-
코로나19 감염 중증도 결정하는 인자 발견
코로나19로 위중, 중증 상태인 중환자가 6일 0시 기준 163명을 기록했다. 지난달 19일 12명이었던 위중, 중증 환자는 20여일 만에 13배 넘게 늘어났다. 이러한 심각한 상황에서 우리 연구진이 코로나19 중증 환자와 경증 환자를 쉽게 판별할 수 있는 바이오 마커(표시물)를 발견해 중증 코로나19에 대한 치료제 개발에 기대감을 높였다.
우리 대학 의과학대학원 이흥규 교수 연구팀이 *'호중구'와 *'당질코르티코이드'의 연관성을 밝혀 코로나19의 중증도를 결정짓는 인자를 발견했다고 7일 밝혔다.
☞ 호중구(neutrophil) : 혈액의 전체 백혈구 중 50~70%를 차지하는 선천 면역세포로, 세균이나 곰팡이 감염 등에 대응하는 면역세포이다.
☞ 당질코르티코이드(glucocorticoid) : 글루코코르티코이드라고도 하며 콩팥 근처 부신의 부신 겉질에서 생성되는 호르몬으로, 다양한 신체 기능 조절에 관여한다. 특히, 면역반응을 억제하는 호르몬으로도 알려져 있다.
WHO에 의해 세계적 대유행(팬데믹)으로 지정된 코로나바이러스감염증(COVID-19)은 사람마다 증상이 판이하다. 따라서, 환자의 중증도를 예상 및 판별하기 위해서는 확실한 바이오 마커의 활용이 중요하며, 이들을 선별적으로 치료할 수 있는 표적 치료제가 매우 중요하다.
중증 코로나19 환자들은 급성 호흡곤란 증후군의 증상을 보이고 특히 폐 조직의 심한 손상이 관찰된다. 이에 대응해 호중구 등 다양한 면역세포들이 바이러스 감염으로부터 숙주를 보호하기 위해 면역반응을 보이지만 사이토카인 폭풍(과잉 염증반응)처럼 과도한 면역반응으로 오히려 장기를 손상시킬 수도 있다.
이 교수 연구팀은 유전자 발현 옴니버스(GEO)에 공개된 코로나19 감염 경증 및 중증 환자의 기관지 폐포 세척액에 존재하는 단일세포 유전 정보를 분석했다. 그 결과, 그동안 곰팡이나 세균 감염에서만 중요성이 알려졌고 바이러스 감염 시에는 상대적으로 중요성이 알려지지 않았던 호중구의 과활성화로 인해 중증 코로나19가 발생함을 밝혔다.
특히 연구팀은 대식세포 등의 골수 유래 면역세포 내에서 발현하는 CXCL8과 같은 *케모카인에 의해 호중구 유입이 증가함을 밝혔다. 연구팀은 골수에서 유래한 면역세포 내의 당질코르티코이드 수용체 발현에 따라 CXCL8의 생성이 조절받으며, 이것이 결과적으로 호중구의 유입 및 활성도와 연관됨을 밝혔다.
☞ 케모카인(chemokine): 백혈구유주작용, 활성화작용을 하는 염기성헤파린 결합성 저분자 단백질
이 교수는 "이번 연구 결과는 코로나19의 중증도를 결정하는 바이오 마커를 발굴한 것 뿐만 아니라, 덱사메타손 등의 당질코르티코이드 억제제를 활용해 중증도를 개선할 치료제 개발에 단초를 제공할 수 있을 것으로 기대한다"고 밝혔다.
의과학대학원 박장현 석박사통합과정 대학원생이 제1 저자로 참여한 이번 연구는 국제면역학회연합에서 발간하는 면역학 전문 학술지인 '프론티어스 인 이뮤놀로지(Frontiers in Immunology)' 8월 28일 字 온라인판에 게재됐다. (논문명: Re-analysis of Single Cell Transcriptome Reveals That the NR3C1-CXCL8-Neutrophil Axis Determines the Severity of COVID-19)
한편 이번 연구는 과학기술정보통신부의 코리아 바이오 그랜드 챌린지사업, 신약타겟발굴 및 검증사업 및 KAIST 코로나 대응 과학기술 뉴딜사업을 받아 수행됐다.
2020.09.07
조회수 25904
-
코로나19 해외유입 확진자 수 예측 기술 개발
최근 전 세계적으로 코로나바이러스감염증-19(COVID-19) 확진자 수가 2,000만 명을 넘어선 가운데 최근 국내에서도 코로나19 확진자 수가 급증해 2차 대유행 조짐을 보이면서 정부는 8월 23일부터 전국 대상으로 사회적 거리두기 단계를 2단계로 격상해 시행 중이다.
중앙재난안전대책본부(중대본)에 따르면 국내 코로나 누적 확진자 수는 8월 23일 오전 0시 기준으로 총 1만7,399명이다. 이 중 해외유입 감염자 수는 2,716명(8월 22일 오전 0시 기준)으로 전체 확진자의 약 16%를 차지한다. 대륙별로 보면 아시아(중국 외), 미주, 유럽, 아프리카 순이다. 지난 14일 이후 국내 지역 발생 신규확진자 수가 급증하고 있지만 향후 해외유입 확진자 수의 확산추세 또한 결코 장담할 수 없는 상황이다.
이런 가운데 우리 연구진이 해외유입 확진자 수를 예측할 수 있는 관련 기술을 개발했다. 우리 대학 산업및시스템공학과 이재길 교수 연구팀이 코로나19 해외유입 확진자 수를 예측하는 빅데이터‧인공지능(AI) 기술을 개발했다고 19일 밝혔다.
이재길 교수 연구팀이 개발한 이 기술은 해외 각국의 확진자 수와 사망자 수, 해외 각국에서의 코로나19 관련 키워드 검색빈도와 한국으로의 일일 항공편 수, 그리고 해외 각국에서 한국으로의 로밍 고객 입국자 수 등 빅 데이터에 인공지능(AI) 기술을 적용해 향후 2주간의 해외유입 확진자 수를 예측한다.
코로나19 확진자 수가 급증할수록 해외유입에 의한 지역사회 확산의 위험성도 항상 뒤따르기 마련이다. 이에 따라 이재길 교수 연구팀이 개발한 정확한 해외유입 확진자 수 예측기술은 방역 시설 및 격리 시설 확충, 고위험 국가 입국자 관리 정책 등에 폭넓게 응용 및 적용될 수 있을 것으로 기대가 크다.
우리 대학 지식서비스공학대학원에 재학 중인 김민석 박사과정 학생이 제1 저자로, 강준혁, 김도영, 송환준, 민향숙, 남영은, 박동민 학생이 제2~제7 저자로 각각 참여한 이번 연구는 최고권위 국제 학술대회 'ACM KDD 2020'의 'AI for COVID-19' 세션에서 오는 24일 발표된다. (논문명 : Hi-COVIDNet: Deep Learning Approach to Predict Inbound COVID-19 Patients and Case Study in South Korea)
해외유입 확진자 수는 다양한 요인에 의해서 영향을 받는다. 일반적으로 해외 각국에서의 코로나19 위험도와 비례하며, 해외 각국에서 한국으로의 입국자 수와도 비례한다. 그러나 코로나19 위험도와 입국자 수를 실시간으로 알아내기에는 많은 제약이 따르므로 연구진은 쉽게 구할 수 있는 종류의 빅데이터를 기반으로 하는 인공지능(AI) 모델을 구축하는 데 성공했다.
연구진은 기본적으로 해외 각국의 코로나19 위험도를 산출할 때, 보고된 확진자 수와 사망자 수를 활용했다. 그러나 이러한 수치는 진단검사 수에 좌우되기 때문에 코로나19 관련 키워드 검색빈도를 같이 입력 데이터로 활용해 해당 국가의 코로나19 위험도를 실시간으로 산출했다.
이와 함께 실시간 입국자 수는 기밀정보로서 외부에 공개되지 않기 때문에 매일 제공되는 한국에 도착하는 항공편수와 로밍 고객 입국자 수를 통해 이를 유추해냈다. 로밍 고객 입국자 수 데이터는 KT로부터 제공 받았지만 KT 고객 입국자만을 포함한다는 한계를 일일 항공편수를 함께 고려함으로써 이 문제를 해소했다.
이밖에 해외유입 확진자 수 예측을 위해서는 국가 간의 지리적 연관성도 매우 중요하게 고려해야 한다. 어느 특정 국가의 코로나19 발병이 이웃 국가로 더 쉽게 전파되며, 국가 간의 교류도 거리에 따라 영향을 받기 때문이다. 연구팀은 이러한 문제해결을 위해 지리적 연관성을 학습하도록 국가-대륙으로 구성되는 지리적 계층구조에 따라 우선 각 대륙으로부터의 해외유입 확진자 수를 정확히 예측함으로써 궁극적으로 전체 해외유입 확진자 수를 정확히 예측하도록 하는 인공지능(AI) 모델을 설계했다. 연구팀은 이 인공지능 모델을 'Hi-COVIDNet'라고 이름 붙였다.
이후 연구팀은 약 한 달 반에 걸친 단기간의 훈련 데이터만으로 생성된 `Hi-COVIDNet'을 통해 향후 2주 동안의 해외유입 확진자 수를 예측한 결과, 이 모델이 기존의 시계열 데이터기반의 예측 기계학습이나 딥러닝 기반의 모델과 비교했을 때 최대 35% 더 높은 정확성을 지니고 있음을 확인했다.
제1 저자인 김민석 박사과정 학생은 "이번 연구는 최신 AI 기술을 코로나19 방역에 적용할 수 있음을 보여준 사례ˮ 라면서 "K-방역의 위상을 높이는데 기여할 것으로 기대한다ˮ 고 밝혔다.
이번 연구는 KAIST 글로벌전략연구소(소장 김정호)의 코로나19 AI 태스크포스팀의 지원을 받았고, KT(담당 변형균 상무)와 과학기술정보통신부(담당 김수정 서기관)의 '코로나19 확산예측 연구 얼라이언스'를 통해 로밍 데이터 세트를 지원받아 이뤄졌다.
2020.08.23
조회수 34977