-
111배 빠른 검색엔진용 CXL 3.0 기반 AI반도체 세계 최초 개발
최근 각광받고 있는 이미지 검색, 데이터베이스, 추천 시스템, 광고 등의 서비스들은 마이크로소프트, 메타, 알리바바 등의 글로벌 IT 기업들에서 활발히 제공되고 있다. 하지만 실제 서비스에서 사용되는 데이터 셋은 크기가 매우 커, 많은 양의 메모리를 요구하여 기존 시스템에서는 추가할 수 있는 메모리 용량에 제한이 있어 이러한 요구사항을 만족할 수 없었다.
우리 대학 전기및전자공학부 정명수 교수 연구팀(컴퓨터 아키텍처 및 메모리 시스템 연구실)에서 대용량으로 메모리 확장이 가능한 컴퓨트 익스프레스 링크 3.0 기술(Compute eXpress Link, 이하 CXL)을 활용해 검색 엔진을 위한 AI 반도체를 세계 최초로 개발했다고 25일 밝혔다.
최근 검색 서비스에서 사용되는 알고리즘은 근사 근접 이웃 탐색(Approximate Nearest Neighbor Search, ANNS)으로 어떤 데이터든지 특징 벡터로 표현할 수 있다. 특징 벡터란 데이터가 가지는 특징들 각각을 숫자로 표현해 나열한 것으로, 이들 사이의 거리를 통해 우리는 데이터 간의 유사도를 구할 수 있다. 하지만 벡터 데이터 용량이 매우 커서 이를 압축해 메모리에 적재하는 압축 방식과 메모리보다 큰 용량과 느린 속도를 가지는 저장 장치를 사용하는 스토리지 방식(마이크로소프트에서 사용 중)이 사용되어 왔다. 하지만 이들 각각은 낮은 정확도와 성능을 가지는 문제가 있었다.
이에 정명수 교수 연구팀은 메모리 확장의 제한이라는 근본적인 문제를 해결하기 위해 CXL이라는 기술에 주목했다. CXL은 CPU-장치 간 연결을 위한 프로토콜로, 가속기 및 메모리 확장기의 고속 연결을 제공한다. 또한 CXL 스위치를 통해 여러 대의 메모리 확장기를 하나의 포트에 연결할 수 있는 확장성을 제공한다. 하지만 CXL을 통한 메모리 확장은 로컬 메모리와 비교해 메모리 접근 시간이 증가하는 단점을 가지고 있다.
데이터를 책으로 비유하자면 기존 시스템은 집에 해당하는 CPU 크기의 제한으로 서재(메모리 용량)를 무한정 늘릴 수 없어, 보관할 수 있는 책 개수에 제한이 있는 것이다. 이에 압축 방식은 책의 내용을 압축하여 더 많은 책을 보관하는 방법이고, 스토리지 방식은 필요한 책들을 거리가 먼 도서관에서 구해오는 것과 비슷하다. CXL을 통한 메모리 확장은 집 옆에 창고를 지어 책을 보관하는 것으로 이해될 수 있다.
연구진이 개발한 AI 반도체(CXL-ANNS)는 CXL 스위치와 CXL 메모리 확장기를 사용해 근사 근접 이웃 탐색에서 필요한 모든 데이터를 메모리에 적재할 수 있어 정확도를 높이고 성능 감소를 없앴다. 또한 근사 근접 이웃 탐색의 특징을 활용해 데이터 근처 처리 기법과 지역성을 활용한 데이터 배치 기법으로 CXL-ANNS의 성능을 한 단계 향상했다. 이는 마치 창고 스스로가 필요한 책들의 내용을 요약하고 정리해 전달하고, 자주 보는 책들은 서재에 배치해 집과 창고를 오가는 시간을 줄이는 것과 유사하다.
연구진은 CXL-ANNS의 프로토타입을 자체 제작해 실효성을 확인하고, CXL-ANNS 성능을 기존 연구들과 비교했다. 마이크로소프트, 메타, 얀덱스 등의 글로벌 IT 기업에서 공개한 검색 데이터 셋을 사용한 근사 근접 이웃 탐색의 성능 비교에서 CXL-ANNS는 기존 연구들 대비 평균 111배 성능 향상이 있었다. 특히, 마이크로소프트의 상용화된 서비스에서 사용되는 방식과 비교하였을 때 92배의 성능 향상을 보여줬다.
정명수 교수는 "이번에 개발한 CXL-ANNS는 기존 검색 엔진의 문제였던 메모리 용량 제한 문제를 해결하고, CXL 기반의 메모리 확장이 실제 적용될 때 발생하는 메모리 접근 시간 지연 문제를 해결했다ˮ며, “제안하는 CXL 기반 메모리 확장과 데이터 근처 처리 가속의 패러다임은 검색 엔진뿐만 아니라 빅 데이터가 필요한 고성능 컴퓨팅, 유전자 탐색, 영상 처리 등의 다양한 분야에도 적용할 수 있다ˮ라고 말했다.
이번 연구는 미국 보스턴에서 오는 7월에 열릴 시스템 분야 최우수 학술대회인 유즈닉스 연례 회의 `USENIX Annual Technical Conference, 2023'에 ‘CXL-ANNS’이라는 이름으로 발표된 예정이다. (논문명: CXL-ANNS: Software-Hardware Collaborative Memory Disaggregation and Computation for Billion-Scale Approximate Nearest Neighbor Search)
한편 해당 연구는 파네시아(http://panmnesia.com)의 지원을 받아 진행됐다.
2023.05.25
조회수 5231
-
인공지능 및 빅데이터 시대를 이끌어갈 차세대 CXL2.0 메모리 확장 플랫폼 세계 최초 개발
우리 대학 전기및전자공학부 정명수 교수 연구팀(컴퓨터 아키텍처 및 메모리 시스템 연구실)이 대용량 메모리 장치부터 프로세스를 포함한 컴퓨트 익스프레스 링크(CXL) 2.0 기반의 차세대 메모리 확장 플랫폼 ‘다이렉트CXL(이하 DirectCXL)’을 세계 최초로 프로토타입 제작, 운영체제가 실장된 단대단(End-to-End) 시연에 성공했다고 1일 밝혔다.
오늘날 빅데이터 분석, 그래프 분석, 인메모리 데이터베이스 등 대규모 데이터에 기반한 응용처리가 증가함에 따라, 데이터 센터에서는 이를 더 빠르고 효율적으로 처리하기 위해 시스템의 메모리 확장에 많은 투자를 하고 있다.
그러나 우리가 흔히 알고 있는 메모리 확장 방식인 더블 데이터 대역폭(DDR) 인터페이스를 통한 메모리 확장은 추가할 수 있는 메모리 개수의 제한이 있어, 대규모 데이터 기반의 응용을 처리하기에 충분치 않다. 따라서 데이터 센터에서는 CPU와 메모리로 이루어진 메모리 노드들을 따로 구성하고, 응용을 수행하는 호스트의 메모리가 부족하면 네트워크로 연결된 메모리 노드를 자신의 메모리 공간으로 사용하는 원격 데이터 전송 기술(이하 RDMA) 기반의 메모리 확장을 사용한다.
여러 메모리 노드를 사용하는 RDMA 기반의 메모리 확장을 통해 데이터센터는 시스템의 메모리 크기를 늘릴 수 있었지만, 여전히 해결해야 할 문제들이 남아있었다. 우선 RDMA 기반 메모리 확장 시스템에서는 노드 간 데이터 이동 시 불필요한 데이터 복사, 소프트웨어의 개입 그리고 프로토콜 전환으로 인한 지연을 발생시켜 성능 저하가 발생했다. 또한 시스템의 메모리 확장 시 메모리만을 추가할 수 있는 것이 아닌, 메모리와 메모리를 제어할 CPU가 하나의 메모리 노드를 이루어 시스템에 추가되어야 했기 때문에, 추가적인 비용 소모가 발생했다.
최근 컴퓨트 익스프레스 링크(Compute Express Link, 이하 CXL) 프로토콜의 등장으로 많은 메모리 고객사와 제조사가 이러한 문제를 해결할 가능성을 확인하고 있다. CXL은 PCI 익스프레스(PCIe) 인터페이스 기반의 CPU-장치(Device) 간 연결을 위한 프로토콜로, 이를 기반으로 한 장치 연결은 기존보다 높은 성능과 확장성을 지원하는 것이 특징이다.
국내외 유수 기업들이 모여 CXL 인터페이스 표준 규약을 제안하는 CXL 컨소시엄은 지난 2019년 CXL 1.0/1.1을 처음 제안했고, 이후 CXL 2.0을 발표하며 CXL 1.0/1.1에서 하나의 포트당 하나의 지역 메모리 장치만을 연결할 수 있었던 확장성 문제를 스위치 네트워크를 통해 개선, 하나의 포트를 여러 포트로 확장할 수 있도록 했다. 따라서 CXL 1.0/1.1과 달리 CXL 2.0에서는 확장된 포트에 다수의 원격 CXL 메모리 장치를 연결하는 것이 가능해 더 높은 확장성을 지원할 수 있게 됐다.
그러나 CXL 2.0의 높은 확장성에도 불구하고, 아직 CXL 연구의 방향성을 제시해줄 수 있는 시제품 개발 및 연구들이 진행되지 않아, 메모리 업계와 학계에서는 여전히 CXL1.0/1.1을 기반으로 지역 메모리 확장 장치, 시제품 개발 및 연구를 진행하고 있는 실정이다. 따라서 새로운 CXL 2.0을 통한 메모리 확장 연구의 방향성 초석을 제시할 필요성이 커졌다.
정명수 교수 연구팀이 전 세계 최초로 프로토타입한 CXL 2.0 기반 메모리 확장 플랫폼 ‘DirectCXL’은 높은 수준의 메모리 확장성을 제공하며, 빠른 속도로 대규모 데이터 처리를 가능케 한다. 이를 위해 연구팀은 메모리를 확장해 줄 장치인 ‘CXL 메모리 장치’와 호스트 ‘CXL 프로세서 (CPU)’, 여러 호스트를 다수의 CXL 메모리 장치에 연결해주는 ‘CXL 네트워크 스위치’ 그리고 메모리 확장 플랫폼 전반을 제어할 리눅스 운영체제 기반의‘CXL 소프트웨어 모듈’을 개발해 플랫폼을 구성했다.
구성된 ‘DirectCXL’ 플랫폼을 사용한 시스템에서는 확장된 메모리 공간에 직접 접근해 데이터를 CPU의 캐시로 가져와 불필요한 메모리 복사와 소프트웨어의 개입이 없으며, PCIe 인터페이스만을 사용해 프로토콜 전환을 없애 지연시간을 최대한 줄였다. 또한 추가적인 CPU가 필요 없는 CXL 메모리 장치를 CXL 스위치에 연결하는 것만으로 메모리 확장이 가능해 효율적인 시스템의 구성이 가능했다. 국내외 소수 대기업에서 메모리 장치 일부 단품에 대한 구성을 보여준 준 사례는 있지만, CXL 2.0 기반, CPU부터 CXL 스위치, 메모리 장치가 장착된 시스템에서 운영체제를 동작시키고 데이터 센터와 응용을 실행하고 시연한 것은 정명수 교수 연구팀이 처음이다.
연구팀은 자체 제작한 메모리 확장 플랫폼 ‘DirectCXL’의 성능을 검증하기 위해 CXL 동작이 가능한 다수의 자체 개발 호스트 컴퓨터가 CXL 네트워크 스위치를 통해 연결된 다수 CXL 메모리 장치들을 제어하는 환경을 구성했다. 이후 구성된 플랫폼을 통해 CXL 메모리 장치의 성능을 기존 RDMA 기반 메모리 확장 솔루션과 비교했다. 연구팀이 제안한 ‘DirectCXL’은 확장된 메모리에 대한 접근 시간 검증에서 기존 RDMA 기반의 메모리 확장 솔루션 대비 8.3배의 성능 향상을 보였으며, 많은 메모리 접근을 요구하는 그래프 응용처리 및 인 메모리 데이터베이스 응용처리에서도 각각 2.3배, 2배의 성능 향상을 이뤄냈다.
정명수 교수는 "이번에 개발된 ‘DirectCXL’은 기존 RDMA기반 메모리 확장 솔루션보다 훨씬 적은 비용으로도 뛰어난 성능과 높은 확장성을 제공하는 만큼 데이터센터나 고성능 컴퓨팅 시스템에서의 수요가 클 것으로 기대한다ˮ며, "세계 최초로 개발된 CXL 2.0 기반의 단대단 프로토타입 플랫폼을 활용해 CXL이 적용된 새로운 운영체제(OS)는 물론 시스템 소프트웨어, 솔루션 시제품 고도화를 통해 향후 CXL을 활용한 시스템 구축에 초석을 제공할 것이다ˮ라고 말했다.
한편 이번 연구는 미국 칼스배드에서 지난 7월에 11에 열린 시스템 분야 최우수 학술대회인 유즈닉스 연례 회의 `USENIX Annual Technical Conference, 2022'에 ‘DirectCXL’이라는 논문명(Direct Access, High-performance Memory Disaggregation with DirectCXL)으로 발표되었다. 또한 미국 산호세에서 열리는 8월 2/3일에 플래시 메모리 정상회담(Flash Memory Summit)에서 CXL 컨소시움이 이끄는 CXL포럼에 발표될 예정이다.
‘DirectCXL’의 자세한 내용은 연구실 웹사이트(http://camelab.org)에서 확인할 수 있다. DirectCXL은 데이터센터와 클라우드 시스템에서 다양한 응용에 쉽게 적용 가능하며, 하나의 실시예로 메타(페이스북) 추천시스템 기계학습 데이터 가속에 대한 시연 영상을 연구실 유튜브(https://youtu.be/jm8k-JM0qbM) 에서 확인할 수 있다. 해당 영상은 각 개인의 대규모 특성 자료들(텐서)을 CXL 메모리 풀에 올려두고 빅데이터를 활용한 인공지능이 친구나 광고 등 개인 특성에 맞는 자료들을 추천하게 하는 시스템으로 기존 데이터 센터의 원격메모리에 비해 3.2배 이상의 사용자 수준 성능 향상을 보여주고 있다.
2022.08.01
조회수 7533
-
이병주 교수, 게임의 랙 현상 해소 기술 개발
〈 이병주 교수, 이인정 박사과정 〉
우리 대학 문화기술대학원 이병주 교수와 핀란드 알토 대학교(Aalto Univ) 공동 연구팀이 게임의 겉보기 형태를 변화시켜 게임 내 레이턴시 효과, 일명 랙(lag)을 없앨 수 있는 기술을 개발했다.
이인정 박사과정이 1 저자로 참여하고 알토대학교 김선준 연구원이 공동으로 개발한 이번 연구는 지난 5월 4일 열린 인간-컴퓨터 상호작용 분야 최고권위 국제 학술대회 CHI 2019(The ACM CHI Conference on Human Factors in Computing Systems)에서 풀 페이퍼로 발표됐다. (논문명 : Geometrically Compensating Effects of End-to-End Latency in Moving-Target Selection Games)
레이턴시는 장치, 네트워크, 프로세싱 등 다양한 이유로 인해 발생하는 지연(delay) 현상을 말한다. 사용자가 명령을 입력했을 때부터 출력 결과가 모니터 화면에 나타날 때까지 걸리는 지연을 엔드-투-엔드 레이턴시(end-to-end latency)라 한다.
상호작용의 실시간성이 중요한 요소인 게임 환경에서는 이러한 현상이 플레이어의 능력에 부정적 영향을 미치는 것으로 알려져 있다.
연구팀은 레이턴시가 있는 게임 환경에서도 플레이어의 본래 실력으로 게임을 할 수 있도록 돕는 레이턴시 보정 기술을 개발했다. 이 기술은 레이턴시의 양에 따라 게임의 디자인 요소, 즉 장애물의 크기 등의 형태를 변화시킴으로써, 레이턴시가 있음에도 레이턴시가 없는 것처럼 느껴지는 환경에서 플레이할 수 있다.
연구팀은 레이턴시가 플레이어에 미치는 영향을 분석해 플레이어의 행동을 예측하는 수학적 모델을 제시했다. 시간제한이 있는 상황에서 게임 플레이를 위해 버튼 입력을 해야 하는 ‘움직이는 타겟 선택’ 과업에 레이턴시가 있을 때 사용자의 성공률을 예측할 수 있는 인지 모델이다.
이후에는 이 모델을 활용해 게임 환경에 레이턴시가 발생할 경우의 플레이어 과업 성공률을 예측한다. 이를 통해 레이턴시가 없는 환경에서의 플레이어 성공률과 비슷한 수준으로 만들기 위해 게임의 디자인 요소를 변형한다.
연구팀은 ‘플래피 버드(Flappy Bird)’라는 게임에서 기둥의 높이를 변형해 레이턴시가 추가됐음에도 기존 환경에서의 플레이 실력을 유지함을 확인했다. 연구팀은 후속 연구를 통해 게임 속 장애물 등의 크기를 변형함으로써 레이턴시를 없애는 등의 확장 연구를 기대하고 있다.
이 교수는 “이번 기술은 비 간섭적 레이턴시의 보정 기술로, 레이턴시의 양만큼 게임 시계를 되돌려 보상하는 기존의 랙 보상 방법과는 다르게 플레이어의 게임 흐름을 방해하지 않는 장점이 있다”라고 말했다.
이번 연구는 한국연구재단 신진연구자지원사업(프로게이머 역량 극대화를 위한 게임 입력장치의 설계 최적화) 및 KAIST 자체 연구사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 게임의 겉보기 형태를 변화시킴으로써, 플레이어가 제로 레이턴시 환경과 레이턴시가 있는 환경에서 같은 실력을 유지
2019.07.02
조회수 16604
-
세계에서 가장 빠른 네트워크 침입탐지 시스템 개발
- 100% 공격 패킷만 들어오는 경우에도 10Gbps 가까운 성능 발휘 -
- 19년 역사의 세계 최고 보안학회인 ACM CCS에 국내 최초 논문 발표 -
전용 하드웨어를 사용하지 않고, 범용 하드웨어상의 소프트웨어만으로도 NIDS의 성능을 획기적으로 올려 네트워크 보안 분야에 커다란 지각변동이 예상된다.
우리 학교 전기 및 전자공학과 박경수 교수와 이융 교수팀이 국가보안기술연구소(소장 강석열) 배병철 팀장과 공동으로 범용 서버 상에서 수십 Gbps(초당 기가비트)의 성능을 낼 수 있는 소프트웨어 기반 네트워크 침입탐지 시스템인(이하 NIDS) "카거스(Kargus)"를 개발했다고 5일 밝혔다.
이 기술은 오는 10월 16일~18일 미국 노스캐롤리나주 롤리에서 열리는 美계산기학회(ACM) 컴퓨터 시큐리티 컨퍼런스(CCS, Conference on Computer and Communications Security)에서 발표될 예정인데 국내에서 나온 논문으로는 처음이다.
올해로 19년째를 맞이하는 ACM CCS는 보안 분야 세계 최고 학회로 10%대의 낮은 게재율 때문에 논문채택이 매우 어려운 학회로 유명하다.
네트워크 침입탐지 시스템(NIDS)은 패턴 매칭을 통해 네트워크로 유입되는 공격을 탐지하는 역할을 수행한다.
그러나 범용 컴퓨터 기반의 소프트웨어로 구현되는 기존 NIDS는 하드웨어 사양이 좋더라도 리소스를 효율적으로 사용하지 못해 10Gbps 이상의 초고속 네트워크에서는 적용되기 어려웠다.
KAIST 연구팀이 개발한 ‘카거스’는 1~2Gbps 수준에 머물던 기존 소프트웨어 NIDS의 성능을 메니코어(manycore) GPU, 멀티코어(multicore) CPU 등에 존재하는 하드웨어 병렬성과 여러 패킷을 한 번에 처리하는 일괄처리 방식을 활용해 획기적으로 성능을 끌어 올렸다.
그 결과 해커의 공격이 없는 일반적인 상황에서는 33Gbps, 100% 공격 패킷만 들어오는 경우에도 10Gbps 가까운 성능을 내는 데 성공했다.
또 이 기술의 가장 큰 특징 중 하나는 기존 공개 소프트웨어 기반 시스템인 Snort 탐지규칙을 그대로 활용해 상용화 가능성을 높였다는 점이다. 따라서 상용화에 성공할 경우 약 700만원 정도의 비용으로 수억 원에 달하는 전용 하드웨어 기반 NIDS를 대체할 수 있을 것으로 기대된다.
뿐만 아니라 10Gbps이상의 초고속 네트워크로 접속되는 기업, 정부, 교육기관의 네트워크는 물론 클라우드 서버팜이나 IP로 구동되는 LTE 백본망 등에 대한 공격을 저비용・고유연성을 지닌 소프트웨어 장비로 대비할 수 있을 것으로 전망된다.
박경수 교수는 “이번 논문 발표로 우리나라의 앞선 보안기술의 수준을 국내외에 입증했다”며 “이번 연구를 계기로 국내 보안기술관련 분야 연구진들의 사기를 북돋울 수 있는 기회가 됐으면 한다”고 말했다.
박 교수는 이어 “앞으로 국내 범용 서버 기반 네트워크 장비 시장에 활력을 불어넣는데 주력하겠다”고 강조했다.
한편, 이번 연구는 국가보안기술연구소와 교육과학기술부의 지원으로 수행됐다.
2012.09.05
조회수 18432
-
대사공학적으로 개량된 박테리아로 범용 플라스틱 생산기술 개발
- 이상엽 교수팀과 LG 화학 연구팀 공동개발
- 바이오테크놀로지 바이오엔지니어링(Biotechnology and Bioengineering)지 게재예정
생명화학공학과 이상엽(李相燁, 45세, LG화학 석좌교수, 생명과학기술대학 학장) 특훈교수팀과 LG화학 기술연구원(원장 유진녕) 박시재, 양택호박사팀이 4년여 간의 공동연구를 통해 박테리아를 이용하여 재생 가능한 바이오매스로부터 플라스틱을 생산하는 기술을 최근 개발했다.
교육과학기술부 시스템생물학 연구개발 사업과 LG화학 석좌교수 연구비로 지원된 이번 연구에서는 시스템 대사공학과 효소공학 기법을 접목, 자연적으로는 생성되지 않는 플라스틱(unnatural polymer)의 일종으로 최근 각광을 받고 있는 폴리유산(Polylactic acid, PLA)을 효율적으로 생산할 수 있는 대장균을 개발한 것이다.
이번 연구 결과는 바이오공학 분야 최고 전통의 바이오테크놀로지 바이오엔지니어링(Biotechnology and Bioengineering)지에 게재 승인됐으며 스포트라이트 논문(Spotlight paper)으로 선정돼 2010년 1월호에 두 편의 연속 논문으로 게재될 예정이다.
두 논문의 제목은 ‘개량된 프로피오네이트 코엔자임 에이 트랜스퍼레이즈와 폴리하이드록시알카노에이트 중합효소를 이용한 폴리유산과 그의 공중합체의 생합성(Biosynthesis of Polylactic acid and its Copolymers Using Evolved Propionate CoA Transferase and PHA Synthase)’과 ‘폴리유산과 그의 공중합체의 생산을 위한 대장균의 대사공학(Metabolic Engineering of Escherichia coli for the Production of Polylactic Acid and its Copolymers)’이다. 19건의 특허가 전 세계 출원 중이다.
기존의 복잡한 2단계 공정을 통해 생산되던 폴리유산을 재생가능한 원료로부터 미생물의 직접 발효에 의해 생산이 가능하도록 한 혁신적인 본 연구 전략은 앞으로 석유 유래 플라스틱을 대체할 수 있는 다양한 비자연 고분자(unnatural polymer)들의 생산에 활용될 획기적인 기술로 평가되고 있다.
폴리유산 (Polylactic acid, PLA)은 많은 바이오매스 유래 고분자들 중에서도 생분해성, 생체적합성, 구조적 안정성, 그리고 낮은 독성과 같은 뛰어난 물성으로 인해 석유 유래 플라스틱의 대체물로서 대두되고 있다.
그러나, 폴리유산은 현재 두 단계 공정으로 합성된다. 우선, 미생물 발효를 통해 유산(락트산, Lactic acid)을 생산, 정제한 후 여러 가지 시약, 용매 및 촉매가 첨가되는 복잡한 공정의 화학적 중합반응에 의해 폴리유산이 합성된다.
또한, 폴리유산의 물성을 다양하게 개선하기 위해 폴리하이드록시알카노에이트 (Polyhydroxyalkanoate, PHA)와 같은 다른 고분자들과의 공중합이나 혼합반응 등의 연구가 이루어지고 있다.
이러한 노력에도 불구하고, 공중합 반응에 사용되는 락톤계 모노머들의 가용성과 비용을 고려했을 때, 기존의 화학적 합성 방법은 효과적이지 않다. 이에, 미생물 유래 고분자인 폴리하이드록시알카노에이트의 생합성 시스템을 기반으로, 폴리유산과 그의 공중합체들의 생합성이 가능할 수 있는 대사경로를 효소공학을 통해 구축했다.
그러나, 외래 대사경로의 도입 및 조작만으로는 폴리유산 단일 중합체와 유산의 함량이 높은 공중합체의 생산이 효율적이지 않아, 시스템 수준으로 세포 내 대사흐름을 증가시킬 필요성을 인지했다. 이에, 대장균 균주의 인실리코 게놈 수준의 시뮬레이션을 이용한 대사흐름분석 기법을 활용하여 고분자 생산을 위한 주요 전구체의 대사 흐름을 논리적으로 강화시킴으로써, 세포성장과 함께 목적 고분자의 효율적 생산이 가능하도록 했다.
따라서, 효소공학을 통한 고분자 합성 경로의 직접적 조작 및 강화 뿐 아니라, 시스템 대사공학을 통한 논리적 접근으로 조작된 대사흐름을 바탕으로 다양한 폴리유산 플라스틱을 보다 효율적으로 생산할 수 있었다.
이는 시스템 대사공학과 효소공학을 접목시킨 고기술 전략으로 비자연 고분자를 효율적으로 생산한 최초의 성공적인 예로서, 재생가능한 자원으로부터 폴리유산뿐 아니라 석유유래 플라스틱을 대체할 수 있는 다른 비자연 고분자들의 일단계 생산을 위한 기반 기술을 마련해줌으로써, 플라스틱 생산 공정에 있어 새로운 전략을 제시했다.
李 교수는 “자연계에 없는 고분자를 미생물로 생산하는 것이 과연 될까? 라는 의문을 갖고 시작했다. 우리 KAIST 연구실의 정유경박사와 LG화학 기술연구원 연구팀원 10여명이 4년간의 끈질긴 노력 끝에 성공했다”며, “이번 연구는 대장균의 가상세포 시뮬레이션을 통해 세포 내 대사흐름을 목적한 고분자 생산에 유리하도록 논리적으로 조작하고, 고분자 생합성 경로를 구성하는 외래 효소들을 새롭게 만들어 도입함으로써, 강화된 대사흐름을 이용해 보다 효율적으로 목적 고분자를 생산할 수 있는 균주를 개발하는데 성공한 세계 첫 번째 케이스다. 특히, 유산이 단량체로 함유된 공중합체의 경우에는 세계최초로 만든 것이 되어 물질특허들로 출원중이다”라고 밝혔다.
한편, 이 혁신적인 연구 성과는 22일 미국 CNN 홈페이지의 Top기사 등 해외언론의 주요기사로 소개됐다. 주요내용은 한국의 KAIST 이상엽 교수팀과 LG화학 연구팀이 전 세계적으로 석유고갈, 지구온난화 및 환경오염 문제로 재생가능한 자원을 이용한 바이오매스 기반 기술의 개발이 시급한 현 시대의 흐름에 부응하면서, 재생가능한 자원으로부터 효율적으로 바이오공학을 통한 플라스틱 (Bioengineered plastics) 폴리유산의 생산이 가능한 대장균 균주를 개발했다는 내용이다.
2009.11.24
조회수 22390