-
대사공학적으로 개량된 박테리아로 범용 플라스틱 생산기술 개발
- 이상엽 교수팀과 LG 화학 연구팀 공동개발
- 바이오테크놀로지 바이오엔지니어링(Biotechnology and Bioengineering)지 게재예정
생명화학공학과 이상엽(李相燁, 45세, LG화학 석좌교수, 생명과학기술대학 학장) 특훈교수팀과 LG화학 기술연구원(원장 유진녕) 박시재, 양택호박사팀이 4년여 간의 공동연구를 통해 박테리아를 이용하여 재생 가능한 바이오매스로부터 플라스틱을 생산하는 기술을 최근 개발했다.
교육과학기술부 시스템생물학 연구개발 사업과 LG화학 석좌교수 연구비로 지원된 이번 연구에서는 시스템 대사공학과 효소공학 기법을 접목, 자연적으로는 생성되지 않는 플라스틱(unnatural polymer)의 일종으로 최근 각광을 받고 있는 폴리유산(Polylactic acid, PLA)을 효율적으로 생산할 수 있는 대장균을 개발한 것이다.
이번 연구 결과는 바이오공학 분야 최고 전통의 바이오테크놀로지 바이오엔지니어링(Biotechnology and Bioengineering)지에 게재 승인됐으며 스포트라이트 논문(Spotlight paper)으로 선정돼 2010년 1월호에 두 편의 연속 논문으로 게재될 예정이다.
두 논문의 제목은 ‘개량된 프로피오네이트 코엔자임 에이 트랜스퍼레이즈와 폴리하이드록시알카노에이트 중합효소를 이용한 폴리유산과 그의 공중합체의 생합성(Biosynthesis of Polylactic acid and its Copolymers Using Evolved Propionate CoA Transferase and PHA Synthase)’과 ‘폴리유산과 그의 공중합체의 생산을 위한 대장균의 대사공학(Metabolic Engineering of Escherichia coli for the Production of Polylactic Acid and its Copolymers)’이다. 19건의 특허가 전 세계 출원 중이다.
기존의 복잡한 2단계 공정을 통해 생산되던 폴리유산을 재생가능한 원료로부터 미생물의 직접 발효에 의해 생산이 가능하도록 한 혁신적인 본 연구 전략은 앞으로 석유 유래 플라스틱을 대체할 수 있는 다양한 비자연 고분자(unnatural polymer)들의 생산에 활용될 획기적인 기술로 평가되고 있다.
폴리유산 (Polylactic acid, PLA)은 많은 바이오매스 유래 고분자들 중에서도 생분해성, 생체적합성, 구조적 안정성, 그리고 낮은 독성과 같은 뛰어난 물성으로 인해 석유 유래 플라스틱의 대체물로서 대두되고 있다.
그러나, 폴리유산은 현재 두 단계 공정으로 합성된다. 우선, 미생물 발효를 통해 유산(락트산, Lactic acid)을 생산, 정제한 후 여러 가지 시약, 용매 및 촉매가 첨가되는 복잡한 공정의 화학적 중합반응에 의해 폴리유산이 합성된다.
또한, 폴리유산의 물성을 다양하게 개선하기 위해 폴리하이드록시알카노에이트 (Polyhydroxyalkanoate, PHA)와 같은 다른 고분자들과의 공중합이나 혼합반응 등의 연구가 이루어지고 있다.
이러한 노력에도 불구하고, 공중합 반응에 사용되는 락톤계 모노머들의 가용성과 비용을 고려했을 때, 기존의 화학적 합성 방법은 효과적이지 않다. 이에, 미생물 유래 고분자인 폴리하이드록시알카노에이트의 생합성 시스템을 기반으로, 폴리유산과 그의 공중합체들의 생합성이 가능할 수 있는 대사경로를 효소공학을 통해 구축했다.
그러나, 외래 대사경로의 도입 및 조작만으로는 폴리유산 단일 중합체와 유산의 함량이 높은 공중합체의 생산이 효율적이지 않아, 시스템 수준으로 세포 내 대사흐름을 증가시킬 필요성을 인지했다. 이에, 대장균 균주의 인실리코 게놈 수준의 시뮬레이션을 이용한 대사흐름분석 기법을 활용하여 고분자 생산을 위한 주요 전구체의 대사 흐름을 논리적으로 강화시킴으로써, 세포성장과 함께 목적 고분자의 효율적 생산이 가능하도록 했다.
따라서, 효소공학을 통한 고분자 합성 경로의 직접적 조작 및 강화 뿐 아니라, 시스템 대사공학을 통한 논리적 접근으로 조작된 대사흐름을 바탕으로 다양한 폴리유산 플라스틱을 보다 효율적으로 생산할 수 있었다.
이는 시스템 대사공학과 효소공학을 접목시킨 고기술 전략으로 비자연 고분자를 효율적으로 생산한 최초의 성공적인 예로서, 재생가능한 자원으로부터 폴리유산뿐 아니라 석유유래 플라스틱을 대체할 수 있는 다른 비자연 고분자들의 일단계 생산을 위한 기반 기술을 마련해줌으로써, 플라스틱 생산 공정에 있어 새로운 전략을 제시했다.
李 교수는 “자연계에 없는 고분자를 미생물로 생산하는 것이 과연 될까? 라는 의문을 갖고 시작했다. 우리 KAIST 연구실의 정유경박사와 LG화학 기술연구원 연구팀원 10여명이 4년간의 끈질긴 노력 끝에 성공했다”며, “이번 연구는 대장균의 가상세포 시뮬레이션을 통해 세포 내 대사흐름을 목적한 고분자 생산에 유리하도록 논리적으로 조작하고, 고분자 생합성 경로를 구성하는 외래 효소들을 새롭게 만들어 도입함으로써, 강화된 대사흐름을 이용해 보다 효율적으로 목적 고분자를 생산할 수 있는 균주를 개발하는데 성공한 세계 첫 번째 케이스다. 특히, 유산이 단량체로 함유된 공중합체의 경우에는 세계최초로 만든 것이 되어 물질특허들로 출원중이다”라고 밝혔다.
한편, 이 혁신적인 연구 성과는 22일 미국 CNN 홈페이지의 Top기사 등 해외언론의 주요기사로 소개됐다. 주요내용은 한국의 KAIST 이상엽 교수팀과 LG화학 연구팀이 전 세계적으로 석유고갈, 지구온난화 및 환경오염 문제로 재생가능한 자원을 이용한 바이오매스 기반 기술의 개발이 시급한 현 시대의 흐름에 부응하면서, 재생가능한 자원으로부터 효율적으로 바이오공학을 통한 플라스틱 (Bioengineered plastics) 폴리유산의 생산이 가능한 대장균 균주를 개발했다는 내용이다.
2009.11.24
조회수 22352
-
이상엽 교수, 네이처 바이오테크놀로지 초청논문 게재
“바이오플라스틱 상용화 시대 도래”
네이처 바이오테크놀로지 10월호 초청논문에서 전문가로서의 의견 밝혀..
독일의 훔볼트 베를린대 프리드리히 교수와 뮌스터대학의 스타인뷔헬 교수팀은 바이오플라스틱 생산의 대표 미생물인 랄스토니아 유트로파 (Ralstonia eutropha)균의 전체 게놈서열을 밝히고, 네이처 바이오테크놀로지 10월호에 논문을 발표했다. 플라스틱 생산 대표 미생물의 전체 게놈 서열이 밝혀짐에 따라 보다 체계적인 시스템 수준에서의 균주개량을 통해 바이오플라스틱의 효율적인 생산이 가능해 질 것으로 예측된다.
네이처 바이오테크놀로지社는 이 논문에 대해 해당분야의 세계적 전문가인 KAIST 생명화학공학과 이상엽(李相燁, 42세) LG화학 석좌교수에게 게놈 서열 해독에 따른 앞으로의 바이오플라스틱 생산에 관한 전문가 분석논문을 의뢰했으며, 李 교수는 지난 10일 발간된 네이처 바이오테크놀로지 10월호 ‘뉴스와 전망(News and Views)’에서 “랄스토니아균의 게놈 해독은 다양한 오믹스와 가상세포를 통한 시뮬레이션, 그리고 게놈 수준에서의 엔지니어링을 결합하여 시스템 수준에서 균주를 개량할 수 있는 토대가 마련되었음을 의미한다”라며, “앞으로 플라스틱을 구성하는 물질을 자유자재로 바꿔 우리가 원하는 물성을 가진 플라스틱의 생산이 가능할 것이며, 대사 흐름의 최적화를 통해 이제까지 보고된 것보다도 훨씬 효율적이고 경제적인 바이오플라스틱의 생산이 가능해 질 것이다”라고 밝혔다.
李 교수는 그간 바이오플라스틱 관련 SCI논문만도 70여편을 발표한 이 분야의 세계적 전문가다. 1996년 트렌즈 인 바이오테크놀로지 (Trends in Biotechnology)에 “플라스틱 박테리아 (Plastic Bacteria)”라는 신조어를 발표했으며, 1997년에도 네이처 바이오테크놀로지에 대장균 플라스틱에 관한 전문가 논문을 게재한 바 있다. 현재, 과학기술부의 시스템생물학연구개발 사업에서 시스템 기법을 동원한 연구의 응용 예로서 바이오플라스틱 생산 균주 개량 연구를 수행 중이다.
네이처 바이오테크놀로지 10월호 ‘뉴스와 전망(News and Views)’난에 게재된 미생물 플라스틱 관련 이상엽 교수 논문 내용
- 폴리하이드록시알카노에이트(polyhydroxyalkanoate, PHA)는 자연계에 존재하는 수많은 미생물들이 탄소원은 풍부하지만 다른 성장인자가 부족할 경우 자신의 세포내부에 에너지 저장물질로 축적하는 고분자이다. 이 PHA고분자는 그 고분자를 구성하고 있는 단량체(단위 화학물질)가 에스터 결합을 하고 있는 폴리에스터로서 20여년 전부터 전 세계적으로 많은 연구가 되어왔다. 하지만, PHA는 물성이 석유화학 유래의 플라스틱보다 좋지 않고, 생산 단가가 매우 높아 상용화는 되지 못했던 실정이다. 1980년대 PHA의 생산 가격은 kg당 15불 정도로서 그 당시 폴리프로필렌 가격의 20배나 되었기 때문이다. KAIST 생명화학공학과 BK21사업단 이상엽 LG화학석좌교수는 과학기술부의 지원으로 대사공학과 발효공정의 결합을 통한 미생물 플라스틱의 효율적인 생산에 관한 연구를 수행하여 왔으며, PHA생산 단가를 kg당 2-3불 정도로 낮추는 공정을 개발한 바 있다. 플라스틱을 꽉 채울 정도로 효율적인 PHA 생산 박테리아를 개발하여 “플라스틱 박테리아”라고 명명한 바 있다.
- 지난 2년여 동안 유가가 유래 없이 고공행진을 함에 따라 전 세계적으로 바이오기반 에너지 및 화학물질의 생산에 관한 연구가 활발히 진행 중이다. PHA도 그간 경제성과 물성의 취약점 때문에 연구가 시들해 졌다가, 최근 다시 각광을 받고 있다. 이번 10월호 네이처 바이오테크놀로지에 독일의 연구팀이 발표한 플라스틱 생산 미생물의 대표주자 랄스토니아 유트로파(Ralstonia eutropha)의 게놈 해독 결과는 시사하는 바가 크다. 즉, 그 박테리아의 대사 활동에 관한 청사진을 얻게 됨으로서 보다 체계적인 균주개량이 가능해 지는 것을 의미한다.
- 네이처 바이오테크놀로지는 바로 이 점을 주목하여 이상엽 교수에게 전문가의 분석 논문을 의뢰하였고, 이 교수는 현재 KAIST에서 활발하게 수행하고 있는 시스템생명공학 기법의 적용을 통해 미생물 플라스틱 생산의 획기적인 발전이 있을 것이라고 분석했다. 본 논문에서 李 교수는 “게놈 서열이 밝혀짐에 따라, 게놈수준에서의 대사회로 네트워크 구축이 가능해 졌고, 시뮬레이션을 행할 수 있어, 수많은 시행착오와 실험을 가상의 실험으로 빠르게 대체할 수 있게 되었으며, 이러한 결과를 실제 다양한 전사체, 단백체, 대사체 등 오믹스 결과와 융합 해석함으로서 보다 효율적인 균주의 개발이 가능하다”고 밝혔다. 또한, 플라스틱의 효율적인 생산 뿐 아니라 우리가 사용하고자 하는 용도에 맞는 물성을 가지는 “주문제작(tailor-made) PHA”의 생산도 대사공학을 통해 가능해 질 것으로 예측하였다. 그 외에도 李 교수가 전 세계 특허를 보유하고 있는 광학적으로 순수한 하이드록시카르복실산 생산연구도 탄력을 받게 되었으며, 그 외 이 균주의 특징을 살려 생물학적 수소생산, 방향족 화합물의 생산, 분해 및 응용 등에서도 기술적 발전이 빠르게 일어날 것으로 전망하였다.
- 세계적으로는 최근 미국의 메타볼릭스사와 ADM사가 손을 잡고 PHA의 상용화 수준 생산에 돌입하였고, 풍부한 천연자원의 브라질에서도 바이오에탄올에 이어 PHA를 상용화하고 있다. 그 외 전통적으로 이 분야 연구를 많이 해온 일본과 독일, 그리고 풍부한 바이오매스를 가진 호주에서도 지속적인 상용화 연구를 수행 중이다. 李 교수는 “대표적인 바이오플라스틱 생산 미생물의 게놈 서열이 밝혀짐으로서 효율적인 생산 시스템의 개발을 통한 각국의 상용화 경쟁이 더욱 치열해 질 것”으로 전망했다.
- 李 교수는 이렇게 효율적으로 PHA를 생산할 수 있는 것이 가능해 짐에 따라, 다양한 재생가능한 원료(셀룰로우즈, 전분, 설탕 등)로부터 미생물 발효에 의한 플라스틱의 생산이 보다 본격적으로 진행될 것으로 전망하고, 기존 화학물질의 바이오 기반 생산 기술(white biotechnology)가 보다 더 탄력을 받을 것으로 전망하며, 이에 따라 “우리나라도 일부 시스템 대사공학 기술의 우위를 바탕으로 자원 강대국들과의 전략적 제휴 등을 통해 바이오기반 화학물질 생산 기술과 산업의 확보에 박차를 가해야 할 것”이라고 말했다.
- 네이처 바이오테크놀로지의 ‘뉴스와 전망(News and Views)’은 그 해당 호에 게재되는 논문들 중 영향력이 큰 몇 편의 논문에 대하여 그 분야 세계 최고의 전문가에게 분석을 의뢰하여 초청 논문을 게재하는 섹션으로, KAIST 이상엽 교수는 바이오플라스틱과 관련하여 1997년 1월호에 “대장균이 플라스틱 시대로 접어들다”에 이어 이번 2006년 10월호에 “바이오플라스틱 생산을 해독하다”라는 전문가 분석 논문을 게재하였다.
2006.10.18
조회수 25272