-
기후 위기 대응, 농경지 12.8% 줄여 식량 위기 경고
산업화 이전 대비 지구 평균 온도 상승을 1.5도 이내로 제한하겠다는 파리협정의 1.5도 목표를 달성하기 위해서는 전 세계적인 협력과 강력한 기후변화 감축 목표 설정이 필수적이다. 하지만 국제 공동연구진이 1.5도 목표 달성을 위한 정책이 실제로는 전 세계 농경지 면적을 약 12.8% 줄여 식량 위기안보에 부정적인 영향을 줄 수 있다는 연구 결과를 발표했다.
우리 대학 녹색성장지속가능대학원 전해원 교수와 베이징 사범대 페이차오 가오 교수가 이끄는 공동 연구팀이 파리협정의 1.5도 목표 달성이 전 세계 농경지와 식량 안보에 미치는 영향을 분석한 연구결과를 2일 밝혔다.
연구팀은 1.5도 목표 달성을 위한 기후 정책이 전 세계 농경지에 미치는 영향을 상세히 분석했다. 5제곱킬로미터(㎢) 단위로 전 세계 토지 변화를 예측했고 정밀하게 분석하였다.
기존 연구들에서는 1.5도 시나리오에서 농경지가 오히려 늘어날 것으로 예측했으나, 연구팀은 기후 정책이 분야 간에 미치는 영향과 토지 이용 강도를 함께 고려하면 전 세계 농경지가 12.8%가량 줄어들 것으로 분석했다. 특히 남미는 24%나 감소해 가장 큰 타격을 받을 것으로 예상됐고, 전체 농경지 감소의 81%가 개발도상국에 몰릴 것으로 분석됐다.
더 큰 문제는 주요 식량 수출국의 수출 능력이 12.6% 줄어들어 식량 수입에 의존하는 국가들의 식량 안보에 영향을 미친다는 것이다. 식량 생산 대국인 미국, 브라질, 아르헨티나의 농산물 수출 능력이 각각 10%, 25%, 4% 감소할 것으로 예측됐다.
전해원 교수는 “전 세계적 탈탄소화 전략을 세울 때는 여러 분야의 지속가능성을 두루 고려해야 한다”며 “온실가스 감축에만 집중한 나머지 지구생태계의 지속가능성이라는 더 큰 맥락을 보지 못하면 의도치 않은 부작용이 생길 수 있다”고 설명했다.
이어 “특히 개발도상국은 농경지가 줄어들고 수입 의존도는 높아지는 이중고를 겪을 수 있어, 탄소중립을 이루면서도 식량 안보를 지키기 위한 국제 협력이 꼭 필요하다”고 강조했다.
이 연구 결과는 우리 대학 전해원 교수와 베이징 사범대 송창칭 교수가 공동 교신저자로 국제 학술지 ‘네이처 클라이밋 체인지(Nature Climate Change)'에 3월 24일자로 게재되었고 4월호 표지 논문으로 선정되었다. (논문명: Meeting the global 1.5-degree goal could result in large-scale heterogeneous loss in croplandsHeterogeneous pressure on croplands from land-based strategies to meet the 1.5 °C target, DOI. https://doi.org/10.1038/s41558-025-02294-1)
이번 연구는 카이스트와 중국 베이징사범대학교, 북경대학교, 미국 메릴랜드대학교 연구진들과 공동으로 수행됐다.
참고로, 본 연구팀은 2021년 사이언스(Science)지에 발표된 첫 연구를 통해 현재 감축안으로는 지구 온도 상승을 1.5도 아래로 유지할 확률이 11%에 그친다는 사실을 밝혔고 각국의 온실가스 감축목표를 이행하는 경우에도 2도 이상 기온이 오를 확률을 예측했다.
※ Ou et al. 2021. Can updated climate pledges limit warming well below 2 degrees C? Science, 374(6568)
이어 2022년 네이처 클라이밋 체인지(Nature Climate Change)에 발표된 두 번째 연구에서 연구팀은 1.5도 목표 달성을 위한 구체적인 방안으로 제시한 세 가지 핵심 전략은 첫째, 2030년까지 각국의 단기 감축목표를 상향하고, 둘째, 2030년 이후 탈탄소화 속도를 기존 연평균 2%에서 최대 8%까지 높이며, 셋째, 각국의 탄소중립 달성 시점을 최대 10년까지 앞당겨야 한다는 것이다.
특히 2030년 이후로 목표 상향을 미루면 1.5도 달성이 가능하더라도 수십 년간 지구 온도가 크게 오르는‘오버슈트’현상이 발생할 수 있다고 경고했다.
※ Iyer et al. 2022. Ratcheting of climate pledges needed to limit peak global warming. Nature Climate Change, 12(12).
2025.04.02
조회수 230
-
고성능 촉매 개발, 반도체 핫전자 기술을 통해 해결하다
우리 대학 화학과 박정영 석좌교수, 신소재공학과 정연식 교수, 그리고 KIST 김동훈 박사 공동 연구팀이 반도체 기술을 활용하여 촉매 성능에 특정 변인이 미치는 영향을 정량적으로 분석할 수 있는 새로운 플랫폼을 성공적으로 구현했다. 이를 통해 대표적인 다경로 화학 반응인 메탄올 산화 반응에서 메틸 포르메이트 선택성을 크게 향상시켰으며, 이번 연구는 차세대 고성능 이종 촉매 개발을 앞당기는 데 기여할 것으로 기대된다고 1일 밝혔다.
다경로 화학 반응에서는 반응성과 선택성의 상충 관계로 인해 특정 생성물의 선택성을 높이는 것이 어려운 문제로 남아 있다. 특히, 메탄올 산화 반응에서는 이산화탄소와 더불어 고부가 가치 생성물인 메틸 포르메이트가 생성되므로, 메틸 포르메이트의 선택성을 극대화하는 것이 중요하다.
그러나 기존 불규칙적인 구조의 이종 촉매에서는 금속-산화물 계면 밀도를 비롯한 여러 변인이 동시에 촉매 성능에 영향을 미치기 때문에 특정 변수가 개별적으로 미치는 영향을 분석하는 것이 어렵다. 이에 KAIST-KIST 공동 연구팀은 균일하게 정렬된 금속산화물 나노 패턴을 구현할 수 있는 반도체 기술을 활용하여 이종 촉매 성능에 영향을 미칠 수 있는 다른 변인을 통제하고, 오로지 금속산화물의 물성만이 촉매 성능에 미치는 영향을 정량적으로 분석하였다. 구체적으로, 산소 공극 (Oxygen Vacancy)의 양을 조절하기 위해 다양한 환경에서 열처리한 세륨 산화물 (CeOx) 나노 패턴을 제작하고, 이를 백금(Pt) 박막 촉매 위에 전사하여 금속산화물의 산소 공극이 메틸 포르메이트 선택성에 미치는 영향을 분석했다.
연구 결과, 산소 공극이 가장 풍부하게 생성된 진공 환경에서 열처리한 CeOx-Pt 이종 촉매의 경우, 열처리를 하지 않은 CeO2-Pt 이종 촉매 대비 약 50% 향상된 메틸 포르메이트 선택성을 보였으며, 이는 반응 중 발생하는 핫 전자의 검출을 통해 실시간으로도 확인되었다. 또한, 연구팀은 양자역학 기반의 DFT 시뮬레이션을 통해 금속산화물 내부의 산소 공극이 이종 촉매의 성능에 미치는 영향을 이론적으로 규명하였다. 시뮬레이션 결과, 산소 공극은 금속/산화물 계면에 많은 양의 전자를 축적시키면서 반응 중간체 간 결합을 촉진하였고, 이로 인해 메틸 포르메이트 선택성이 향상됨을 확인하였다.
이에 대해 박정영 교수는 “이번에 개발한 반도체기반 플랫폼을 통해 핫전하와 촉매 선택성의 정량적 분석이 가능해짐에 따라 핫전하 기반의 광촉매 센서의 상용화 개발 및 핫전하 기반 광열촉매 시스템의 상용화 개발로 이어질 수 있다.”고 언급했다. 신소재공학과 정연식 교수는 “기존의 무작위 구조를 가진 촉매에서는 특정 변수의 영향을 정량적으로 분석하는 것이 어려웠으나, 반도체 기술을 활용한 이번 연구를 통해 보다 효율적인 이종 촉매 설계와 선택성 조절 전략을 제시할 수 있을 것으로 기대된다”고 밝혔다.
신소재공학과 이규락 박사, 화학과 송경재 박사, KIST 홍두선 박사가 공동 제 1 저자로 참여한 이번 연구는 국제학술지 ‘네이처 커뮤니케이션스 (Nature Communications)’에 3월 25일 자로 온라인 게재됐다. (논문 제목: Unraveling Oxygen Vacancy-Driven Catalytic Selectivity and Hot Electron Generation on Heterointerfaces using Nanostructured Platform)
이번 연구는 산업통상자원부 에너지혁신인재양성사업, 과학기술정보통신부 중견연구자지원사업, 그리고 과학기술정보통신부 국가전략기술소재개발사업 등의 지원을 받아 수행됐다.
2025.04.01
조회수 313
-
세계 최초 초저잡음 중적외선 광원을 초소형 칩 상에서 구현
브릴루앙 레이저(Brillouin laser)는 물질 내 빛과 음파의 상호작용을 통해 매우 안정적이고 잡음이 적은 레이저 빛을 만들어 내는 광원이다. 그동안 이 기술은 가시광선이나 근적외선 영역에서만 구현되었으며, 중적외선 영역에서는 기술 부족으로 구현이 어려웠다. 국제 공동 연구진이 초소형 저잡음 브릴루앙 레이저를 해당 파장 영역에서 세계 최초 개발하여 더욱 정밀한 분자물리·화학 연구 및 다양한 차세대 응용 기술의 기반을 마련하였다.
우리 대학 물리학과 이한석 교수 연구팀이 호주국립대 최덕용 교수, 예일대 피터 라키치 교수, 한국원자력연구원 고광훈 박사, 닝보대학교 롱핑 왕 교수 연구팀과 국제공동연구를 통해 중적외선 파장 대역에서 주파수 흔들림이 매우 작은 브릴루앙 레이저를 초소형 반도체 칩 위에 최초로 구현하는 데 성공했다고 31일 밝혔다.
칩 상에서 저잡음 브릴루앙 레이저를 구현하는 기술은 이미 잘 알려져 있었으나, 중적외선 파장 대역에서는 레이저 구현에 필수적인 낮은 광 손실의 고성능 광소자가 없다는 점이 문제였다.
일반 산화규소 유리와 같이 가시광선과 근적외선에서 투명해 광소자 제작에 사용되었던 많은 물질이 중적외선 파장에서는 빛을 강하게 흡수해 이용 불가하고, 중적외선의 특징인 빛과 분자 사이 강한 상호작용으로 인해 여러 광 손실이 추가 발생해 고성능 광소자를 제작하기 어려웠다.
연구팀은 중적외선에서 높은 투과도를 보이지만 가공이 까다로운 칼코겐화합물 유리를 독창적인 기법으로 성형해 초고품질 광공진기를 제작하는데 성공했다. 또한, 중적외선 광소자에 고유한 표면 흡착 분자에 의한 광손실을 정량분석하고 억제하는 기술을 최초로 구현해 중적외선 파장 광 손실이 기존 세계기록 대비 30분의 1에 불과한 고성능 광소자 칩을 개발할 수 있었다.
브릴루앙 레이저의 발진을 위해 필요한 최소 동작 전력은 광 손실의 제곱에 비례해 줄어들기에, 해당 광소자를 이용해 기존보다 최소 동작 전력을 1,000배 이상 낮춰 최초로 중적외선 파장에서 해당 현상을 구현할 수 있었다.
중적외선 대역에 상용화된 광파라메트릭 레이저(optical parametric oscillator laser)나 양자폭포레이저(quantum cascade laser)는 주파수 선폭이 1 메가헤르츠(MHz)가량으로 넓어 이를 이용한 분석 정밀도에 한계가 있었는데, 개발된 레이저 소자는 이보다 만분의 일 정도 작은 선폭의 고순도 중적외선광을 생성할 수 있다.
공동연구팀 관계자는 중적외선 파장 대역의 소형 저잡음 레이저 개발이 분자 과학의 응용범위를 넓히고 정밀도를 개선하기 위한 필수적 요소라고 언급하며, 이를 분자의 특성을 더욱 세밀하게 분석하거나 빛을 이용해 화학 반응을 정밀하게 제어하는 등에 활용할 수 있을 것으로 기대했다.
연구를 주도한 교신저자 물리학과 이한석 교수는 "개발된 레이저 소자를 현재 활발하게 연구되고 있는 칩 크기 양자폭포레이저 및 중적외선 광검출기와 결합한다면 화학, 생물학 및 재료학에 사용되는 거대한 중적외선 측정 장비들을 획기적으로 소형화해 좀 더 다양한 분야에 활용할 수 있을 것ˮ이라 내다봤다.
또 다른 교신저자인 최덕용 교수는 “칼코겐화합물 유리가 뛰어난 중적외선 광학 특성에도 불구하고 가공이 어려워 칩 상에서 널리 사용되지 않았는데, 본 연구에서 이를 이용한 고성능 광소자를 실증함으로써 본격적으로 많은 중적외선 연구에 사용될 수 있을 것”이라고 평했다.
물리학과 고기영 박사과정 학생과 석대원 박사과정 학생(현재 박사후연구원)이 공동 제1 저자로 참여한 공동연구팀의 이번 논문은 국제학술지 `네이쳐 커뮤니케이션스(Nature Communications)' 지난 3월 19자로 게재됐다. (논문명: A mid-infrared Brillouin laser using ultra-high-Q on-chip resonators, DOI: 10.1038/s41467-025-58010-2)
한편 이번 연구는 삼성미래기술육성사업, 정보통신기획평가원 (IITP), 그리고 한국연구재단 (NRF)의 지속적인 지원을 받아 수행됐다.
2025.03.31
조회수 301
-
미생물로 친환경 나일론 유사 플라스틱 개발 성공
폴리에스터 아마이드는 일반적으로 많이 사용되는 플라스틱인 PET(폴리에스터)와 나일론(폴리아마이드)의 장점을 모두 갖춘 차세대 소재다. 하지만 지금까지는 화석 연료에서만 생산할 수 있어 환경오염 문제를 피할 수 없었다. 우리 연구진이 플라스틱을 대체할 미생물을 이용한 신규 바이오 기반 플라스틱을 개발하는데 성공했다.
우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 시스템 대사공학을 이용하여 미생물 균주를 개발하고 여러 가지 신규 유형의 친환경 바이오 플라스틱인 폴리에스터 아마이드를 생산하여, 한국화학연구원(원장 이영국) 연구진과 공동 분석을 통해 생산된 이 플라스틱의 물성 확인까지 성공했다고 20일 밝혔다.
이상엽 특훈교수 연구팀은 자연계에 존재하지 않는 새로운 미생물 대사회로를 설계해 폴리(3-하이드록시뷰티레이트-ran-3-아미노프로피오네이트), 폴리(3-하이드록시뷰티레이트-ran-4-아미노뷰티레이트) 등을 포함한 9종의 다른 폴리에스터 아마이드를 생산할 수 있는 플랫폼 미생물 균주를 개발했다.
폐목재, 잡초 등 지구상에서 가장 풍부한 바이오매스의 주원료인 포도당을 원료로 사용해 폴리에스터 아마이드를 친환경적으로 생산할 수 있도록 했다. 또한 연구팀은 해단 균주의 유가 배양식 발효 공정을 이용해 고효율 생산 (54.57 g/L)을 보임으로써 추후 산업화될 가능성도 확인했다.
우리 연구진은 한국화학연구원 정해민, 신지훈 연구원과 함께 바이오 기반 플라스틱의 물성을 분석한 결과, 기존의 고밀도 폴리에틸렌(HDPE)과 유사한 성질을 갖고 있는 것으로 나타났다. 즉, 친환경적이면서도 기존 플라스틱을 대체할 수 있을 만큼 강도와 내구성이 뛰어나다는 것을 확인했다.
이번 연구에서 개발된 균주 및 전략들은 여러 가지 폴리에스터 아마이드 뿐만 아니라 다른 그룹의 여러가지 고분자들을 생산하는 대사회로들을 구축하는데 유용하게 쓰일 것으로 예상된다.
이상엽 특훈교수는 “이번 연구는 석유화학 산업 기반에 의존하지 않고도 폴리에스터 아마이드(플라스틱)을 재생가능한 바이오기반 화학산업을 통해 만들수 있는 가능성을 세계 최초로 제시한 것으로 앞으로 생산량과 생산성을 더욱 높이는 연구를 이어갈 계획”이라 말했다.
해당 연구 결과는 국제 학술지인 `네이쳐 케미컬 바이올로지(Nature Chemical Biology)'에 3월 17일자로 온라인 게재됐다.
※ 논문명 : Biosynthesis of poly(ester amide)s in engineered Escherichia coli, DOI:10.1038/s41589-025-01842-2)
※ 저자 정보 : 채동언(KAIST, 제1저자), 최소영(KAIST, 제2저자), 안다희(KAIST, 제3저자), 장우대(KAIST, 제4저자), 정해민(한국화학연구원, 제5저자), 신지훈(한국화학연구원, 제6저자), 이상엽(KAIST, 교신저자) 포함 총 7명
한편, 이번 연구는 과기정통부가 지원하는 석유대체 친환경 화학기술개발사업의 ‘바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발’ 과제(과제 책임자 이상엽 특훈교수)의 지원을 받아 수행됐다.
2025.03.20
조회수 1567
-
수소 경제 핵심, 세계 최고 수준 암모니아 촉매 개발
신재생 에너지를 이용한 수소 생산은 친환경 에너지 및 화학물질 생산의 핵심적인 기술이다. 하지만 이렇게 생산된 수소는 저장과 운송이 어렵기 때문에 탄소 배출이 없고, 액화가 쉬운 암모니아(NH3) 형태로 수소를 저장하려는 연구가 세계적으로 널리 진행되고 있다. 우리 연구진은 매우 낮은 온도와 압력에서도 에너지 손실 없이 암모니아를 합성할 수 있는 고성능 촉매를 개발했다.
우리 대학 생명화학공학과 최민기 교수 연구팀이 에너지 소비와 이산화탄소 배출량을 크게 줄이면서도 암모니아 생산성을 획기적으로 높일 수 있는 혁신적인 촉매 시스템을 개발했다고 11일 밝혔다.
현재 암모니아는 철(Fe) 기반 촉매를 이용해 하버-보슈 공정이라는 100년이 넘은 기술로 생산되고 있다. 하지만, 이 방식은 500℃ 이상의 고온과 100기압 이상의 고압이 필요해 엄청난 에너지를 소비하고, 세계 이산화탄소 배출량에서 상당한 비율을 차지하는 주범으로 지목됐다. 더구나 이렇게 생산된 암모니아는 대규모 공장에서 제조되기 때문에 유통 비용도 만만치 않다.
이에 대한 대안으로, 최근 물을 전기로 분해하는 기술인 수전해를 통해 생산된 그린 수소를 이용해 저온·저압(300도, 10기압)에서 암모니아를 합성하는 친환경 공정에 관한 관심이 급증하고 있다. 그러나 이러한 공정을 구현하려면 낮은 온도와 압력에서도 높은 암모니아 생산성을 확보할 수 있는 촉매 개발이 필수적이며, 현재의 기술로는 이 조건에서 암모니아 생산성이 낮아 이를 극복하는 것이 핵심 과제로 남아 있다.
연구팀은 루테늄(Ru) 촉매와 강한 염기성을 갖는 산화바륨(BaO) 입자를 전도성이 뛰어난 탄소 표면에 도입해 마치 ‘화학 축전지(chemical capacitor)*’처럼 작동하는 신개념 촉매를 개발했다.
*축전지: 전기 에너지를 +전하와 –전하로 나누어 저장하는 장치
암모니아 합성 반응 도중 수소 분자(H2)는 루테늄 촉매 위에서 수소 원자(H)로 분해 되며, 이 수소 원자는 양성자(H+)와 전자(e-) 쌍으로 한번 더 분해되게 된다. 산성을 띠는 양성자는 강한 염기성을 띠는 산화바륨에 저장되고 남은 전자는 루테늄과 탄소에 분리 저장되는 것으로 밝혀졌다.
이처럼 특이한 화학 축전 현상을 통해 전자가 풍부해진 루테늄 촉매는 암모니아 합성 반응의 핵심인 질소(N2) 분자의 분해 과정을 촉진해 촉매 활성을 비약적으로 증진시키는 것으로 밝혀졌다.
특히 이번 연구에서는 탄소의 나노구조를 조절함으로써 루테늄의 전자 밀도를 극대화해 촉매 활성을 증진시킬 수 있음을 발견했다. 이 촉매는 300도, 10기압인 온건한 조건에서 기존 최고 수준의 촉매와 비교하여 7배 이상 높은 암모니아 합성 성능을 나타냈다.
최민기 교수는 “이번 연구는 전기화학이 아닌 일반적인 열화학적 촉매 반응 과정에서도 촉매 내부의 전자 이동을 조절하면 촉매 활성을 크게 향상할 수 있음을 보여준 점에서 학계의 큰 주목을 받고 있다”고 밝혔다.
이어 “동시에 이번 연구를 통해 고성능 촉매를 활용하면 저온·저압 조건에서도 효율적인 암모니아 합성이 가능함이 확인되었다. 이를 통해 기존의 대규모 공장 중심 생산 방식에서 벗어나 분산형 소규모 암모니아 생산이 가능해지며, 친환경 수소 경제 시스템에 적합한 더욱 유연한 암모니아 생산·활용이 가능해질 것으로 기대된다.”라고 설명했다.
생명화학공학과 최민기 교수가 교신저자, 백예준 박사과정 학생이 제 1 저자로 연구에 참여하였으며, 연구 결과는 촉매 화학 분야에서 권위적인 국제 학술지인 ‘네이처 카탈리시스(Nature Catalysis)’에 지난 2월 24일 게재됐다.
(논문명 : Electron and proton storage on separate Ru and BaO domains mediated by conductive low-work-function carbon to accelerate ammonia synthesis, https://doi.org/10.1038/s41929-025-01302-z)
한편, 이 연구는 한국에너지기술연구원과 한국연구재단의 지원을 받아 수행되었다.
2025.03.11
조회수 1215
-
비오는 날 터치 걱정 끝! KAIST, 인간 촉각 수준 감지
최근 개발된 로봇들은 계란을 섬세하게 집는 수준에 이르렀는데, 이같은 결과는 손 끝에 집적된 압력 센서가 촉각 정보를 제공했기 때문이다. 그러나, 이러한 세계 최고 수준의 로봇들조차도 물 속, 굽힘, 전자기 간섭과 같은 복잡한 외부 간섭 요소들이 존재하는 환경에서 압력을 정확히 감지하는 것은 아직 어렵다. 우리 연구진이 물기가 묻은 스마트폰 화면과 같은 환경에서도 외부 간섭 없이 안정적으로 작동하며, 인간의 촉각 수준에 근접한 압력 센서를 개발하는 데 성공했다.
우리 대학 전기및전자공학부 윤준보 교수 연구팀이 비가 오거나 샤워 후 스마트폰 화면에 물이 묻으면, 터치가 엉뚱하게 인식되는 '고스트 터치'와 같은 외부 간섭의 영향을 받지 않으면서도 높은 해상도로 압력을 감지할 수 있는 압력 센서를 개발했다고 10일 밝혔다.
흔히 터치 시스템으로 사용되고 있는 정전용량 방식 압력 센서는 구조가 간단하고 내구성이 뛰어나 스마트폰, 웨어러블 기기, 로봇 등의 휴먼-머신 인터페이스(Human-Machine Interface) 기술에 널리 활용되고 있다. 그러나 물방울이나 전자기 간섭, 굴곡으로 인한 굽힘 등 외부 간섭 요소에 의해 오작동이 발생하는 치명적인 문제가 있었다.
연구팀은 이와 같은 문제를 해결하기 위해 우선 정전용량 방식 압력 센서에서 발생하는 간섭의 원인을 정확히 파악하고자 했다. 그 결과, 센서 가장자리에서 발생하는 ‘프린지 필드(Fringe Field)'가 외부 간섭에 극도로 취약한 것을 확인했다.
이를 근본적으로 해결하기 위해서는 문제의 원인인 프린지 필드를 억제해야 한다는 결론에 이르렀다. 따라서, 연구팀은 이론적 접근을 통해 프린지 필드에 영향을 미치는 구조적 변수들에 대해 집중적으로 탐구했고 전극 간격을 수백 나노미터(nm) 수준으로 좁힐 경우 센서에서 발생하는 프린지 필드를 수 퍼센트 이하로 억제할 수 있음을 확인했다고 밝혔다.
연구팀은 독자적인 마이크로/나노 구조 공정 기술을 활용해 앞서 설계한 900나노미터(nm) 수준의 전극 간격을 갖는 나노 갭 압력 센서를 개발했다. 개발된 센서는 압력을 가하는 물질에 관계없이 압력만을 신뢰적으로 감지했으며 굽힘이나 전자기 간섭에도 감지 성능에 영향이 없는 것을 검증했다.
또한, 연구팀은 개발한 센서의 특성을 활용해 인공 촉각 시스템을 구현했다. 인간의 피부에는 메르켈 원반(Merkel's disc)라는 압력 수용기가 있어 압력을 감지하는데, 이를 모사하기 위해서는 외부 간섭에는 반응하지 않고 오직 압력에만 반응하는 압력 센서 기술이 필요했지만 기존 기술들로는 이러한 조건을 만족시키기가 어려웠다.
윤준보 교수 연구팀이 개발한 센서는 이러한 제약을 모두 극복했으며, 밀도 또한 메르켈 원반 수준에 도달해 무선으로 정밀한 압력 감지가 가능한 인공 촉각 시스템을 구현하는 데 성공했다.
더 나아가, 다양한 전자기기로의 응용 가능성을 확인하기 위해 포스 터치 패드 시스템 역시 개발해 압력의 크기와 분포를 간섭 없이 높은 해상도로 얻을 수 있음을 검증했다고 밝혔다.
윤준보 교수는 “이번 나노 갭 압력 센서는 비 오는 날이나 땀이 나는 상황에서도 기존 압력 센서처럼 오작동하지 않고 안정적으로 동작한다. 많은 사람들이 일상에서 겪어온 불편을 해소할 수 있을 것으로 기대한다.”라고 말했다.
전기및전자공학부 양재순 박사, 정명근 박사과정 그리고 성균관대 반도체융합공학과 유재영 조교수(KAIST 박사 졸업)가 제1 저자로 수행한 이번 연구는 저명 국제 학술지 `네이처 커뮤니케이션즈 (Nature Communications)'에 2025년 2월 27일 출판됐다.
(논문 제목: Interference-Free Nanogap Pressure Sensor Array with High Spatial Resolution for Wireless Human-Machine Interfaces Applications, https://doi.org/10.1038/s41467-025-57232-8)
한편, 이번 연구는 한국연구재단의 중견연구지원사업과 선도연구센터지원사업의 지원을 받아 수행됐다.
2025.03.10
조회수 1184
-
나무뿌리 모방해 700% 쭉쭉 늘어나는 전자기판 개발
나무뿌리가 흙에 단단히 고정되는 구조를 모방해, 한국 연구진이 최대 700%까지 늘어나는 신축성을 확보하고 스트레처블 전자 제품의 상용화를 위한 새로운 기준을 제시했다. 특히 스마트 저항 밴드와 스트레처블 LED 디스플레이, 태양 전지와 같은 응용 사례를 통해 기술의 폭넓은 적용 가능성을 입증했다.
우리 대학 기계공학과 박인규 교수 연구팀이 한국전자통신연구원(ETRI)과 공동연구를 통해 스트레처블 전자 제품 개발에서 기존의 한계를 극복한 혁신적인 기술인 ‘생체 모사 인터페이스 설계(Bioinspired Interfacial Engineered Flexible Island, 이하 BIEFI)’를 개발했다고 6일 밝혔다.
이번 연구는 생체 모사 인터페이스 설계를 기반으로, 전자 제품의 유연성, 신축성과 기계적 내구성을 동시에 극대화하는 데 성공했다.
연구진은 주 뿌리(primary roots)와 보조 뿌리(secondary roots) 구조를 설계에 적용해 응력을 분산시키고, 기계적 인터로킹(interlocking)을 통해 두 기판 사이의 강력한 접착력을 구현했다.
이 구조에서 주 뿌리는 응력을 효과적으로 분산시키며 인터페이스 균열을 지연시키는 역할을 한다. 반면 보조 뿌리는 기판 사이의 접착력을 강화하고 변형 중에도 인터페이스의 안정성을 유지하도록 돕는다. 이러한 설계는 다양한 변형 상황에서도 높은 기계적 신뢰성과 소자의 성능을 제공한다.
이를 통해 연구팀은 최대 700%까지 늘어나는 신축성을 확보하고, 1,000회 이상의 물리적 변형 시도에도 안정적인 구조를 설계하는데 성공했다. 이 기술은 다양한 물리적 변형(늘림, 비틀림, 압축 등)에도 견딜 수 있도록 설계됐으며, 반복적인 변형에도 긴 사용 수명을 제공할 수 있음을 입증했다.
이 기술은 특히 실시간으로 운동 데이터를 측정할 수 있는 스마트 저항 밴드에 적용하여 사용자의 운동 강도와 균형을 정밀하게 분석할 수 있으며, 다양한 피트니스 활동에 적용할 수 있다.
또한, 스트레처블 LED 디스플레이는 늘림, 구부림, 비틀림 등 여러 변형에도 안정적으로 작동하며, 차세대 유연 디스플레이 기술의 가능성을 보인다. 더불어, 유연한 태양 전지는 에너지를 저장하고 LED를 구동하는 데 성공해, 에너지 하베스팅과 저장 장치로서의 잠재력을 입증했다.
박인규 교수는 “이러한 생체 모사형 설계가 차세대 전자 기술을 위한 새로운 표준이 될 수 있으며, 앞으로 인터페이스 설계의 최적화와 접착력 향상, 더욱 복잡한 뿌리 구조 모방 등을 통해 기술을 발전시켜 나갈 계획이다”라고 밝혔다.
이번 연구는 기계공학과 굴 오스만(Osman Gul) 박사과정이 제1 저자로 참여했으며, KAIST의 박인규 교수, 김택수 교수와 ETRI의 김혜진 박사가 연구를 총괄했다.
연구 결과는 유수의 국제 학술지 ‘네이처 커뮤니케이션즈 (Nature Communications)’에 2025년 2월 온라인판에 출판됐다. (논문명: Bioinspired Interfacial Engineering for Highly Stretchable Electronics)
(논문 링크 : https://www.nature.com/articles/s41467-025-56502-9)
한편, 이번 연구는 과학기술정보통신부의 지원을 받아 한국연구재단 중견연구자지원사업 및 정보통신기획평가원(IITP)의 지원 아래 수행됐다.
2025.03.06
조회수 1142
-
스스로 가설을 세워 검증하는 뇌 기반 AI 기술
뇌의 맥락 추론 방식이 챗지피티 같은 대규모 인공지능 모델과 어떻게 다를까? 우리 연구진이 ‘뇌처럼 생각하는 인공지능’기술로서 과도한 자신감을 보이는 인공지능의 할루시네이션(Hallucination) 현상을 완화하거나 인간이나 동물과 유사하게 스스로 가설을 세워 검증하는 신개념 인공지능 모델을 개발하는데 성공했다.
우리 대학 뇌인지과학과 이상완 교수(신경과학-인공지능 융합연구센터장)와 생명과학과 정민환 교수(IBS 시냅스 뇌질환 연구단 부연구단장) 연구팀이 동물이 가설을 세워 일관된 행동 전략을 유지함과 동시에, 본인의 가설을 스스로 의심하고 검증하면서 상황에 빠르게 적응하는 새로운 강화학습 이론을 제시하고 뇌과학적 원리를 규명했다고 20일 밝혔다.
현재 상황에 맞게 행동의 일관성과 유동성 사이의 적절한 균형점을 찾아가는 문제를 ‘안정성-유동성의 딜레마(Stability-flexibility dilemma)’라 한다. 이를 위해서는 현재 본인의 판단이 맞는지를 계속 검증하고 수정할 수 있어야 한하는데 뇌과학 및 인공지능 분야에서 다양한 연구가 있었으나 아직까지 완벽한 해법이 알려진 바가 없다.
연구팀은 스스로 세운 가설을 바탕으로 다음 상황을 예측하고 확인하는 행동 패턴을 동역학적으로 프로파일링 할 수 있는 새로운 방식을 고안했고, 이를 바탕으로 전통적인 강화학습 이론과 최신 인공지능 알고리즘 모두 동물의 관련 행동을 제대로 설명하지 못한다는 것을 발견했다.
이어 연구팀은 동물의 현재 상황에 대한 가설을 세우고, 가설의 예측 오류를 바탕으로 행동 전략을 비대칭적으로 업데이트하는 새로운 적응형 강화학습 이론과 모델을 제안했다.
최신 인공지능 모델은 효율적 문제 해결에 집중하다 보니 인간이나 동물의 행동을 잘 설명하지 못하는 경우가 많은 반면, 제안 모델은 예상치 못한 사건에 대한 동물의 행동을 최신 인공지능 모델 대비 최대 31%, 평균 15% 더 잘 예측함을 보였다.
특히, 이 결과는 기존 연구에서 발표된 네 가지 서로 다른 동물 실험 데이터(two-step task, two-armed bandit task, T-maze task, two-armed bandit task with MSN inactivation) 분석을 통해 일관성 있게 재현되었다.
연구팀은 더 나아가 중뇌 기저핵* 선조체**속 중간크기 가시뉴런***이 가설 기반 적응형 강화학습 과정에 관여함을 밝혔다. 직접 경로 가시뉴런들은 예상한 사건을 마주한 경험을, 간접 경로 가시뉴런들은 예상하지 못한 사건을 마주한 경험을 부호화해 행동 전략을 조절함을 보였다.
*기저핵(Basal Ganglia): 대뇌피질, 시상, 뇌간 등 운동 조절 및 학습하는 기능을 담당하는 뇌 부위
**선조체(Striatum): 기저핵의 일부로 가치 평가 및 강화학습 능력과 관련된 부위
***가시뉴런Medium Spiny Neuron, MSN): 선조체의 약 90%를 차지하는 대표적 신경세포로 신경활동을 억제하는 특징을 가지고 있음
본 연구 결과는 뇌의 맥락 추론 방식이 대규모 인공지능 모델과 근본적으로 다르다는 것을 보여준다. 챗지피티(ChatGPT)나 딥시크와 같은 인공지능 모델은 사용자 입력으로부터 맥락 정보를 추정하고 이를 바탕으로 필요한 전문가 시스템에 매칭하며 (딥시크 모델은 강화학습을 사용하여 매칭), 새로운 정보가 들어올 때까지는 이것이 맞다고 가정한다.
이와 달리 뇌는 스스로 추정한 맥락(가설)을 의심하고, 의심이 확인되는 즉시 새로운 맥락을 적극 받아들인다. 이는 과도한 자신감을 보이는 인공지능의 할루시네이션(Hallucination) 현상을 완화하거나 인간과 유사한 추론엔진을 구성할 수 있는 새로운 방향성을 제시한다.
본 연구는 뇌과학-인공지능 융합연구로서, 실제 분야에 널리 활용될 수 있다. 예를 들어, 인간의 동역학적 행동 프로파일링 기술을 이용하면 개개인의 가설 수립, 검증 학습 능력 분석이 가능하므로, 맞춤형 교육 커리큘럼 디자인, 인사 및 인력관리 시스템, 인간-컴퓨터 상호작용 분야에 바로 적용할 수 있다.
제안된 적응형 강화학습 모델은 ‘뇌처럼 생각하는 인공지능’기술로서 인간-인공지능 가치 정렬 (Value alignment) 문제 해결에 활용될 수 있다. 또한 이 과정에 관여하는 것으로 알려진 기저핵 내 보상학습 회로와 관련된 중독이나 강박증과 같은 정신질환의 뇌과학적 원인 규명에 활용될 수 있다.
연구 책임자인 이상완 교수는 "이번 연구는 인공지능의 강화학습 이론만으로 설명할 수 없는 뇌의 가설 기반 적응학습 원리를 밝혀낸 흥미로운 사례ˮ라면서 "스스로 의심하고 검증하는 뇌과학 이론을 대규모 인공지능 시스템 설계와 학습 과정에 반영하면 신뢰성을 높일 수 있을 것ˮ이라고 말했다.
뇌인지공학 프로그램 양민수 박사과정 학생이 1 저자, 생명과학과 정민환 교수가 공동 저자, 뇌인지과학과 이상완 교수가 교신저자로 참여한 이번 연구는 국제 학술지 `네이처 커뮤니케이션스 (Nature Communications)‘ 2월 20일자로 게재됐다. (논문명: Striatal arbitration between choice strategies guides few-shot adaptation) DOI: 10.1038/s41467-025-57049-5)
한편 이번 연구는 과학기술정보통신부 정보통신기획평가원 SW스타랩, 한계도전 R&D 프로젝트, 한국연구재단 중견연구자 및 KAIST 김재철AI대학원 사업 지원을 받아 수행됐다.
2025.02.27
조회수 1883
-
양자 컴퓨터 오류정정에 필요한 양자얽힘 구현
양자 컴퓨팅은 고전 컴퓨터로는 계산하기 어려운 문제를 효율적으로 해결할 수 있는 양자 기술이다. 양자 컴퓨터가 복잡한 연산을 정확히 수행하려면 연산 과정에서 발생하는 양자 오류를 정정하는 것이 필수적이다. 하지만 이에 필요한 양자얽힘 상태를 구현하는 것은 매우 큰 난관으로 여겨져 왔다.
우리 대학 물리학과 라영식 교수 연구팀이 양자오류 정정 기술의 핵심이 되는 3차원 클러스터 양자얽힘 상태를 실험으로 구현하는데 성공했다고 25일 밝혔다.
측정기반 양자 컴퓨팅은 특수한 양자얽힘 구조를 가진 클러스터 상태를 측정하여 양자 연산을 구현하는 새로운 패러다임의 양자 컴퓨팅 방식이다. 이러한 방식의 핵심은 클러스터 양자얽힘 상태의 제작에 있으며, 범용 양자컴퓨팅을 위해 2차원 구조의 클러스터 상태가 사용된다.
하지만 양자연산에서 발생하는 양자오류를 정정할 수 있는 결함 허용 양자컴퓨팅(Fault-Tolerant Quantum Computing)으로 발전하려면 더욱 복잡한 3차원 구조의 클러스터 상태가 필요하다.
기존 연구에서는 2차원 클러스터 상태 제작이 보고됐지만, 결함 허용 양자컴퓨팅에 필요한 3차원 클러스터 상태는 양자얽힘의 구조가 매우 복잡해 그동안 실험 구현이 이뤄지지 못했다.
연구팀은 펨토초 시간-주파수 모드를 제어하여 양자얽힘을 구현하는 기술을 개발함으로써 3차원 구조의 클러스터 양자얽힘 상태를 생성하는 데 최초로 성공했다.
펨토초 레이저는 극도로 짧은 시간 동안 강한 빛 펄스를 방출하는 장치로, 연구팀은 비선형 결정에 펨토초 레이저를 입사시켜 여러 주파수 모드에서 양자 광원을 동시에 생성하고, 이를 활용하여 3차원 구조의 클러스터 양자얽힘을 생성했다.
라영식 교수는 "이번 연구는 기존 기술로는 구현하기 어려웠던 3차원 클러스터 양자얽힘 상태 제작에 성공한 최초의 사례”라며, “향후 측정 기반 양자컴퓨팅 및 결함 허용 양자컴퓨팅 연구에 있어 중요한 발판이 될 것”이라고 말했다.
물리학과 노찬 석박사통합과정 학생이 제1 저자로 참여하고 곽근희, 윤영도 석박사통합과정 학생이 공동 저자로 참여한 이번 연구는 저명 국제 학술지 `네이처 포토닉스(Nature Photonics)'에 2025년 2월 24일 온라인판으로 정식 출판됐다. (논문명: Generation of three-dimensional cluster entangled state, DOI: 10.1038/s41566-025-01631-2)
한편 이번 연구는 한국연구재단 (양자컴퓨팅 기술개발사업, 중견연구자 지원사업, 소재혁신 양자시뮬레이터 개발사업)과 정보통신기획평가원 (양자인터넷 핵심원천기술 사업, 대학ICT연구센터지원사업) 및 미국 공군연구소의 지원을 받아 수행됐다.
2025.02.25
조회수 1219
-
적층 제조된 티타늄 합금의 강도-연성 딜레마 AI 기술로 극복
우리 대학 기계공학과 이승철 교수 연구팀이 POSTECH 신소재공학과 김형섭 교수 연구팀과 함께 인공지능 기술을 활용해 Ti-6Al-4V 합금의 강도-연성 딜레마를 극복하고 고강도·고연신 금속 제품을 생산해 내는 데 성공했다고 밝혔다. 연구팀이 개발한 인공지능은 3D프린팅 공정변수에 따른 기계적 물성을 정확히 예측하는 동시에 예측의 불확실성 정보를 제공하며 이 두 정보를 활용해 실제 3D프린팅을 진행할 가치가 높은 공정변수를 추천한다.
3D프린팅 기술 중에서도 레이저 분말 베드 융합은 뛰어난 강도 및 생체 적합성으로 유명한 Ti-6Al-4V 합금을 제조하기 위한 혁신적인 기술이다. 그러나 3D프린팅으로 제작된 이 합금은 강도와 연성을 동시에 높이기 어렵다는 문제점이 있다. 3D프린팅의 공정변수와 열처리 조건을 조절해 이를 해결하고자 하는 연구들이 있었지만, 방대한 공정변수 조합들을 실험 및 시뮬레이션으로 탐색하기에는 한계가 있었다.
연구팀이 개발한 능동 학습(Active Learning) 프레임워크는 다양한 3D프린팅 공정변수 및 열처리 조건들을 빠르게 탐색하여 그 중 합금의 강도와 연성을 동시에 높일 수 있다고 예상되는 것을 추천한다. 이런 추천은 인공지능 모델이 각 공정변수 및 열처리 조건에 대해 예측한 극한 인장 강도와 전연신율을 비롯해 예측의 불확실성 정보도 활용해 진행되며 추천된 것에 대해선 3D프린팅 및 인장 실험을 통해 실제 물성값을 얻게 된다. 새롭게 얻어낸 물성값을 인공지능 모델 학습에 추가로 활용하여 반복적으로 공정변수 및 열처리 조건들을 탐색하였으며 단 5번만의 시도로 고성능 합금을 생산해 낼 수 있는 공정변수 및 열처리 조건들을 도출하였다. 이를 적용해 3D프린팅한 Ti-6Al-4V 합금은 극한 인장 강도 1190MPa, 전연신율 16.5%를 기록하며 강도-연성 딜레마를 극복해 냈다.
이승철 교수는 “이번 연구에서 3D프린팅 공정변수와 열처리 조건을 최적화하여 고강도·고연신 Ti-6Al-4V 합금을 최소한의 실험만으로 도출해 낼 수 있었으며, 기존 연구들과 비교해 비슷한 극한 인장 강도를 가지지만 더 큰 전연신율을 가진 합금을 그리고 비슷한 전연신율을 가지지만 더 큰 극한 인장 강도를 가진 합금을 제작할 수 있었다.”라고 말했다. “또한, 기계적 물성뿐만 아니라 열전도도 및 열팽창과 같은 다른 물성에 관해서도 본 연구 방법이 적용되면 3D프린팅 공정변수와 열처리 조건에 대한 효율적인 탐색이 가능할 것으로 예상된다”라고 덧붙였다.
이번 연구 결과는 국제 학술지 ‘Nature Communications’에 지난 1월 22일에 출판되었으며 (https://doi.org/10.1038/s41467-025-56267-1), 이 연구는 한국연구재단 나노·소재기술개발사업 및 선도연구센터사업의 지원을 받아 진행됐다.
2025.02.21
조회수 1411
-
선천성면역을 조절하는 인공단백질 디자인, 차세대 백신·면역 치료제 개발 가능성 제시
우리 대학 생명과학과 김호민 교수 연구팀과 국제 공동연구팀인 미국 워싱턴대학교 단백질디자인 연구소 (Institute for Protein Design, IPD) 닐 킹 교수 (Prof. Neil King) 연구팀은 컴퓨터기반 단백질디자인 기술을 활용하여 선천성면역을 활성화시키는 새로운 인공단백질을 디자인하고, 그들의 3차원 분자구조를 규명하는데 성공했다고 10일 밝혔다.
김호민 교수 연구팀과 Neil King 교수 연구팀은 컴퓨터 기반 단백질디자인 기술을 활용하여 선천성면역 수용체인 TLR3와 높은 친화도를 갖는 인공단백질을 개발했다. 또한, 초저온 투과전자현미경 (Cryo-EM) 분석을 통해 설계된 인공단백질이 TLR3와 결합하는 분자결합모드를 규명하였다. 특히, 자연계의 TLR3 작용제(dsRNA)와는 전혀 다른 구조를 가진 디자인된 인공단백질에 의해 선천성면역 수용체 TLR3을 효과적으로 활성화시킬 수 있음을 보인 첫 사례이다.
생명과학과 김호민 교수가 교신저자로 참여한 이번 연구는 국제 학술지 `네이쳐 커뮤니케이션 (Nature Communications)'에 1월 31일 출판됐다. (논문명 : De novo design of protein minibinder agonists of TLR3)
TLR3 (Toll-like Receptor 3)는 이중가닥 RNA (double-stranded RNA, dsRNA)를 인식하여 선천성 면역반응을 활성화하는 패턴 인식 수용체 (pattern recognition receptor)이다. 기존의 TLR3 작용제는 백신면역 증강제 (adjuvant) 및 항암면역치료제로 활용될 가능성이 있었으나, 화학적 불안정성, 면역 과활성화 위험, 균질한 대량제조의 어려움 등으로 인해 임상적 적용이 제한적이었다.
이에 연구팀은 컴퓨터 기반 단백질디자인 (computational protein design) 기술을 활용하여 TLR3과 결합하는 초소형 인공단백질 (minibinder)을 디자인하였다. 해당 인공단백질은 크기가 작고, 높은 안정성을 가지며, 지정한 TLR3의 특정 부위에만 특이적으로 결합할 수 있도록 디자인하였다. 이후 초저온 투과전자현미경 (Cryo-EM) 분석을 통해 설계된 인공단백질이 초기디자인 의도와 잘 부합되게 TLR3의 오목한 표면 (concave surface)에 결합하고 있음을 확인하였고, 이들의 분자상호작용을 규명하였다.
기존 dsRNA기반 작용제보다 더 정밀하게 TLR3 신호를 활성화할 수 있도록 Cryo-EM 구조를 통해 규명된 분자구조를 바탕으로 인공단백질을 이어 붙인 다중 결합(multivalent) 형태의 단백질을 추가적으로 개발하였고, TLR3 하위 신호인 NF-κB 신호를 활성화시킴을 확인하였다. 이를 통해 자연계에 존재하지 않은 디자인된 인공단백질에 의하여 선천성 면역반응을 효과적으로 조절할 수 있음을 확인하였다.
이번 연구는 KAIST 연구진과 미국 워싱턴대학교 단백질디자인 연구소 연구진 간의 긴밀한 국제공동연구를 통해 이루어졌으며, 향후 면역 조절 인공단백질에 기반한 다양한 백신면역 증강제, 항암면역치료제 등의 개발에 활용될 수 있을 것으로 기대한다.
교신저자인 김호민 교수는 “인공지능기반 단백질디자인 연구는 2024년 노벨화학상 (데이비드 베이커교수, 단백질디자인 연구소)을 수상하며 큰 주목을 받고 있으며, 인공지능 기술의 발전에 힘입어 빠르게 성장하고 있는 첨단바이오 연구분야이다. 향후 백신, 신약, 진단키트, 산업용효소 등 다양한 바이오신소재 개발에 크게 기여할 수 있을 것이다. 이번 연구는 긴밀한 국제 공동연구를 통해 우수한 성과를 거둔 성공적 사례”라고 말했다.
한편 이번 연구는 IBS 바이오분자 및 세포구조연구단의 지원을 받아 수행되었다.
2025.02.10
조회수 1304
-
펨토초보다 짧은 순간 전이상태 분자구조를 밝히다
즈웨일 교수(1999년 노벨화학상)가 창출한 펨토화학을 통해 화학반응 중 일어나는 분자구조 변화를 실시간에서 관측할 수 있는 길이 열렸지만, 엄밀한 의미에서 에너지에 따른 전이상태 (Transition-State) 구조 변화를 직접 관측한 예는 매우 드물다. KAIST 연구진은, 광분해 화학반응 전이상태의 분자구조 변화를 분광학 기법*으로 정확하게 측정하는데 세계 최초로 성공했다.
*분광학 기법: 빛과 분자의 상호작용을 통해 양자역학적 분자구조를 정확하게 알아냄
우리 대학 화학과 김상규 교수 연구팀이 화학반응의 전이상태 (Transition-State) 구조를 실험적으로 밝히는 데 성공했다고 4일 밝혔다.
화학반응 속도론이 개발되면서, 가장 중요한 핵심으로 자리잡은 개념이 ‘전이상태 (Transition-State)’다. 전이상태 이론(Transition State Theory, 이하 TST) 에서는 반응물과 생성물 중간에 위치한 전이상태의 분자구조 및 동역학적 특성에 의해 반응속도, 생성물의 상대적 수율, 에너지 분포 등이 결정된다. TST는 지난 1세기 동안, 모든 환경에서의 연소, 유기, 생화학 반응 등에 널리 응용 되어온 가장 보편적인 반응속도론이다.
그러나, 전이상태는 펨토초(10-15 second)보다 더 짧은 시간 동안만 존재하므로, 전이상태를 직접 실험적으로 관찰하는 것은 매우 어려운 일이며 항상 도전적인 과제로 남아있었다.
김상규 교수 연구팀에서 관측한 전이상태는 특별한 의미를 갖는다. 분광학적 기법을 통해, 분자가 전이상태로 접근하면서 가지는 구조 변화를 매우 정확하게 측정할 수 있었던 첫 번째 예라는 점이다.
분광학 기법으로 측정된 정확한 전이상태 분자구조 변화에 따라 관찰된 반응속도의 급격한 변화를 통해서, 분자구조와 화학반응성 간 긴밀한 상관관계도 아울러 증명되었다.
김상규 교수는 “복잡한 분자의 화학반응에서 전이상태에 접근하면서 급격하게 변화하는 분자구조를 분광학 및 반응동역학 기법으로 밝힌 것은 처음이며, 향후 많은 이론 및 실험적 연구를 촉진할 것으로 기대된다. 특히, 전이상태 구조는 특정 화학반응을 선택적으로 빠르게 할 수 있는 고효율 촉매 설계에 가장 근원적인 정보를 제공할 것이다.”라고 말했다.
이번 연구 결과는 김정길 박사 (제 1 저자), 강민석 박사과정 학생, 윤준호 박사(現 LG화학)가 공동 저자로 2025년 1월 ‘네이처 커뮤니케이션즈(Nature Communications, Vol. 16, 210) 에 대표적(Featured) 연구 성과로 발표됐다.
또한 매우 이례적으로 분광학 분야 최고 권위자인 MIT의 로버트 필드(Robert Field) 교수 및 이스라엘 벤구리온 대학 바라밴 (Baraban) 교수가 공동작성한 하이라이트 커멘트(Nature Communications, 16, 76)를 통해, 이번 연구 결과가 가지는 독창성과 시사성, 중요성 및 향후 실험물리화학 분야에서의 임팩트가 강조됐다.
한편 이번 연구는 한국연구재단의 중견연구사업 및 기초과학 4.0 중점연구소 (자연과학연구소)에서 지원받아 수행됐다.
2025.02.04
조회수 1687