-
박준성 연구원, 알츠하이머병의 새로운 원인 규명
〈 박준성 박사 〉
우리 대학 의과학대학원 박준성 박사(지도교수 : 이정호 교수), KISTI(한국과학기술정보연구원) 국가슈퍼컴퓨팅본부 유석종 박사 공동 연구팀이 노화 과정에서 발생하는 후천적 뇌 돌연변이가 알츠하이머병의 새 원인이 될 수 있다는 이론을 제시했다.
연구팀은 52명의 알츠하이머병 환자에게 얻은 사후 뇌 조직에서 전장 엑솜 유전체 서열(whole-exome sequencing) 데이터 분석을 통해 알츠하이머병에 존재하는 뇌 체성 유전변이를 찾아냈다. 또한, 뇌 체성 돌연변이가 알츠하이머병의 중요 원인으로 알려진 신경섬유다발 형성을 비정상적으로 증가시킴을 확인했다.
박준성 박사와 KISTI 이준학 박사가 공동 1 저자로 참여한 이번 연구는 국제 학술지 네이처 커뮤니케이션(Nature Communications) 7월 12일자 온라인판에 게재됐다. (논문명 : Brain somatic mutations observed in Alzheimer's disease associated with aging and dysregulation of tau phosphorylation)
노인성 치매의 가장 흔한 원인으로 알려진 알츠하이머병은 전 세계 GDP의 1%를 차지할 정도로 사회, 경제적 소모비용이 큰 질환이다. 하지만 여전히 알츠하이머병을 일으키는 분자 유전학적 원인은 명확하게 규명되지 않고 있다.
기존의 알츠하이머병 유전체 연구는 주로 환자의 말초조직인 혈액에서 전장유전체 연관분석(Genome-wide association study)을 하거나, 이미 가족력이 있는 환자에서 발견된 일부 유전자들(e.g., APP, PSEN1/2)에 대한 유전자 패널 분석 등이 주를 이루었다.
연구팀은 산발성 알츠하이머병 환자들에게 내후각피질에서 신경섬유다발이 공통으로 나타나는 현상에 주목해 알츠하이머병 환자의 뇌 조직에서 직접 엑솜 유전체 데이터를 생성해 알츠하이머병 뇌-특이적 체성 유전변이를 발굴했다.
연구팀은 알츠하이머병 환자와 정상인의 해마 형성체 부위를 레이저 현미 해부법을 통해 정밀하게 오려냈고, 저빈도의 체성 유전변이(Somatic mutation)를 정확하게 찾아내기 위해 대용량 고심도 엑솜 시퀀싱 데이터를 생성하고 저빈도 체성 유전변이 분석에 특화된 분석 파이프라인을 독자적으로 구축했다.
이러한 새 방법론을 통해 실제로 알츠하이머병 환자의 뇌에 체성 유전변이가 실제로 존재함을 체계적으로 규명함과 동시에 체성 유전변이의 누적속도 및 신경섬유다발 형성과의 관련성도 함께 밝혀냈다.
연구팀의 발견은 알츠하이머병의 발병에 체성 유전변이가 주요한 역할을 할 수 있음을 강력하게 시사하는 것으로, 알츠하이머병 유전체 연구에 대한 새로운 틀을 제시함과 동시에 향후 다른 신경퇴행성뇌질환의 연구에도 기여할 수 있을 것으로 기대된다.
연구팀은 이번 연구 결과를 바탕으로 교원 창업 기업(소바젠, 대표 김병태)을 통해 알츠하이머 질환의 진단과 치료제 개발에 나설 예정이다.
KISTI 유석종 박사는 연구팀이 구축한 저빈도 체성 유전변이 분석 파이프라인 및 빅데이터 분석을 위한 슈퍼컴퓨팅 기술을 통해 알츠하이머병의 새로운 발병 원리를 밝혀냈다라며 타 유전체 기반 연구에 활용할 수 있는 기반을 마련했다라고 말했다.
이번 연구는 서경배 과학재단, 보건복지부 및 한국과학기술정보연구원의 지원을 받아 수행됐고, 신속한 유전체 빅데이터 분석을 위해 KISTI의 슈퍼컴퓨터 5호기 누리온 시스템이 활용됐다.
□ 그림 설명
그림1. 본 연구에서 사용된 체성 유전변이 분석 파이프라인
그림2. 신경섬유성다발 형성에 관여하는 체성 유전변이
그림3. PIN1 유전자에 발생한 병원성 뇌 체성유전변이와 신경섬유다발 형성과의 관계 규명
2019.07.17
조회수 14567
-
조용훈, 최형순 교수, 반도체 내 양자 소용돌이 제어 기술 개발
우리 대학 물리학과 조용훈, 최형순 교수 공동 연구팀이 반도체 공진기 구조에서 ‘엑시톤-폴라리톤 응축’이라는 양자물질 상태를 형성 후 새 광학적인 방식으로 양자 소용돌이를 생성하고 제어하는 데 성공했다.
권민식 연구원과 오병용 박사가 공동 1저자로 참여한 이번 연구 결과는 미국 물리학회가 발행하는 물리학 권위지인‘피지컬 리뷰 레터스 (Physical Review Letters)’ 2월호에 게재됐다.
태풍이 일거나 싱크대에서 물이 빠질 때 유체가 소용돌이를 일으키며 회전하는 것은 우리에게 익숙한 현상이다.
이와 마찬가지로 초유체, 초전도체 같은 양자 유체도 소용돌이를 일으키며 회전할 수 있는데, 이는 파동 함수의 위상(phase)이 소용돌이를 중심으로 원주율의 특정 배수가 되는 조건에서만 가능하다. 이렇게 소용돌이가 불연속적으로 양자화되는 현상을 양자 소용돌이라고 한다.
양자 소용돌이는 양자 유체역학을 연구하는 데 가장 핵심적인 요소 중 하나이다. 초유체의 에너지 손실 없이 회전할 수 있는 특성과 소용돌이의 회전 방향을 쉽게 뒤집을 수 없는 위상학(topology)적 안정성이 결합돼 있어 양자 소용돌이를 쉽게 생성하고 제어할 수 있다면 미래형 정보 소자로도 활용할 수 있다.
이런 면에서 반도체 내부에 존재하는 양자 유체인 엑시톤-플라리톤(이하 폴라리톤)은 특히 유리하다. 반도체에 밴드갭(전도체의 가장 아랫부분의 에너지 준위와 가전자대의 가장 윗부분의 에너지 준위 간의 에너지 차이)보다 높은 에너지를 갖는 빛을 쬐면 전자-전공 쌍이 형성되고 서로 강하게 이끌리며 엑시톤을 형성한다.
이러한 반도체에 높은 반사율을 갖는 거울 구조의 공진기를 결합하면 빛(광자)과 물질(엑시톤)이 강하게 상호작용하며 빛, 물질의 성질을 동시에 갖는 제3의 양자 물질을 만들 수 있는데 이를 폴라리톤이라 한다.
폴라리톤이 일정 밀도 이상 모이면 마치 하나의 입자처럼 행동하는 폴라리톤 응축 상태를 띌 수 있는데 이 때 폴라리톤은 초유체의 특성도 갖게 된다. 다른 초유체와 달리 잘 정립된 반도체 공정 기술과 광학적 제어 기술이 결합돼 있고, 초유체 생성 온도가 상대적으로 높아 그 응용 가능성이 기대되는 물질이다.
연구팀은 광-펌핑(원자나 이온이 빛을 흡수해 낮은 에너지의 상태에서 높은 에너지의 상태로 변화하는 현상)을 위해 사용한 레이저의 궤도 각운동량을 제어해 반도체 물질 내에 양자 소용돌이의 방향과 개수를 손쉽게 조절할 방법을 개발했다.
연구팀은 공진 파장이 아닌 빛으로 기존 양자 소용돌이 생성을 위한 까다로운 실험조건을 극복했다. 이 결과는 고체 상태에서 광학적 방법을 이용한 미래형 정보 소자와 복잡한 양자 현상을 이해할 수 있는 양자 시뮬레이터로의 활용 가능성을 높였다는 측면에서 큰 의의가 있다.
비공진 레이저의 궤도 각운동량이 폴라리톤의 기저 상태에까지 영향을 끼친다는 것을 밝힌 이번 연구 결과는 반도체 공진기 시스템에서 전자-정공 쌍의 에너지 완화 과정을 이해하는 데에 있어서도 중요한 결과이다.
KIST 송진동 박사 연구팀과의 협력으로 진행된 이번 연구는 한국연구재단의 중견연구자 및 신진연구자 지원사업을 받아 수행됐다.
□ 그림 설명
그림1. 엑시톤-폴라리톤 초유체와 양자소용돌이 상태의 생성
그림2. 양자소용돌이 제어
2019.03.11
조회수 14190
-
이현주 교수, 국건 박사과정, 실크 피브로인 박막의 대면적 소자공정 개발
우리 대학 전기및전자공학부 이현주 교수 연구팀과 KIST 최낙원 박사팀이 생분해성 실크피브로인 박막의 대면적 소자 공정을 개발하고 이를 통해 실크피브로인이 미세 공정된 마이크로소자의 제작기술을 개발했다.
이번에 개발된 실크피브로인 박막의 대면적 소자 공정은 포토리소그래피로 제작하는 폴리머나 금속 등의 구조와 동시에 미세공정이 가능해 실크피브로인을 기판으로 하는 생분해성 전자소자나 실크피브로인 패턴을 통한 국소부위 약물전달을 구현하는 데에 중요한 기술이 될 것으로 기대된다.
국건 박사과정과 KIST 정소현 박사과정이 주도한 이번 연구는 국제학술지 ‘에이씨에스 에이엠아이(ACS AMI : ACS Applied Materials & Interfaces)’ 1월 16일자 표지논문에 게재됐다. (논문명 : Wafer-Scale Multilayer Fabrication for Silk Fibroin-Based Microelectronics)
실크피브로인 박막은 투명하고 유연하며 생체에서 분해되기 때문에 생분해성 소자와 약물전달의 기판으로 쓰여왔다. 연구팀은 지난 2년간의 연구로 현재까지 실크피브로인에 적용되지 못했던 미세공정을 적용할 수 있도록 새로운 공정기술을 개발했다.
기존의 미세공정은 실크피브로인과 같은 생고분자의 구조를 변형시키는 강한 식각액과 용매가 동반됐다. 연구팀은 실크피브로인에 영향을 주지 않는 물질을 추려내고 이를 이용해 실크피브로인이 공정 중에 훼손되지 않도록 개선된 미세공정기술을 확보했다.
개발한 공정은 알루미늄 금속 박막을 사용해 실크피브로인을 보호하기 때문에 기존 미세공정의 핵심 기술인 포토리소그래피(Photolithography)로 실크피브로인 박막을 다른 소자 위에 패터닝하거나 실크피브로인 박막 위에 다른 물질을 패터닝하는 것이 모두 가능하다.
연구진은 뇌세포(Primary Neuron)를 공정을 거친 실크피브로인의 미세패턴 위에 성공적으로 배양해 실크피브로인이 공정 전후로 높은 생체적합성을 지녀 생체 임플란트 소자에 적용될 수 있음을 확인했다.
연구진은 개발한 기술을 통해 실크피브로인 기판 위에 여러 층의 금속 박막과 실크피브로인 박막의 미세패턴을 구현해 저항 및 실크피브로인을 유전체로 하는 축전기로 이루어진 생분해성 미세전자회로를 실리콘웨이퍼에서 대면적으로 제작했다.
또한 연구진이 독립적으로 개발한 유연 폴리머 기반 뇌전극 위에 해당 기술을 이용해 실크피브로인 박막의 미세패턴을 전극의 가까이에 위치시켰고 색소분자를 실크피브로인 박막에 탑재해 미세패턴으로부터의 분자전달을 확인했다.
실크피브로인 박막이 미세패턴된 뇌전극을 이용하면 뇌세포의 행동을 촉진하거나 제한하는 분자 약물을 탑재해 뇌회로의 연구에 활용되는 등 다양한 활용이 가능할 것으로 기대된다.
이 교수는 “대면적 공정이 불가능하다고 여겨졌던 민감한 바이오물질도 실리콘처럼 대면적의 미세공정이 가능해졌다”며 “향후 바이오메디컬 소자 분야에 광범위하게 적용될 것으로 기대한다”고 말했다.
이번 연구는 과학기술정보통신부 한국연구재단의 선도연구센터 사업 지원을 받아 수행됐다.
□ 그림 설명
그림1. ACS AMI 표지
그림2. 연구진이 개발한 실크피브로인 박막의 대면적 미세소자공정
그림3. 공정 이후의 실크피브로인 패턴에 배양된 Primary Neuron의 모습
2019.02.21
조회수 15873
-
김용훈 교수, 단일 분자 소자의 전극 계면 특성 규명
〈 김 용 훈 교수와 김후성 박사과정, 김한슬 박사 〉
우리 대학 EEWS 대학원 김용훈 교수 연구팀이 10년 이상 나노 분야 주요 난제로 남아있던 단일분자 전자소자의 금속전극-분자 계면 원자구조와 소자특성 간 상관관계를 규명했다.
이번 연구 성과는 국제 과학 학술지인 ‘미국 화학회지(Journal of the American Chemical Society)’ 6월 21일자에 게재됐다.
단일분자 전자소자는 OLED 등을 통해 알려진 유기소자로서 2003년 미국에서 처음 구현됐다. 분자전자소자(molecular electronics)는 차세대 반도체 소자의 후보군으로 관련 연구들이 활발히 수행되고 있다.
분자를 전자소자로 활용하기 위해선 분자-전극 형태의 원자구조가 구체적으로 어떻게 형성되는지 이해하는 것이 중요하다. 분자 전자소자는 크게 분자, 전극, 둘을 잇는 연결자로 구성된다.
2006년 미국 애리조나 대학의 타오(Nongjian Tao) 교수를 포함한 연구팀은 한 종류의 분자에서 여러 개의 전류 값이 나올 수 있음을 규명했으나 그 전류 값의 크기와 개수, 원인 등은 명확히 밝혀지지 않았다.
특히 그 원인에 대해서는 관련된 분자와 금속전극 간 계면의 원자구조가 여러 가지 형태를 띠고 있기 때문이라는 추측만 있었고 명확히 밝혀지지는 않았다.
김 교수 연구팀은 주사탐침현미경 등을 이용해 단분자 소자가 구현되는 과정을 슈퍼컴퓨터를 활용해 재현했다.
접합 구조의 여러 가지 형태를 찾는 것은 결국 황(S) 원자 주변의 금(Au) 원자 몇 개가 어떤 형태로 배열되는지 확인하는 것인데 이것을 배위수(coordination number)라고 부른다.
〈 김 용 훈 교수와 연구팀 〉
연구팀은 분자와 금속 전극 간 결합의 원자구조 배위수에 따라 금속전극 사이에서 전류 값이 변화하는 것을 확인했다. 또한 분자가 당겨질 때 단순히 금속과 분자 사이 결합이 끊어지는 게 아니라 금속전극의 원자구조가 쉽게 변형돼 결국은 금속과 금속 사이의 결합의 끊어지는 것을 규명했다.
일본 오사카 대학의 카와이(T, Kawai) 교수는 위와 같은 김 교수의 이론을 뒷받침하기 위해 소자 인장에 따른 전류의 증가를 포함하는 실험을 수행했다.
한, 일 공동연구팀은 슈퍼컴퓨터를 이용한 제1원리 계산과 첨단 나노소자 제조 및 측정을 통해 유기 소자의 계면 특성을 원자 수준에서 성공적으로 규명했다. 연구팀은 나노과학-나노기술 분야에서 10년 이상 풀리지 않던 난제를 해결했다.
이번 성과는 향후 OLED, 바이오센서, 유기태양전지 등 다양한 유기소자 분야에 활용 가능할 것으로 기대된다.
김 교수는 “이번 연구는 나노 분야에서 이론 연구가 실험을 선도하는 역할을 성공적으로 수행함을 보여주는 예가 될 것이다”고 말했다.
이번 연구는 미래창조과학부의 중견연구자지원사업, 글로벌프론티어사업, 나노소재기술사업과 KISTI 슈퍼컴퓨터의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 분자 전기전도도 실험 측정방법의 개념도
그림2. 대표적인 세 가지 분자-금속전극 접합 원자구조와 이에 상응하는 외력에 따른 전도도 변화 패턴
2017.07.04
조회수 17823
-
강정구, 김용훈 교수, 초고속 충전 가능한 리튬이온 배터리 소재 개발
우리 대학 EEWS 대학원 강정구, 김용훈 교수 공동 연구팀이 빠른 속도의 충, 방전이 가능한 동시에 1만 번 이상의 작동에도 용량 손실이 없는 리튬 이온 배터리 음극 소재를 개발했다.
이번 연구는 3차원 그물 형상의 그래핀과 6나노미터 크기의 이산화티타늄 나노입자로 구성된 복합 구조체를 간편한 공정으로 제조하는 기술이다.
이를 통해 탄소계열 물질 위주의 기존 전극이 갖고 있던 고출력 성능이 제한되는 문제를 개선해 고성능의 배터리 전극을 구현했다. 향후 전기자동차, 휴대용 기기 등 높은 출력과 긴 수명을 요구하는 분야에 응용 가능할 것으로 기대된다.
이규헌 박사과정, 이정우, 최지일 박사가 주도한 이번 연구 결과는 국제 과학 학술지 ‘어드밴스드 펑셔널 머티리얼즈(Advanced Functional Materials)’ 지난 5월 18일자 온라인 판에 게재됐다.
현재 음극 배터리 물질로는 그래핀이 가장 많이 사용된다. 이 그래핀을 쉽게 만드는 방법은 용액 상에서 흑연을 분리시키는 방법인데 이 과정에서 결함 및 표면의 불순물이 발생해 전기 전도성을 높이는데 방해가 된다.
연구팀은 문제 해결을 위해 화학기상증착법을 이용해 기존의 평평한 형태가 아닌 결함이 적고 물성이 우수한 3차원 그물 형상의 그래핀을 제조했다. 그 위에 메조 기공이 형성된 이산화티타늄 나노입자 박막을 입혀 복합 구조체를 구현했다.
이 기술로 일반적인 전극 구성물질인 유기 접착제와 전도성 재료를 사용하지 않음으로써 전극 제조 공정을 간소화했고 전기 전도성을 높였다.
또한 3차원 그물 형상의 그래핀과 화학적으로 안정된 이산화티타늄 나노입자가 형성하는 다양한 크기의 기공들이 전해질의 접근성을 높이는 역할을 한다. 이를 통해 이온들의 접근을 촉진시키고 원활한 전자의 이동이 가능하게 한다.
이 기술은 크기가 작은 나노 입자를 사용하기 때문에 표면부터 중심까지의 거리가 짧다. 따라서 짧은 시간 내에 결정 전체에 리튬을 삽입할 수 있어 빠른 충, 방전 속도에서도 효율적인 에너지 저장이 가능하다.
연구팀은 1분 이내에 130mAh/g의 용량을 완전히 충, 방전하는데 성공했고, 이 과정에서 용량 손실 없이 1만 번 이상 작동함을 확인했다.
연구팀은 “재료의 물성을 극대화시킬 수 있는 구조적 설계를 통해 기존 이차전지의 문제점을 해결하고 성능을 효과적으로 높이는 방법을 제시했다”고 밝혔다.
강 교수는 “재료 물리학 측면에서 가치가 높은 연구 결과이다”며 “구조적 측면에서도 향후 여러 에너지 저장장치 등의 분야에 활용 가능성이 클 것이다”고 말했다.
이 연구는 미래창조과학부의 글로벌프론티어사업, 한국연구재단의 도약사업과 KISTI 슈퍼컴퓨팅의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 3차원 그물 형상의 그래핀위에 증착된 메조기공을 형성하는 이산화 티타늄 박막 복합 구조체의 모식도
그림2. 리튬이 삽입된 구조분석
그림3. 바인더 없이 제조된 고출력고수명 특성
2016.06.20
조회수 13557
-
강정구, 김용훈 교수, 태양광 이용 이산화탄소로 메탄올 변환 성공
우리 대학 EEWS 대학원 강정구 교수, 김용훈 교수 공동 연구팀이 태양광을 이용해 이산화탄소를 메탄올로 변환시킬 수 있는 광촉매를 개발했다.
이 기술은 값싼 물질에 간단한 공정으로 이산화탄소를 고부가가치의 화학물질로 변환시킬 수 있다. 향후 탄소배출규제 시행에 따른 이산화탄소 처리 및 저감 문제를 해결할 수 있는 대안 기술이 될 것으로 기대된다.
이동기, 최지일 박사가 참여한 이번 연구는 에너지 분야 학술지 ‘어드밴스드 에너지 머터리얼스(Advanced Energy Materials)’ 5월 9일자 온라인 판에 게재됐다.
매년 우리나라에서는 6억 톤의 이산화탄소가 발생하고 세계적으로는 250억 톤에 이른다. 이산화탄소를 메탄올로 변환할 수 있다면 1톤 당 약 40만원에 판매가 가능해지고, 운반의 문제를 해결할 수 있다.
경제 및 환경문제에서도 효과가 클 것으로 예상되기 때문에 과학계 및 관련 산업계는 이산화탄소를 메탄올로 변환하기 위한 노력을 하고 있다.
식물의 광합성 효과를 모방한 인공광합성 기술은 태양에너지만으로 메탄올과 같은 고에너지 밀도의 화학물질을 제조할 수 있다. 이 반응을 이끌어내기 위해서는 백금, 금, 루테늄과 같은 금속 광물이 필요하다.
하지만 낮은 에너지 변환 효율 문제가 개선되지 않아 광촉매 물질의 보호막 정도로만 사용되고 있다. 에너지 효율이 낮은 이유는 태양 에너지의 극히 일부만 활용 가능해 전자 전달 능력이 낮기 때문이다.
연구팀은 문제 해결을 위해 콜드 플라즈마(cold Plasma) 반응을 기반으로 한 기술을 이용했다. 기존 산화물 공정은 한 물질에 질소와 수소 처리를 동시에 구현하는 것이 불가능했지만, 기체 콜드 플라즈마 기술을 이용하면 상온에서도 고 반응성의 수소 및 질소 라디칼을 형성할 수 있다. 이를 통해 순간적 반응만으로 금속 산화물 내부에 질소 및 수소를 주입하는 데 성공했다.
이 기술로 자외선(UV)영역에 국한되는 이산화티타늄의 빛 감지 범위를 가시광선 영역까지 확대시켰고, 전자 전달 능력을 1만 배 증가시킴으로써 귀금속 광물 없이도 이산화탄소를 메탄올로 변환시킬 수 있었다.
또한 인공광합성 반응이 잘 일어나도록 도와주는 별도 화학첨가제나 전기적 에너지 없이도 반응을 가시광 범위까지 이끌어냈다.
이산화티타늄 광촉매는 해당 물질이 갖는 이론한계치의 74%에 달하는 광전류를 발생시켰고, 이산화탄소를 이용한 메탄올 발생량이 25배 이상 향상됐다.
연구팀은 슈퍼컴퓨터를 이용한 원자 수준 모델링을 통해 수많은 변수를 측정함으로써 촉매 반응 향상의 원리를 이론적으로 규명했다.
강 교수는“이 기술을 기반으로 향후 산업체에서 대량 생산할 수 있도록 기술을 발전시키는 것이 목표다”고 말했다.
이번 연구는 미래창조과학부의 글로벌프론티어사업, 인공광합성 사업과 KISTI의 슈퍼컴퓨터 사이번 연구는 미래창조과학부의 글로벌프론티어사업, 인공광합성 사업과 KISTI의 슈퍼컴퓨터 사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 태양광을 이용한 이산화탄소의 메탄올로의 변환 과정
그림2. 가시광에서 연료변환이 가능하도록 만든 코어-쉘 촉매
2016.05.26
조회수 15024
-
뇌신경전달 단백질의 구조와 작동원리 규명
- 생체막 융합 단백질의 구조변화 실시간 측정 -- 퇴행성 뇌질환 연구에 실마리 제공 -
우리 학교 물리학과 윤태영 교수 연구팀이 자기력 나노집게를 이용해 뇌신경세포사이의 신경물질전달에 가장 중추적인 역할을 하는 스네어(SNARE) 단백질의 숨겨진 구조와 작동원리를 단분자 수준에서 밝히는데 성공했다.
스네어 단백질의 세포막 융합기능은 알츠하이머병 같은 퇴행성 뇌질환이나 신경질환과 밀접하게 연관되어 있어 이 같은 질병의 예방과 치료법 개발에 새로운 실마리가 될 것으로 기대된다.
뇌의 신경전달은 신경세포 말단 시냅스에서 신경전달물질을 저장하는 포낭 주머니가 세포막에 융합되면서 일어난다. 이 과정에서 스네어 단백질은 신경전달물질 분출에 가장 핵심적인 역할을 하는 세포막 융합 단백질이다.
지금까지 학계에서는 스네어 단백질이 신경물질을 주고받는 과정을 조절할 것이라고 추정해 왔지만 그 구조와 기능을 명확하게 밝혀내지 못했다.
연구팀은 자기력 나노집게를 이용해 피코 뉴턴(pN, 1조분의 1뉴턴) 수준의 힘으로 단백질 하나를 정교하게 당겼다 놓으면서 나노 미터수준의 물리적 변화를 실시간으로 측정하는 실험기법을 개발했다.
이를 통해 스네어 단백질에 숨겨진 중간구조가 존재하며, 이 구조에 대한 정밀한 측정결과 중간상태가 어떤 구조를 갖는지 정확하게 예측했다.
이와 함께 생체막 사이에 있는 스네어 단백질의 중간구조가 생체막이 서로 밀어내는 힘을 견디고 유지하면서 신경물질을 주고받는 과정을 조절하는 역할을 할 수 있음을 밝혔다.
윤태영 교수는 “생체단백질이 갖는 숨겨진 구조와 작동원리를 힘을 정교하게 조절하는 실험만으로 직접 관찰하는 것과 동일한 획기적 연구 결과를 일궈냈다”며 “이 기술은 생물학의 연구대상을 물리학적인 방법 연구하는데 매우 중요한 기술로 향후 학제적 융합연구에 매우 중요한 기반이 될 것”이라고 말했다.
한편, 이번 연구는 KAIST 물리학과 윤태영 교수와 김기범 연구교수의 주도 아래 KIST 의공학연구소 신연균 교수와 공동연구로 진행됐고, KAIST 물리학과 조용훈 교수, 민두영 박사과정, KIAS 계산과학부 현창봉 교수가 참여했으며, 이번 세계적 과학학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 4월 16일자에 게재됐다.
(a) 뇌의 신경전달은 신경세포 말단 시냅스에서 신경전달물질을 저장하는 포낭 주머니가 세포막에 융합되면서 일어난다. 이 과정에서 스네어 단백질은 신경전달물질 분출에 핵심적인 역할을 한다.
(b) 자기력 나노집게를 이용하여 단분자 수준에서 단백질 구조 변화를 실시간으로 측정방법의 개략도. 피코 뉴톤(pN) 수준의 힘으로 단백질 하나를 정교하게 당겼다 놓으면서 나노 미터수준의 물리적 변화를 실시간으로 측정하여 생체막 융합 단백질의 숨겨진 중간구조와 작동원리를 단분자 수준에서 관찰한다.
2013.05.09
조회수 15871