-
이상엽 특훈교수, 김현욱 교수, 인공지능 이용한 효소기능 예측 기술 개발
우리 대학 생명화학공학과 이상엽 특훈교수와 김현욱 교수의 초세대 협업연구실 공동연구팀이 딥러닝(deep learning) 기술을 이용해 효소의 기능을 신속하고 정확하게 예측할 수 있는 컴퓨터 방법론 DeepEC를 개발했다.
공동연구팀의 류재용 박사가 1 저자로 참여한 이번 연구결과는 국제학술지 ‘미국 국립과학원 회보(PNAS)’ 6월 20일 자 온라인판에 게재됐다. (논문명 : Deep learning enables high-quality and high-throughput prediction of enzyme commission numbers)
효소는 세포 내의 생화학반응들을 촉진하는 단백질 촉매로 이들의 기능을 정확히 이해하는 것은 세포의 대사(metabolism) 과정을 이해하는 데에 매우 중요하다.
특히 효소들은 다양한 질병 발생 원리 및 산업 생명공학과 밀접한 연관이 있어 방대한 게놈 정보에서 효소들의 기능을 빠르고 정확하게 예측하는 기술은 응용기술 측면에서도 중요하다.
효소의 기능을 표기하는 시스템 중 대표적인 것이 EC 번호(enzyme commission number)이다. EC 번호는 ‘EC 3.4.11.4’처럼 효소가 매개하는 생화학반응들의 종류에 따라 총 4개의 숫자로 구성돼 있다.
중요한 것은 특정 효소에 주어진 EC 번호를 통해서 해당 효소가 어떠한 종류의 생화학반응을 매개하는지 알 수 있다는 것이다. 따라서 게놈으로부터 얻을 수 있는 효소 단백질 서열의 EC 번호를 빠르고 정확하게 예측할 수 있는 기술은 효소 및 대사 관련 문제를 해결하는 데 중요한 역할을 한다.
작년까지 여러 해에 걸쳐 EC 번호를 예측해주는 컴퓨터 방법론들이 최소 10개 이상 개발됐다. 그러나 이들 모두 예측 속도, 예측 정확성 및 예측 가능 범위 측면에서 발전 필요성이 있었다. 특히 현대 생명과학 및 생명공학에서 이뤄지는 연구의 속도와 규모를 고려했을 때 이러한 방법론의 성능은 충분하지 않았다.
공동연구팀은 1,388,606개의 단백질 서열과 이들에게 신뢰성 있게 부여된 EC 번호를 담고 있는 바이오 빅데이터에 딥러닝 기술을 적용해 EC 번호를 빠르고 정확하게 예측할 수 있는 DeepEC를 개발했다.
DeepEC는 주어진 단백질 서열의 EC 번호를 예측하기 위해서 3개의 합성곱 신경망(Convolutional neural network)을 주요 예측기술로 사용하며, 합성곱 신경망으로 EC 번호를 예측하지 못했을 경우 서열정렬(sequence alignment)을 통해서 EC 번호를 예측한다.
연구팀은 더 나아가 단백질 서열의 도메인(domain)과 기질 결합 부위 잔기(binding site residue)에 변이를 인위적으로 주었을 때, DeepEC가 가장 민감하게 해당 변이의 영향을 감지하는 것을 확인했다.
김현욱 교수는 “DeepEC의 성능을 평가하기 위해서 이전에 발표된 5개의 대표적인 EC 번호 예측 방법론과 비교해보니 DeepEC가 가장 빠르고 정확하게 주어진 단백질의 EC 번호를 예측하는 것으로 나타났다”라며 “효소 기능 연구에 크게 이바지할 것으로 기대한다”라고 말했다.
이상엽 특훈교수는 “이번에 개발한 DeepEC를 통해서 지속해서 재생되는 게놈 및 메타 게놈에 존재하는 방대한 효소 단백질 서열의 기능을 보다 효율적이고 정확하게 알아내는 것이 가능해졌다”라고 말했다.
이번 연구는 과학기술정보통신부가 지원하는 기후변화대응기술개발사업의 바이오리파이너리를 위한 시스템대사공학 원천기술개발 과제 및 바이오·의료기술 개발 Korea Bio Grand Challenge 사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 인공지능 기반의 DeepEC를 이용한 효소 기능 EC 번호 예측
2019.07.03
조회수 19112
-
이상엽, 김현욱 교수, 약물 상호작용 예측기술 DeepDDI 개발
우리 대학 생명화학공학과 이상엽 특훈교수와 김현욱 교수 공동 연구팀이 약물-약물 및 약물-음식 간 상호작용을 정확하게 예측하기 위해 딥 러닝(deep learning)을 이용해 약물 상호작용 예측 방법론인 딥디디아이 (DeepDDI)를 개발했다.
김현욱 교수, 류재용 연구원이 공동 1저자로 참여한 이번 연구는 국제학술지 ‘미국 국립과학원 회보(PNAS)’ 4월 16일자 온라인판에 게재됐다.
기존의 약물 상호작용 예측 방법론은 약물-약물 간의 상호작용 가능성만을 예측할 뿐, 두 약물 간의 구체적인 약리작용에 대한 정보는 제공하지 못했다. 이러한 이유로 맞춤형 약물 처방, 식이요법 등 응용 연구에서 체계적인 근거를 제시하거나 가설을 세우는 데에 한계가 있었다.
연구팀은 딥 러닝(deep learning) 기술을 적용해 19만 2천 284개의 약물-약물 상호작용을 아우르는 86가지의 약물 상호작용을 92.4%의 정확도로 예측하는 시스템 딥디디아이 (DeepDDI)를 개발했다.
딥디디아이는 두 약물 A, B 간의 상호작용에 대한 예측 결과를 다음과 같이 사람이 읽을 수 있는 영문 문장으로 출력한다 : “The metabolism of Drug B can be decreased when combined with Drug A (약물 A를 약물 B와 함께 복용 시 약물 B의 약물 대사가 감소 될 수 있다)”
연구팀은 딥디디아이를 이용해 두 약물 복용 시 일어날 수 있는 유해반응의 원인, 보고된 인체 부작용을 최소화시킬 수 있는 대체 약물, 특정 약물의 약효를 떨어뜨릴 수 있는 음식 및 음식 성분, 지금껏 알려지지 않은 음식 성분의 활성 등을 예측했다.
이번 연구성과로 약물-약물 및 약물-음식 상호작용을 정확하게 예측할 수 있는 시스템을 활용하는 것이 가능해졌으며 이는 신약개발, 복합적 약의 처방, 투약시의 음식조절 등을 포함해 헬스케어, 정밀의료 산업 및 제약 산업에 중요한 역할을 할 것으로 기대된다.
이상엽 특훈교수는 “이번 연구결과는 4차 산업혁명 시대의 정밀의료를 선도할 수 있는 기반 기술을 개발한 것이다”며, “복합 투여되는 약물들의 부작용을 낮추고 환자 맞춤형 약물 처방과 식이요법 제안을 통한 효과적인 약물치료 전략을 수립할 수 있다. 특히 고령화 사회에서 건강한 삶을 유지하는데 필요한 약-음식 궁합에 대한 제안을 해 줄 수 있는 시스템으로 발전해 나갈 것이다”고 말했다.
이 연구성과는 과학기술정보통신부의 바이오리파이너리를 위한 시스템대사공학 연구사업, KAIST의 4차 산업혁명 인공지능 플래그십 이니셔티브 연구사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 딥디디아이 (DeepDDI)의 모식도 및 예측된다양한 약물-음식성분의 상호작용들의 시각화
2018.04.18
조회수 16226
-
유회준 교수, 무선으로 마취 심도 측정할 수 있는 기술 개발
〈 유 회 준 교수 〉
우리 대학 전기및전자공학과 유회준 교수 연구팀이 고려대학교 구로병원 최상식 교수, ㈜케이헬쓰웨어(대표 노태환)와의 공동 연구를 통해 무선으로 마취의 심도를 정확하게 파악할 수 있는 측정기를 개발했다.
하언수 박사과정 학생이 주도한 이번 연구는 9일 미국 샌프란시스코에서 열린 반도체 학술대회인 국제고체회로설계학회(ISSCC)에서 발표됐다.
마취의 심도가 적정하게 유지되는 것은 환자에게 매우 중요하다. 마취가 얕으면 수술 도중 깨어나 큰 고통을 겪기도 하고, 반대로 마취가 너무 깊게 되면 심장발작, 합병증, 사망에 이르기도 한다.
프로포폴도 호흡을 억압하기 때문에 마취 심도가 깊어지면 사망 사고를 유발하기도 한다. 이런 사고 방지를 위해 마취 심도를 정량적으로 측정하려는 시도가 국내외로 활발하게 진행 중이다.
이러한 노력으로 개발된 마취심도계측기로 인해 마취 사고 발생률은 크게 낮아졌다. 그러나 기존의 제품들은 모니터링 장치에 연결하기 위해 긴 전선이 사용돼 번거로움을 유발한다. 또한 마취 약물 종류에 따라 심도를 측정할 수 없다는 한계가 있다.
연구팀이 개발한 마취 심도 모니터링 측정기는 마취 중인 환자의 이마에 접착된 패치를 통해 뇌파 신호 및 혈중 헤모글로빈 농도를 추출한다. 이를 정확히 제어하는 반도체 칩이 패치에 집적돼 무선으로 뇌파와 근적외선 분광 신호를 동시에 측정할 수 있다.
측정된 다중 신호들은 디지털 신호로 바뀌어 전달된 후 딥 러닝(Deep Learning) 기술을 이용해 환자의 마취 심도를 정확히 판단한다.
수술 시간이 길어지면 전극의 젤이 마르게 돼 뇌파 측정신호가 나빠지지만 연구팀은 이런 상황에서도 정확한 신호를 측정할 수 있는 회로 기법을 도입했다.
또한 실제 수술실에서 사용할 수 있는 초소형 근적외선 분광 센서가 붙어 있어 성별, 나이, 인종에 상관없이 유효한 신호 측정이 가능하다. 나아가 다중 신호를 이용하기 때문에 수술 중 전기 잡음을 유발하는 전기 소작기나 삽관 사용 중에도 신호 왜곡 없이 마취심도의 측정이 가능하다.
연구팀의 측정기는 기존 기기로는 측정이 불가능했던 케타민 등의 약물도 마취 심도를 측정할 수 있어 의료 분야에서 응용 가능할 것으로 기대된다.
유 교수는 “그동안 마취 심도 센서는 비싼 가격의 특정 외국회사 제품이 독점하는 형태였다”며 “환자들의 부담을 줄이면서 안전한 마취를 제공할 수 있어 새 제품을 개발할 수 있는 좋은 기회가 될 것이다”고 말했다.
□ 그림 설명
그림1. 센서의 구성을 나타낸 모식도
그림2. 마취 심도의 측정 비교
2017.02.10
조회수 13571