-
‘당신 우울한가요?’ 스마트폰으로 진단하다
요즘 현대인들에게 많이 찾아오는 우울증을 진단하기 위한 스마트폰으로 진단하는 연구가 개발되어 화제다.
우리 대학 전기및전자공학부 이성주 교수 연구팀이 사용자의 언어 사용 패턴을 개인정보 유출 없이 스마트폰에서 자동으로 분석해 사용자의 정신건강 상태를 모니터링하는 인공지능 기술을 개발했다고 21일 밝혔다. 사용자가 스마트폰을 소지하고 일상적으로 사용하기만 해도 스마트폰이 사용자의 정신건강 상태를 분석 및 진단할 수 있는 것이다.
연구팀은 임상적으로 이뤄지는 정신질환 진단이 환자와의 상담을 통한 언어 사용 분석에서 이루어진다는 점에 착안해 연구를 진행했다. 이번 기술에서는 (1) 사용자가 직접 작성한 문자 메시지 등의 키보드 입력 내용과, (2) 스마트폰 위 마이크에서 실시간으로 수집되는 사용자의 음성 데이터를 기반으로 정신건강 진단을 수행한다.
이러한 언어 데이터는 사용자의 민감한 정보를 담고 있을 수 있어 기존에는 활용이 어려웠다. 이러한 문제의 해결을 위해 이번 기술에는 연합학습 인공지능 기술이 적용됐는데, 이는 사용자 기기 외부로의 데이터 유출 없이 인공지능 모델을 학습해 사생활 침해의 우려가 없다는 것이 특징이다.
인공지능 모델은 일상 대화 내용과 화자의 정신건강을 바탕으로 한 데이터셋을 기반으로 학습되었다. 모델은 스마트폰에서 입력으로 주어지는 대화를 실시간으로 분석하여 학습된 내용을 바탕으로 사용자의 정신건강 척도를 예측한다.
더 나아가, 연구팀은 스마트폰 위 대량으로 주어지는 사용자 언어 데이터로부터 효과적인 정신건강 진단을 수행하는 방법론을 개발했다. 연구팀은 사용자들이 언어를 사용하는 패턴이 실생활 속 다양한 상황에 따라 다르다는 것에 착안해, 스마트폰 위에서 주어지는 현재 상황에 대한 단서를 기반으로, 인공지능 모델이 상대적으로 중요한 언어 데이터에 집중하도록 설계했다. 예를 들어, 업무 시간보다는 저녁 시간에 가족 또는 친구들과 나누는 대화에 정신건강을 모니터링 할 수 있는 단서가 많다고 인공지능 모델이 판단해 중점을 두고 분석하는 식이다.
이번 논문은 전산학부 신재민 박사과정, 전기및전자공학부 윤형준 박사과정, 이승주 석사과정, 이성주 교수와 박성준 SoftlyAI 대표(KAIST 졸업생), 중국 칭화대학교 윤신 리우(Yunxin Liu) 교수, 그리고 미국 에모리(Emory) 대학교 최진호 교수의 공동연구로 이뤄졌다.
이번 논문은 올해 12월 6일부터 10일까지 싱가폴에서 열린 자연어 처리 분야 최고 권위 학회인 EMNLP(Conference on Empirical Methods in Natural Language Processing)에서 발표됐다.
※ 논문명(FedTherapist: Mental Health Monitoring with User-Generated Linguistic Expressions on Smartphones via Federated Learning)
이성주 교수는 "이번 연구는 모바일 센싱, 자연어 처리, 인공지능, 심리학 전문가들의 협력으로 이루어져서 의미가 깊으며, 정신질환으로 어려워하는 사람들이 많은데, 개인정보 유출이나 사생활 침범의 걱정 없이 스마트폰 사용만으로 정신건강 상태를 조기진단 할 수 있게 되었다ˮ라며, "이번 연구가 서비스화되어 사회에 도움이 되면 좋겠다ˮ라고 소감을 밝혔다.
이 연구는 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행됐다. (No. 2022-0-00495, 휴대폰 단말에서의 보이스피싱 탐지 예방 기술 개발, No. 2022-0-00064, 감정노동자의 정신건강 위험 예측 및 관리를 위한 휴먼 디지털 트윈 기술 개발)
2023.12.21
조회수 5236
-
전산학부 박종철 교수 연구팀, ACL2023 Outstanding Paper Award 수상
우리 대학 전산학부 박종철 교수 연구팀이 2023년 7월 9일~13일 토론토에서 열린 ACL 2023 에서 Outstanding Paper Award를 수상했다.
연구팀의 획기적인 논문인 “Question-Answering in a Low-resourced Language: Benchmark Dataset and Models for Tigrinya“는 저자원 언어이며 동아프리카의 에리트레아와 에티오피아에서 사용되는 티그리냐를 다룬다.
연구팀은 티그리냐 질문-답변 데이터셋을 세계 최초로 구축하고 티그리냐로 작성된 문서를 읽고 답할 수 있는 언어모델을 만들었다.
이 상은 학회에 제출한 연구 중 상위 1.5~2.5%에게만 주어지는 의미 있는 상이다.
이 연구팀은 티그리냐와 다른 동아프리카 언어들에 대한 사전학습 언어 모델과 언어 식별 방법에 대한 연구를 LREC2022와 EMNLP2021 등 저명한 NLP 학회에 소개한 경험이 있다.
본 연구의 첫 번째 저자인 Fitsum은 전산학부 NLP*CL 연구실의 박사과정 학생이다. 그의 연구는 현재 티그리냐 언어에 초점을 맞추고 있지만, 특정 언어를 넘어 연구의 지평을 확장하기 위해 노력하고 있다.
이 연구팀이 개발한 방법론, 데이터수집 방법, 어노테이션 툴, 그리고 모델은 언어 자원이 부족한 언어들에 대한 유용한 참고자료로 활용될 것으로 기대된다. 특히 이들의 연구는 최근 심각해 지고 있는 디지털 격차를 해소하기 위해 언어적으로 다양하고, 역사적으로 혜택을 받지 못했던 커뮤니티에 대등한 연구가 가능한 디지털 표현 방법을 제공하였다는 의미가 있다.
본 연구는 NLP*CL 연구실에서 ACL 2023을 통해 발표한 다섯 편의 Long Paper (세 편은 메인 학술대회, 두 편은 Findings) 중 하나이다.
2023.07.18
조회수 2380