 특정 주파수로 전자파 주입을 할 경우 기존의 안티드론 기술과 달리, 주변 전자 장치에 미치는 영향을 최소화할 수 있어, 도심에서도 적용 가능한 안티드론 기술이라고 할 수 있다. 뿐만 아니라 같은 제어 유닛 보드를 사용하는 드론들을 이용한 군집 드론 공격 시 이들 드론을 동시에 추락시킬 수 있다. 즉, A 기종을 사용하는 100개의 적 드론과 B 기종을 사용하는 100개의 아군 드론이 동시에 비행하고 있을 때 아군 드론은 전혀 영향을 받지 않으면서 100개의 적 드론을 모두 격추시킬 수 있는 기술로 평가된다.
우리 대학 장준하 연구원과 조만기 연구원이 공동 제1 저자로 참여한 이번 연구는 보안최우수학회 중 하나인 `NDSS (Network and Distributed System Security)' 심포지움 2023에 채택됐다. (논문명 : Paralyzing Drones via EMI Signal Injection on Sensory Communication Channels)
드론의 구동을 위하여 관성 계측 장치(IMU)는 다양한 센서값들을 제어 유닛 보드에 전달을 한다. 제어 유닛 보드는 이 센서값들을 제어 알고리즘에 적용하여 다음 번 드론의 움직임, 즉 로터의 회전수나 드론의 자세를 계산한다. 이 연구의 핵심 아이디어는 이 관성 계측 장치와 제어 유닛 보드 간의 통신을 방해시키면 제대로된 센서값을 받을 수 없고, 이 경우 다음 번 드론의 제어가 불가능해 진다는 것이다. 이 통신을 방해하기 위한 기술로 연구팀은 전자파 간섭(EMI) 취약점을 갖는 제어 유닛 보드에 대한 전자파 주입을 선택했다. 실험을 통하여 동종의 제어 유닛 보드는 같은 주파수의 전자파에 민감하다는 것을 발견하였고, 이를 이용하여 협대역의 전자기파를 주입할 경우, 주변 전자 장치에 영향을 끼치지 않을 뿐 아니라, 군집 드론 공격에 효과적으로 대응할 수 있는 점을 발견하였다.
한편 김용대 교수 연구팀은 2015년 소리를 관성 계측 장치에 포함된 평형센서인 자이로스코프(Gyroscope) 센서에 주입하여 드론을 떨어뜨릴 수 있는 기술을 개발했었다. 2015년 연구와 이번 연구는 깊은 연관을 가지고 있다. 2015년 연구는 달팽이관(정확히는 세반고리관)에 문제가 생길 경우 인간이 평형을 유지하기 힘들다는 것과 유사한 원리라고 할 수 있다. 이번 연구는 달팽이관에 문제를 일으키는 것이 아니라 달팽이관에서 뇌로 연결되는 신경망을 잠시 막을 경우에도 인간이 평형을 유지하기 힘든 것과 비슷한 원리라고 할 수 있다.
연구팀은 실내 전자파 차폐 시설을 이용해 10m 거리에서 호버링 비행 중인 드론을 즉각적으로 추락시킬 수 있음을 확인했으며, 공격 거리와 요구 전력 간의 관계를 도출했다. 10m 이상의 거리에 대해선 시뮬레이션을 통해 가능함을 확인했다.
공동 제1 저자인 장준하 연구원은 "드론 제어 유닛 보드의 전자파 간섭(EMI) 취약성을 이용하면 특정 영역의 드론들을 즉시 무력화하는 안티드론 기술로 활용할 수 있음을 보였다ˮ며, "또한 이는 기존의 안티드론 기술이 가지는 주변 전자 장치에 대한 영향을 문제를 해결한 도심에서 적용 가능한 안티드론 기술이며 고도화 연구를 통해 자폭 드론, 집단 드론 공격 등으로부터 국민을 보호하는 기술로 활용할 수 있을 것이다ˮ 라고 말했다.
김용대 교수는 “원천 연구가 이제 끝난 시점이고 실용화 연구를 통해 실제 제품 개발까지 이어질 수 있을지 확인이 필요하다”며, “추가로 제어 유닛 보드와 IMU 센서 간의 통신 회로 뿐 아니라 다른 회로의 취약점에 대한 연구도 필요한 시점이다”라고 말했다.
이번 연구는 한국연구재단 무인이동체 보안을 위한 항재밍 및 무허가 무인이동체 탐지대응 기술 개발 사업과 정보통신기술기획원 융합보안 핵심인재 양성사업 그리고 미 공군과학연구실의 지원을 받아 수행됐다.
2023.01.31
조회수 4944
-
심현철 교수팀, CES 2023 자율주행차 레이싱에 아시아 유일팀으로 참가
우리 대학 전기및전자공학부 심현철 교수 팀이 1월 5일부터 8일까지 미국 라스베이거스에서 열리는 세계 최대 전자·정보기술 전시회 CES 2023의 공식행사인 '자율주행 레이싱'에 참가한다.
1월 7일 라스베이거스 모터스피드웨이(LVMS)에서 개최 예정인 'CES 2023 자율주행차 레이싱'은 지난해 개최된 대회에서 개발된 기술력을 더욱 발전시켜 보다 진보된 고속 자율주행 차량 기술 개발성과를 대중에게 공유하고자 추진됐다.
이 대회는 2021년 10월 23일 미국 인디애나폴리스에서 최초로 개최된 '인디 자율주행 챌린지(Indy Autonomous Challenge, IAC)'에 이은 4번째 대회다. IAC 대회에 이어 CES 2022에서 개최된 대회에서 심현철 교수 무인시스템 및 제어 연구팀은 총 9개 팀 중 4강전에 진출해 CES 2023 참가권을 획득했다. 그 결과 아시아 유일 팀으로 CES 2023 자율주행차 레이싱에 출전해 미국·유럽 대학들과 최고 속도를 겨룰 예정이다.CES 2022 대회 참가 당시 심현철 교수 연구팀은 경기 진행 신호와 레이싱 규정을 준수하는 동시에 240km/h의 고속 자율주행이 가능한 소프트웨어를 성공적으로 구현했다. CES 2023 자율주행차 레이싱에서는 인디 레이싱용 IL-15차량을 자율주행차로 개조, 지난번 대회보다 성능이 더 업그레이드된 AV-23 차량을 사용하며 최고 300km/h까지 주행이 가능하다.
이번 대회에서는 CES2022에서 처음 시도된 레이싱 차량 2대 간의 1:1 자율주행 경주에서 보다 발전해 주행코스 제한 없이 자유롭게 다른 차를 추월해야 하며 토너먼트 형식으로 진행돼 가장 높은 속도로 계속 주행하는 팀이 우승을 차지하게 된다. 심 교수 연구팀은 CES 2022에서 검증된 SW를 보다 발전시켜 다른 차량 인식성능을 향상하고 고속으로 안정적으로 주행할 수 있도록 정밀 측위 및 주행 제어기술 개발에 주안점을 두고 있다.
심 교수 연구진은 2021년 현대자동차 주최 자율주행대회에서 우승한 바 있는데, 이번 CES 2023대회부터 현대자동차와 파트너십 계약을 체결하고 대회 참가에 필요한 금전적인 지원을 받고, 현대자동차 연구진과 자율주행 레이싱 기술 동향을 공유하게 된다.
CES 2023 기간 중 연구진은 웨스트홀(West Hall)에 위치한 IAC 공식 부스에서 KAIST 레이싱 팀의 기술 소개 등 행사에도 참여할 예정이다.
심현철 교수는 "외국에서 개최되는 대회에 계속 참가하면서 많은 어려움이 있는데 열심히 참여해준 학생들에게 깊이 감사하며, 우리 연구실에서 지난 13년간 개발한 자율주행기술을 검증할 수 있는 고속 자율주행 레이싱 대회에 계속 참여할 수 있어 무척 뜻깊게 생각한다"며, "고속자율주행기술은 우리나라 환경에서 장거리 이동 시 가장 효과적으로 적용할 수 있는 기술이며 고속철도나 도심 항공같이 막대한 인프라 구축 비용이 소요되지 않고 기상 조건의 영향도 크게 받지 않는 등 장점이 매우 크다"고 강조했다.한편, CES 2023 자율주행차 레이싱 대회는 CES 주관사인 미국소비자기술협회(CTA)와 에너지시스템즈네트워크(Energy System Network, ESN)가 공동으로 주최한다. KAIST 외 IAC 대회 우승자인 뮌헨공대, 매사추세츠공대(MIT), 취리히연방공대(ETH), 피츠버그대(PIT), 로체스터공대(RW), 워털루 대학 등이 참가할 예정이다. 인디 자율주행 대회는 2023년 6월 이탈리아 몬짜(Monza) 트랙에서 5회 대회, CES 2024에서 6회 대회를 개최할 예정이다.
2023.01.05
조회수 9021