-
부작용·내성 극복한 신개념 칸디다증 치료제 개발
칸디다증은 곰팡이균(진균)의 일종인 칸디다(Candida)가 혈액을 통해 전신으로 퍼지며 장기 손상과 패혈증을 유발할 수 있는 치명적인 감염 질환이다. 최근 면역 저하 치료, 장기 이식, 의료기기 사용 등이 증가함에 따라 칸디다증 발병이 급증하고 있다. 한국 연구진이 기존 항진균제와 달리, 칸디다균에만 선택적으로 작용해 높은 치료 효능과 낮은 부작용을 동시에 갖춘 차세대 치료제를 개발하는데 성공했다.
우리 대학 생명과학과 정현정 교수 연구팀이 서울아산병원 정용필 교수팀과의 협력을 통해, 칸디다 세포벽의 두 핵심 효소를 동시에 저해하는 유전자 기반 나노치료제(FTNx)를 개발했다고 8일 밝혔다.
현재 사용 중인 칸디다의 항진균제들은 표적 선택성이 낮아 인체 세포에도 영향을 미칠 수 있으며, 이에 내성을 가지는 새로운 균의 출현으로 인해 치료 효과가 점차 떨어지고 있다. 특히 면역력이 저하된 환자들에게는 감염의 진행이 빠르고 예후도 좋지 않아, 기존 치료제의 한계를 극복할 수 있는 새로운 치료법의 개발이 시급한 상황이다.
이에 연구팀이 개발한 치료제는 전신 투여가 가능하며, 유전자 억제 기술과 나노소재 기술을 융합함으로써 기존 화합물 기반의 약물들이 가지는 구조적 한계를 효과적으로 극복하고, 칸디다균에만 선택적으로 치료하는데 성공했다.
연구팀은 칸디다라는 곰팡이균의 세포벽을 만드는 데 중요한 두 가지 효소 — β‑1,3‑글루칸 합성효소(FKS1)와 키틴 합성효소(CHS3)를 동시에 표적하는 짧은 DNA 조각(antisense oligonucleotide, ASO)을 탑재한 금 나노입자 기반의 복합체를 제작했다.
여기에 칸디다 세포벽의 특정 당지질 구조(당과 지방이 결합된 구조)와 결합하는 표면 코팅 기술을 적용하여 표적유도장치를 장착함으로써, 인체 세포에는 아예 전달되지 않고 칸디다에만 선택적으로 작용하는 정밀 타겟팅 효과를 구현하는 데 성공했다.
이 복합체는 칸디다 세포 내로 진입한 후, FKS1 및 CHS3의 유전자가 만들어내는 mRNA를 잘라버려서 번역을 억제해 세포벽 성분인 β‑1,3‑글루칸과 키틴의 합성을 동시에 차단한다. 이로 인해 칸디다 세포벽은 구조적 안정성을 유지하지 못하고 붕괴되며, 세균의 생존과 증식이 억제된다.
실제로 쥐에서 전신 칸디다증 모델 실험을 통해 치료 효과를 검증한 결과, 치료군에서 칸디다의 장기 내 균 수 감소, 면역 반응 정상화, 그리고 생존율의 유의미한 증가가 관찰됐다.
연구를 주도한 정현정 교수는 “이번 연구는 기존 치료제가 인체 독성과 약제내성 확산 문제를 극복하는 방법을 제시하며, 유전자 치료의 전신 감염 적용 가능성을 보여주는 중요한 전환점”이라며, “향후 임상 적용을 위한 투여 방식 최적화 및 독성 검증 연구를 지속적으로 진행할 계획”이라고 밝혔다.
해당 연구는 생명과학과 정주연 학생 및 서울아산병원 홍윤경 박사가 제1 저자로 참여했으며, 국제학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’에 7월 1일 자로 게재됐다.
※ 논문명 : Effective treatment of systemic candidiasis by synergistic targeting of cell wall synthesis
※ DOI : 10.1038/s41467-025-60684-7
이번 연구는 보건복지부 및 한국연구재단의 지원을 받아 수행됐다.
2025.07.08
조회수 590
-
항암제 내성 없앤다! 당뇨병 등 난치성 질환 치료도 기대
암 치료의 큰 걸림돌 중 하나는 항암제에 대한 암세포의 내성이다. 기존에는 내성 암세포를 제거할 수 있는 새로운 표적을 찾는 방식이 주를 이뤘지만, 오히려 더 강한 내성을 유도할 수 있다는 한계가 있었다. 이에 우리 연구진이 내성 암세포를 다시 약물에 반응하게 만들 수 있는 핵심 유전자를 자동으로 예측하는 컴퓨터 기반 방법론을 개발했다. 이 기술은 다양한 암 치료뿐 아니라 당뇨병 등 난치성 대사 질환에도 활용될 수 있어 주목된다.
우리 대학 생명화학공학과 김현욱 교수와 김유식 교수 연구팀이 인체 대사를 시뮬레이션할 수 있는 컴퓨터 모델인 대사 네트워크 모델을 활용해, 항암제에 내성을 가진 유방암 세포를 약물에 민감화시킬 수 있는 새로운 약물 표적을 예측하는 컴퓨터 기반 방법론을 개발했다고 7일 밝혔다.
연구진은 암세포의 대사 변형이 약물 내성 형성에 관여하는 주요한 특징으로 주목하고, 항암제 내성 유방암 세포의 대사를 조절해 약물 반응성을 높일 유전자 표적을 예측하는 대사 네트워크 모델 기반 방법론을 개발했다.
연구진은 먼저 독소루비신(doxorubicin)과 파클리탁셀(paclitaxel)에 각각 내성을 지닌 MCF7 유방암 세포주에서 얻은 단백체 데이터를 통합해 세포별 대사 네트워크 모델을 구축했다. 이어 모든 대사 유전자에 대해서 유전자 낙아웃(결실) 시뮬레이션*을 수행하고, 그 결과를 분석했다.
*유전자 낙아웃 시뮬레이션: 특정 유전자를 가상으로 제거한 상태에서 생물학적 네트워크의 변화를 계산적으로 예측하는 방법
그 결과, 특정 유전자의 단백질을 억제하면, 항암제에 잘 듣지 않던 내성 암세포가 다시 항암제에 반응하도록 만들 수 있다는 것을 알아냈다. 독소루비신 내성 세포에서는 GOT1 유전자를, 파클리탁셀 내성 세포에서는 GPI 유전자를 선별했으며, 두 약물 공통으로는 SLC1A5 유전자를 표적으로 선별했다.
예측하여 선별한 유전자를 실제로 억제해 본 결과, 내성 암세포가 항암제에 다시 반응하게 됨을 실험적으로 검증했다.
나아가 같은 항암제에 내성을 갖는 다른 종류의 유방암 세포에서도 같은 유전자를 억제했을 때 항암제에 다시 민감해지는 효과가 일관되게 나타나는 것을 확인할 수 있었다.
김유식 교수는 “세포 대사는 감염병, 퇴행성 질환 등 다양한 난치성 질환에서 중요한 역할을 한다”며, “이번에 개발된 대사 조절 스위치 예측 기술은 약물 내성 유방암 치료를 넘어, 치료제가 없는 다양한 대사 질환에도 적용될 수 있는 기반 기술이 될 것”이라고 말했다.
연구를 총괄한 김현욱 교수는 “이번 연구의 가장 큰 의의는 컴퓨터 시뮬레이션만과 최소한의 실험 데이터만으로 내성 암세포를 다시 약물에 반응하게 만들 수 있는 핵심 유전자를 정밀하게 예측할 수 있다는 점”이라며, “이 방법론은 다양한 암종과 대사 관련 난치성 질환의 새로운 치료 표적 발굴에도 폭넓게 활용될 수 있을 것”이라고 강조했다.
우리 대학 생명화학공학과 임진아 박사과정생과 정해덕 박사과정생이 공동 제1 저자로 참여한 이번 연구는 생명과학·물리·공학·사회과학 등 다양한 분야의 최고 수준 연구를 다루는 다학제 국제 학술지인 미국국립과학원회보(PNAS) 6월 25일 자 온라인에 게재됐다.
※ 논문명 : Genome-scale knockout simulation and clustering analysis of drug-resistant breast cancer cells reveal drug sensitization targets
※ 저자 정보 : 임진아(한국과학기술원, 공동 제1 저자), 정해덕(한국과학기술원, 공동 제1 저자), 유한석(서울대학교병원, 교신저자), 김유식(한국과학기술원, 교신저자), 김현욱(한국과학기술원, 교신저자) 포함 총 10명
※ DOI: https://doi.org/10.1073/pnas.2425384122
이번 연구는 과학기술정보통신부 한국전자통신연구원 및 한국연구재단의 지원을 받아 수행됐다.
2025.07.07
조회수 506
-
마이크로 OLED로 난치성 뇌질환 치료 '게임 체인저' 기술 제시
광유전학 기술은 빛에 반응하는 광 단백질이 발현된 뉴런에 특정 파장의 빛 자극을 통해 뉴런의 활성을 조절하는 기술로 다양한 뇌질환의 원인을 규명하며 난치성 뇌질환의 새로운 치료 방법을 개발할 가능성을 열고 있다. 이 기술은 인체의 뇌에 삽입하여 자극을 주는 의료 기기인 ‘뉴럴 프로브’를 통해 정확하게 자극하고 무른 뇌 조직의 손상을 최소화해야 한다. 이에 우리 연구진이 마이크로 OLED를 활용해 얇고 유연한 인체 삽입형 의료기기로 구현함으로써 뉴럴 프로브의 새로운 패러다임을 제시했다.
우리 대학 전기및전자공학부 최경철 교수와 이현주 연구팀이 공동 연구를 통해, 유연한 마이크로 OLED가 집적된 광유전학용 뉴럴 프로브 개발에 성공했다고 6일 밝혔다.
광유전학 연구에서 주요 기술은 광원의 빛을 뇌로 전달하는 방식으로 외부 광원으로부터의 깊은 뇌 영역까지 빛을 전달하기 위해 수십 년간 광섬유를 사용해 왔다. 하지만 단일 뉴런을 자극하기 위한 유연 광섬유, 초미세 광원 집적 뉴럴 프로브 등 관련 연구가 이뤄지고 있다.
연구팀은 마이크로 OLED는 높은 공간적 해상도와 유연성을 가져, 매우 작은 영역의 뉴런에서도 정확하게 빛을 조사할 수 있어 세밀한 뇌 회로 분석이 가능하고 동물의 움직임에 불편함을 주지 않으면서 부작용을 최소화하는 장점에 주목했다. 그뿐만 아니라, 미세한 파장 조절을 통해 정밀한 빛 조절이 가능하며 다중 자극을 통한 복잡한 뇌 기능 연구가 가능하다.
하지만, 체내 수분이나 물에 의해 전기적 특성이 쉽게 열화되기 때문에 생체 삽입형 전자장치로 활용되는데 한계가 있었고, 얇고 유연한 탐침 위 고해상도 집적 공정에 대한 세부적인 최적화도 필요했다.
공동연구팀은 수분과 산소가 많은 생체 내 환경에서 OLED의 구동 신뢰성을 높이며 생체 삽입 시 조직 손상을 최소화하고자, 산화알루미늄/파릴렌-C(Al2O3/parylene-C)로 구성된 초박막 유연 봉지막*을 얇은 탐침 형태인 260~600마이크로미터(μm) 너비로 패터닝해 생체친화성을 유지했다.
* 봉지막: 소자를 외부 환경요인인 산소와 물 분자로부터 완전히 차단하는 막 기술로 소자의 수명을 유지시키고 신뢰성을 줌
또한, 고해상도 마이크로 OLED를 집적함에 있어 전체 소자의 유연성과 생체친화성을 유지하기 위해, 봉지막과 동일한 생체친화 재료인 파릴렌-C(parylene-C)를 활용하였다. 아울러, 인접한 OLED 픽셀 간 전기적 간섭 현상을 제거하고 각 픽셀을 공간적으로 분리하기 위해 구조적 레이어인 ‘화소 정의막(pixel define layer)’을 도입함으로써, 8개의 마이크로 OLED를 독립적으로 개별 구동할 수 있도록 구현했다.
마지막으로, 소자 내 다중 박막층의 잔류 응력과 두께를 정밀하게 조절함으로써, 생체 내 환경에서도 소자의 유연성을 유지할 수 있도록 하였다. 이를 통해 외부 셔틀이나 바늘과 같은 보조 장치 없이도 단일 탐침만으로 휘어짐 없이 삽입이 가능하도록, 소자의 기계적 스트레스를 최적화해 설계했다.
결론적으로 연구팀은 채널로돕신2의 활성화에 적합한 470나노미터(nm) 파장에서 1밀리와트/제곱밀리미터(mW/mm2)이상의 광 파워 밀도를 가지는 즉, 광유전학 및 생체조직 자극 응용에서 상당히 높은 수준의 광출력을 가진 마이크로 OLED 집적 유연 뉴럴 프로브를 개발했다.
또한, 초박막 유연 봉지막은 2.66×10⁻⁵ g/m²/day의 낮은 수분 투습률을 보이며 소자 수명은 10년 이상 유지할 수 있고, 패릴렌-C(parylene-C)를 기반으로 생체 내 높은 봉지막 성능을 발휘하며, 전기적 간섭과 휨 이슈 없이 집적된 OLED의 개별 구동을 성공적으로 시연했다.
이번 연구를 주도한 최경철 교수 연구팀의 이소민 박사는 “고유연·고해상도의 마이크로 OLED를 얇은 유연 탐침 위에 집적하는 세부 공정 및 생체 적용성, 친화성 향상에 집중했다”며 “이번 연구는 기존 연구를 넘어 유연 프로브 형태에 최초로 개발해 보고된 사례로, 유연 OLED가 인체 삽입형 측정 및 치료 의료기기로서의 새로운 패러다임을 제시할 것으로 기대된다”고 말했다.
이번 연구는 전기및전자공학부 이소민 박사가 제1 저자로 나노 분야의 권위 있는 국제 학술지 `어드밴스드 펑셔널 머터리얼즈(Advanced Functional Materials, IF 18.5)'에 지난 3월 26일 字로 온라인 게재됐으며, 전면 표지 논문으로 이번 7월에 선정됐다.
※ 논문명: Advanced Micro-OLED Integration on Thin and Flexible Polymer Neural Probes for Targeted Optogenetic Stimulation
※ DOI: https://doi.org/10.1002/adfm.202420758
한편, 이번 연구는 과학기술정보통신부 한국연구재단의 전자약 기술개발사업(연구 과제명: 뇌인지-정서 향상 빛 자극 전자약의 핵심원천기술 개발 및 생체 적용가능성 검증)의 지원을 받아 수행됐다.
2025.07.07
조회수 362
-
60% 이상 챗GPT 추론 성능 향상할 NPU 핵심기술 개발
오픈AI 챗GPT4, 구글 Gemnini 2.5 등 최신 생성형AI 모델들은 높은 메모리 대역폭(Bandwidth) 뿐만 아니라 많은 메모리 용량(Capacity)를 필요로 한다. 마이크로소프트, 구글 등 생성형AI 클라우드 운영 기업들이 엔비디아 GPU를 수십만 장씩 구매하는 이유다. 이런 고성능 AI 인프라 구축의 핵심 난제를 해소할 방안으로, 한국 연구진이 최신 GPU 대비 약 44% 낮은 전력 소모에도 평균 60% 이상 생성형 AI 모델의 추론 성능을 향상할 NPU(신경망처리장치)* 핵심 기술을 개발하는데 성공했다.
*NPU(Neural Processing Unit): 인공신경망(Neural Network)을 빠르게 처리하기 위해 만든 AI 전용 반도체 칩
우리 대학 전산학부 박종세 교수 연구팀과 (주)하이퍼엑셀(전기및전자공학부 김주영 교수 창업기업)이 연구 협력을 통해, 챗GPT와 같은 생성형AI 클라우드에 특화된 고성능·저전력의 NPU(신경망처리장치) 핵심기술을 개발했다고 4일 밝혔다.
연구팀이 제안한 기술은 컴퓨터 아키텍처 분야에서 최고 권위를 자랑하는 국제 학회인 ‘2025 국제 컴퓨터구조 심포지엄(International Symposium on Computer Architecture, ISCA 2025)’에 채택됐다.
이번 연구의 핵심은 추론 과정에서 경량화를 통해 정확도 손실을 최소화하면서도 메모리 병목 문제를 해결해 대규모 생성형AI 서비스의 성능을 개선하는 것이다. 이번 연구는 AI인프라의 핵심 구성요소인 AI반도체와 AI시스템SW를 통합 설계했다는 점에서 그 가치를 높게 인정받았다.
기존 GPU 기반 AI 인프라는 높은 메모리 대역폭과 메모리 용량 요구를 충족하기 위해 다수의 GPU 디바이스가 필요한 반면, 이번 기술은 메모리 사용의 대부분을 차지하는 KV 캐시의 양자화*를 통해 적은 수의 NPU 디바이스만으로 동일 수준의 AI 인프라를 구성할 수 있어, 생성형 AI 클라우드 구축 비용을 크게 절감할 수 있다.
*KV 캐시(Key-Value Cache)의 양자화: 생성형 AI 모델을 작동할 때 성능을 높이기 위해 사용하는 일종의 임시 저장 공간에 데이터 크기를 줄이는 것을 의미(32비트로 저장된 수를 4비트로 바꾸면, 데이터 크기는 1/8로 줄어듬)
연구팀은 기존 NPU 아키텍처의 연산 로직을 변경하지 않으면서 메모리 인터페이스와 통합될 수 있도록 설계했다. 이번 하드웨어 아키텍처 기술은 제안된 양자화 알고리즘을 구현할 뿐만 아니라, 제한된 메모리 대역폭 및 용량을 효율적으로 활용하기 위한 페이지 단위 메모리 관리 기법*과 양자화된 KV 캐시에 최적화된 새로운 인코딩 기법 등을 개발했다.
*페이지 단위 메모리 관리 기법: CPU처럼 메모리 주소를 가상화하여 NPU 내부에서 일관된 방식으로 접근할 수 있게 함
또한, 최신 GPU 대비 비용·전력 효율성이 우수한 NPU 기반 AI 클라우드를 구성할 경우, NPU의 고성능, 저전력 특성을 활용해 운영 비용 역시 크게 절감할 수 있을 것으로 기대된다.
박종세 교수는 “이 연구는 (주)하이퍼엑셀과의 공동연구를 통해 생성형AI 추론 경량화 알고리즘에서 그 해법을 찾았고 ‘메모리 문제’를 해결할 수 있는 NPU 핵심기술 개발에 성공했다. 이 기술을 통해 추론의 정확도를 유지하면서 메모리 요구량을 줄이는 경량화 기법과, 이에 최적화된 하드웨어 설계를 결합해 최신 GPU 대비 평균 60% 이상 성능이 향상된 NPU를 구현했다” 고 말했다.
이어 “이 기술은 생성형AI에 특화된 고성능·저전력 인프라 구현 가능성을 입증했으며, AI클라우드 데이터센터뿐 아니라 능동적인 실행형 AI인 ‘에이전틱 AI ’등으로 대표되는 AI 대전환(AX) 환경에서도 핵심 역할이 기대된다”고 강조했다.
이 연구는 김민수 박사과정 학생과 ㈜하이퍼엑셀 홍성민 박사가 공동 제1 저자로 지난 6월 21일부터 6월 25일까지 일본 도쿄에서 열린 ‘2025 국제 컴퓨터구조 심포지엄(ISCA)’에 발표됐다. 국제적 저명학회인 ISCA는 올해는 570편의 논문이 제출됐으며 그중 127편 만이 채택됐다. (채택률 22.7%).
※논문 제목: Oaken: Fast and Efficient LLM Serving with Online-Offline Hybrid KV Cache Quantization
※DOI: https://doi.org/10.1145/3695053.3731019
한편 이번 연구는 한국연구재단 우수신진연구자지원사업, 정보통신기획평가원(IITP), 인공지능반도체대학원지원사업의 지원을 받아 수행됐다.
2025.07.04
조회수 776
-
정확도·효율성 높인 생명과학 데이터 분석 도구 'scICE' 개발
기존보다 최대 30배 빠른 속도로 안정적인 결과만을 자동으로 선별하여 대규모 생명과학 데이터 분석의 정확도와 효율성을 획기적으로 향상하는 방법이 나왔다. 우리 대학 수리과학과 김재경 교수 연구팀은 세포 분류(클러스터링) 결과의 안정성을 수학적으로 평가해 불안정한 결과를 걸러내는 새로운 분석 도구인 ‘scICE(single-cell Inconsistency Clustering Estimator)’를 개발했다.
단일세포 수준에서 유전자 발현을 분석하는 기술인 단일세포 전사체 분석법(scRNA-seq)은 현대 생명과학 연구의 핵심 도구로 자리 잡았다. 이 과정에서 클러스터링은 유사한 유전자 발현 특성을 가진 세포들을 그룹으로 묶는 작업으로, 암세포와 정상 세포를 구분하거나 새로운 세포 유형을 발견하는 데 중요한 첫걸음이다. 하지만 클러스터링 알고리즘은 무작위로 세포를 분류해 같은 데이터를 분석해도 결과가 달라지는 경우가 많다.
제1 저자인 김현 선임연구원은 “일부 정상 세포가 암세포로 잘못 분류되거나 중요한 세포 유형이 누락되는 불안정성으로 인해 연구자들은 다시 분석하거나 복잡한 계산을 통해 신뢰도가 높은 결과를 선별해야 했다”며, “기존 방법들은 분석을 여러 번 반복해 합의된 결과를 도출하는 방식으로, 계산량이 방대하고 수만 개 이상의 세포가 포함된 대용량 데이터에는 적합하지 않다”고 말했다.
연구팀이 개발한 scICE는 한 번의 분석만으로도 얼마나 일관성 있게 결과가 도출됐는지를 수학적으로 평가한다. 새로 도입한 ‘불일치 계수(Inconsistency Coefficient, IC)’를 통해 많은 계산량이 요구되는 연산 없이도 클러스터 간 안정성을 정량적으로 판단할 수 있다. 모든 세포를 일일이 비교하던 기존 방식과 달리, 불일치 계수를 활용한 안정성 평가는 클러스터 구조 간 유사성만 평가해 비교 대상을 획기적으로 줄일 수 있어 분석 시간을 크게 단축한다.
연구팀은 뇌, 폐, 혈액 등 다양한 조직에서 수집된 48개의 실제 및 모의 scRNA-seq 데이터에 scICE를 적용하여 그 유효성을 입증했다. 그 결과, 기존 분석 결과 중 약 3분의 2는 통계적으로 불안정하며 신뢰하기 어렵다는 사실을 밝혀냈다. 반면, scICE는 신뢰할 수 있는 결과만을 선별해 연구자의 시간과 계산 자원을 절약하면서도 정확도를 한층 높였다.
또한, scICE는 일반적인 클러스터링으로는 놓치기 쉬운 희귀한 세포 유형을 효과적으로 탐지했다. 실제로 일부 데이터에서 찾기 어려웠던 희귀 면역세포들을 scICE 기반의 서브클러스터링을 통해 안정적으로 식별해냈다. 예를 들어, 매우 복잡한 분석을 거쳐야만 식별할 수 있던 여러 대식세포(macrophage) 아형들을 훨씬 간편하고 정확하게 구분해냈다.
scICE에 관심 있는 연구자는 누구나 깃허브 사이트(https://github.com/Mathbiomed/scICE)를 통해 쉽게 활용해볼 수 있다.
김재경 교수는 “이번 연구는 수학적 아이디어가 어떻게 생명과학의 핵심 문제를 해결하고 분석 과정을 혁신할 수 있는지를 보여주는 성과”라며, “클러스터링 신뢰도의 중요성이 간과되어 온 측면이 있는데, 이번 기회로 scICE가 생명과학 분야에서 신뢰도 높은 데이터 해석을 가능케 하는 표준 도구로 자리 잡기를 기대한다”고 전했다.
우리 대학 박종은 교수 연구팀, POSTECH 김종경 교수 연구팀, 고려대 서민석 교수 연구팀과 공동으로 참여한 이번 연구결과는 세계적인 국제학술지 네이처 커뮤니케이션즈(Nature Communications, IF 14.7)에 7월 2일 온라인 게재됐다.
2025.07.03
조회수 717
-
24시간 말하는 AI비서 가능성 여는 '스피치SSM' 개발
최근 음성 언어 모델(Spoken Language Model, SLM)은 텍스트 없이 인간의 음성을 학습해 음성의 언어적, 비언어적 정보를 이해 및 생성하는 기술로 텍스트 기반 언어 모델의 한계를 넘어서는 차세대 기술로 각광받고 있다. 하지만 기존 모델은 장시간 콘텐츠 생성이 요구되는 팟캐스트, 오디오북, 음성비서 등에서 한계가 두드러졌는데, 우리 연구진이 이런 한계를 뛰어넘어, 시간 제약 없이 일관되고 자연스러운 음성 생성을 실현한 ‘스피치SSM’을 개발하는데 성공했다.
우리 대학 전기및전자공학부 노용만 교수 연구팀의 박세진 연구원(박사과정)이 장시간 음성 생성이 가능한 음성 언어 모델 ‘스피치SSM(SpeechSSM)’을 개발했다고 3일 밝혔다.
이번 연구는 국제 최고 권위 머신러닝 학회인 ICML(International Conference on Machine Learning) 2025에 전체 제출된 논문 중 약 1%만이 선정되는 구두 논문 발표에 확정돼 뛰어난 연구 역량을 입증할 뿐만 아니라 우리 대학의 인공지능 연구 능력이 세계 최고 수준임을 다시 한번 보여주는 계기가 될 전망이다.
음성 언어 모델(SLM)은 중간에 텍스트로 변환하지 않고 음성을 직접 처리함으로써, 인간 화자 고유의 음향적 특성을 활용할 수 있어 대규모 모델에서도 고품질의 음성을 빠르게 생성할 수 있다는 점이 큰 강점이다.
그러나 기존 모델은 음성을 아주 세밀하게 잘게 쪼개서 아주 자세한 정보까지 담는 경우, ‘음성 토큰 해상도’가 높아지고 사용하는 메모리 소비도 증가하는 문제로 인해 장시간 음성의 의미적, 화자적 일관성을 유지하기 어려웠다.
연구팀은 이러한 문제를 해결하기 위해 하이브리드 상태공간 모델(Hybrid State-Space Model)을 사용한 음성 언어 모델인‘스피치SSM’를 개발해 긴 음성 시퀀스를 효율적으로 처리하고 생성할 수 있게 설계했다.
이 모델은 최근 정보에 집중하는 ‘어텐션 레이어(attention layer)’와 전체 이야기 흐름(장기적인 맥락)을 오래 기억하는 ‘순환 레이어(recurrent layer)’를 교차 배치한 ‘하이브리드 구조’를 통해 긴 시간 동안 음성을 생성해도 흐름을 잃지 않고 이야기를 잘 이어간다. 또한, 메모리 사용량과 연산량이 입력 길이에 따라 급격히 증가하지 않아, 장시간의 음성을 안정적이고 효율적으로 학습하고 생성할 수 있다.
스피치SSM은 음성 데이터를 짧은 고정된 단위(윈도우)로 나눠 각 단위별로 독립적으로 처리하고, 전체 긴 음성을 만들 경우에는 다시 붙이는 방식을 활용해 쉽게 긴 음성을 만들 수 있어 무한한 길이의 음성 시퀀스(unbounded speech sequence)를 효과적으로 처리할 수 있게 했다.
또한 음성 생성 단계에서는 한 글자, 한 단어 차례대로 천천히 만들어내지 않고, 여러 부분을 한꺼번에 빠르게 만들어내는 ‘비자기회귀(Non-Autoregressive)’방식의 오디오 합성 모델(SoundStorm)을 사용해, 고품질의 음성을 빠르게 생성할 수 있게 했다.
기존은 10초 정도 짧은 음성 모델을 평가했지만, 연구팀은 16분까지 생성할 수 있도록 자체 구축한 새로운 벤치마크 데이터셋인 ‘LibriSpeech-Long'을 기반으로 음성을 생성하는 평가 태스크를 새롭게 만들었다.
기존 음성 모델 평가 지표인 말이 문법적으로 맞는지 정도만 알려주는 PPL(Perplexity)에 비해, 연구팀은 시간이 지나면서도 내용이 잘 이어지는지 보는 'SC-L(semantic coherence over time)', 자연스럽게 들리는 정도를 시간 따라 보는 'N-MOS-T(naturalness mean opinion score over time)' 등 새로운 평가 지표들을 제안해 보다 효과적이고 정밀하게 평가했다.
새로운 평가를 통해 스피치SSM 음성 언어 모델로 생성된 음성은 긴 시간 생성에도 불구하고 초기 프롬프트에서 언급된 특정 인물이 지속적으로 등장하며, 맥락적으로 일관된 새로운 인물과 사건들이 자연스럽게 전개되는 모습을 확인했다. 이는 기존 모델들이 장시간 생성 시 쉽게 주제를 잃고 반복되는 현상을 보였던 것과 크게 대조적이다.
박세진 박사과정생은 “기존 음성 언어 모델은 장시간 생성에 한계가 있어, 실제 인간이 사용하도록 장시간 음성 생성이 가능한 음성 언어 모델을 개발하는 것이 목표였다”며 “이번 연구 성과를 통해 긴 문맥에서도 일관된 내용을 유지하면서, 기존 방식보다 더 효율적이고 빠르게 실시간으로 응답할 수 있어, 다양한 음성 콘텐츠 제작과 음성비서 등 음성 AI 분야에 크게 기여할 것으로 기대한다”라고 밝혔다.
이 연구는 제1 저자인 우리 대학 박세진 박사과정 학생이 구글 딥마인드(Google DeepMind)와 협력해, ICML(국제 머신러닝 학회) 2025에서 7월 16일 구두 발표로 소개될 예정이다.
※ 논문제목: Long-Form Speech Generation with Spoken Language Models
※ DOI: 10.48550/arXiv.2412.18603
한편, 박세진 박사과정생은 비전, 음성, 언어를 통합하는 연구를 수행하며 CVPR(컴퓨터 비전 분야 최고 학회) 2024 하이라이트 논문 발표, 2024년 ACL(자연어 처리 분야 최고 학회)에서 우수논문상(Outstanding Paper Award) 수상 등을 통해 우수한 연구 역량을 입증한 바 있다.
[데모 페이지 링크]
https://google.github.io/tacotron/publications/speechssm/
2025.07.03
조회수 911
-
AI로 방사성 오염 '아이오딘' 제거용 최적 신소재 발굴
원자력 에너지 활용에 있어 방사성 폐기물 관리는 핵심적인 과제 중 하나다. 특히 방사성 ‘아이오딘(요오드)’는 반감기가 길고(I-129의 경우 1,570만 년), 이동성 및 생체 유독성이 높아 환경 및 인체에 심각한 위험을 초래할 수 있다. 한국 연구진이 인공지능을 활용해 아이오딘을 제거할 원자력 환경 정화용 신소재 발굴에 성공했다. 연구팀은 향후 방사성 오염 흡착용 분말부터 오염수 처리 필터까지 다양한 산학협력을 통해 상용화를 추진할 예정이다.
우리 대학 원자력및양자공학과 류호진 교수 연구팀이 한국화학연구원 디지털화학연구센터 노주환 박사가 협력하여, 인공지능을 활용해 방사성 오염 물질이 될 수 있는 아이오딘을 효과적으로 제거하는 신소재를 발굴하는 기술을 개발했다고 2일 밝혔다.
최근 보고에 따르면 방사능 오염 물질인 아이오딘이 수용액 환경에서 아이오딘산염(IO3-) 형태로 존재하는 것으로 밝혀졌으나, 기존의 은 기반 흡착제는 이에 대해 낮은 화학적 흡착력을 가져 비효율적이었다. 따라서 아이오딘산염을 효과적으로 제거할 수 있는 새로운 흡착제 신소재 개발이 시급한 실정이다.
류호진 교수 연구팀은 기계학습을 활용한 실험 전략을 통해 다양한 금속원소를 함유한 ‘이중층 수산화물(Layered Double Hydroxide, 이하 LDH)’이라는 화합물 중 최적의 아이오딘산염 흡착제를 발굴했다.
이번 연구에서 개발된 구리-크롬-철-알루미늄 기반의 다중금속 이중층 수산화물 Cu3(CrFeAl)은 아이오딘산염에 대해 90% 이상의 뛰어난 흡착 성능을 보였다. 이는 기존의 시행착오 실험 방식으로는 탐색이 어려운 방대한 물질 조성 공간을 인공지능 기반의 능동학습법을 통해 효율적으로 탐색해 얻어낸 성과다.
연구팀은 이중층 수산화물(이하 LDH)이 고엔트로피 재료와 같이 다양한 금속 조성을 가질 수 있고 음이온 흡착에 유리한 구조를 지녔다는 점에 주목했다. 그러나 다중금속 LDH의 경우 가능한 금속 조합이 너무 많아 기존의 실험 방식으로는 최적의 조합을 찾기 어려웠다.
이를 해결하기 위해 연구팀은 인공지능(기계학습)을 도입했다. 초기 24개의 2원계 및 96개의 3원계 LDH 실험 데이터로 학습을 시작해, 4원계 및 5원계 후보 물질로 탐색을 확장했다. 이 결과 전체 후보 물질 중 단 16%에 대해서만 실험을 수행하고도 아이오딘산염 제거에 최적인 신소재 물질을 찾아낼 수 있었다.
류호진 교수는 “인공지능을 활용하면 방대한 신소재 후보 물질 군에서 방사성 오염 제거용 물질을 효율적으로 찾아낼 가능성을 보여, 원자력 환경 정화용 신소재 개발에 필요한 연구를 가속화하는데 기여할 것으로 기대된다”고 말했다.
류 교수 연구팀은 개발된 분말 기술에 대한 국내 특허를 출원했으며 이를 기반으로 해외 특허 출원을 진행 중이다. 연구팀은 향후 방사성 오염 흡착용 분말의 다양한 사용 환경에서의 성능을 고도화하고, 오염수 처리 필터 개발 분야에서 산학 협력을 통한 상용화 방안을 추진할 예정이다.
우리 대학 신소재공학과를 졸업한 이수정 박사와 한국화학연구원 디지털화학연구센터 노주환 박사가 제1 저자로 참여한 이번 연구는 이번 연구 결과는 환경 분야 국제 저명 학술지인 ‘위험물질 저널(Journal of Hazardous Materials)'에 5월 26일 온라인 게재됐다.
※논문명: Discovery of multi-metal-layered double hydroxides for decontamination of iodate by machine learning-assisted experiments
※DOI: https://doi.org/10.1016/j.jhazmat.2025.138735
이번 연구는 과학기술정보통신부 한국연구재단의 원자력기초연구지원사업과 나노·소재기술개발사업의 지원으로 수행됐다.
2025.07.02
조회수 724
-
‘슝’ 스스로 움직이는 생명체 세포로봇 개발
현재 전 세계적으로 마이크로 및 나노급의 작은 입자 기반의 비생명체 자가 추진 로봇 기술은 활발하게 연구되고 있는 반면에, 세포와 같은 생명체 구성 요소를 직접 활용한 세포로봇 연구는 아직 초기 단계에 머물러 있다. 우리 연구진이 세포 기반 시스템의 자율적으로 이동하는 세포로봇을 개발하는데 성공했다. 향후 정밀 약물 전달이나 차세대 세포 기반 치료법의 원천기술로 활용될 수 있을 것으로 기대된다.
우리 대학 화학과 최인성 교수 연구팀이 외부 동력 장치나 복잡한 기계 구조 없이, 생체 부산물인 ‘요소(urea)’*를 연료로 사용하는 자가 추진 세포로봇을 개발했다고 30일 밝혔다.
*요소(urea): 사람을 포함한 대부분의 동물 체내에서 단백질을 분해하면서 생기는 노폐물로 생명체 안에서는 단백질 대사 과정에서 암모니아를 독성이 낮은 형태로 전환하여 배출하는 중요한 역할을 함
연구팀이 구현한 세포로봇은 방향성을 갖고 스스로 이동할 수 있으며, 원하는 물질을 운반하거나 주변 환경 제어 기능을 탑재할 수 있는 다기능성 플랫폼으로 설계됐다.
연구팀은 쉽고 안정적으로 얻을 수 있는 생명체이면서 부산물로 생성된 에탄올 활용 가능성이 있고, 인공적인 복잡한 외부 장치 없이 생명체 스스로 만들어내는 물질을 활용할 수 있는 ‘효모’에 주목했다.
제빵과 막걸리 발효에 사용되는 효모(이스트, yeast)는 포도당을 분해해 에너지를 얻는 대사 과정에서 알코올(에탄올)을 부산물로 생성하는데, 연구팀은 이때 생성된 에탄올을 활용해 효모 표면에 생체친화적인 방식으로 나노 껍질을 형성할 수 있는 원천기술을 개발했다.
이를 위해, 알코올산화효소(AOx)와 겨자무과산화효소(HRP)로 구성된 효소 시스템을 도입했다. 이 효소 시스템은 효모의 포도당 분해 반응과 연계된 연쇄적 효소 반응을 유도하며, 그 결과로 멜라닌 계열의 나노껍질이 효모 표면에 형성된다.
특히, 이번에 개발된 화학적 방법론은 효모가 성장하고 분열하는 동안에도 나노껍질 형성이 지속적으로 일어나도록 설계돼 있어서, 세포의 형태 변화에 따라 비대칭적인 세포-껍질 구조가 자연스럽게 생성된다.
예를 들어, 분열 중인 세포 전체를 감싸는 껍질이 형성되기도 하지만, 모세포 부분에는 껍질이 생성되고 딸세포 부분에는 형성되지 않는 구조도 만들어진다.
연구팀은 세포를 감싸는 나노껍질에 우레아제(urease)*를 부착하고 세포로봇의 움직임을 관찰했다. 우레아제는 요소를 분해하는 촉매 역할을 하며 세포로봇이 스스로 움직일 수 있도록 구동력을 만들어내는 핵심 역할을 수행하며 비대칭 구조를 가진 세포로봇이 보다 명확한 방향성을 갖고 자가 추진하는 현상을 확인했다.
*우레아제(urease): 요소를 분해해 암모니아와 이산화탄소를 만드는 효소
이번에 개발된 세포로봇은 세포 주위에 존재하는 물질만으로 자가 추진이 가능하고, 자석이나 레이저 등 복잡한 외부 제어 장치에 의존하지 않아 구동 메커니즘이 훨씬 간단하고 생체친화적이다. 또한, 나노껍질에 다양한 효소를 화학적으로 접합할 수 있어, 다양한 생체 물질을 연료로 활용하는 세포로봇의 확장 개발도 가능하다.
이번 연구의 제1 저자인 화학과 김나영 박사과정은 “자가 추진 세포로봇은 스스로 환경을 감지하고 반응하며 움직이는 능력을 지닌 새로운 개념의 플랫폼으로, 향후 암세포 표적 치료나 정밀 약물전달시스템 등에서 중요한 역할을 할 수 있을 것”이라고 말했다.
이번 연구는 국제 학술지 ‘사이언스 어드밴시스(Science Advances)’에 지난 6월 25일 오후 2시(미국 동부시각) 온라인판에 게재됐다.
※ 논문명 : Autonomous Chemo-Metabolic Construction of Anisotropic Cell-in-Shell Nanobiohybrids in Enzyme-Powered Cell Microrobots; 국문 번역 : 효소 구동 세포 마이크로로봇 구축에서의 자율적인 화학-대사 반응을 통해 형성된 비등방성 세포내껍질 나노바이오하이브리드
※ DOI: https://doi.org/10.1126/sciadv.adu5451
한편, 이번 연구는 한국연구재단 기초연구사업 중견연구과제(제목: 세포대사 연계형 단일세포나노피포화)의 지원을 받아 수행됐다.
2025.06.30
조회수 1090
-
이산화탄소만 잡아내는 유망 소재를 AI로 쉽게 찾는다
기후 위기를 막기 위해 이미 배출된 이산화탄소를 적극적으로 줄이는 것이 필수적이며, 이를 위해 공기 중 이산화탄소만 직접 포집하는 기술(Direct Air Capture, 이하 DAC)이 주목받고 있다. 하지만 공기 중에 존재하는 수증기(H₂O)로 인해 이산화탄소만 효과적으로 포집하는 것이 쉽지 않다. 이 기술의 핵심 소재로 연구되는 금속–유기 구조체(Metal-Organic Frameworks, 이하 MOF)를 활용해 우리 연구진이 AI 기반 기계학습 기술을 적용, MOF 중에서 가장 유망한 탄소 포집 후보 소재들을 찾아내는 데 성공했다.
우리 대학 생명화학공학과 김지한 교수 연구팀이 임페리얼 칼리지 런던(Imperial College London) 연구팀과 공동 연구를 통해 대기 중 이산화탄소 포집에 적합한 MOF를 빠르고 정확하게 선별할 수 있는 기계학습 기반 시뮬레이션 기법을 개발했다고 29일 밝혔다.
복잡한 구조와 분자 간 상호작용의 예측 한계로 인해 고성능 소재를 찾는 데 큰 제약을 극복하기 위해, 연구팀은 MOF와 이산화탄소(CO2), 물(H2O) 사이의 상호작용을 정밀하게 예측할 수 있는 기계학습(머신러닝) 기반 역장(Machine Learning Force Field, MLFF)을 개발하고, 이를 통해 양자역학 수준의 예측 정확도를 유지하면서도 기존보다 월등히 빠른 속도로 MOF 소재들의 흡착 물성을 계산할 수 있도록 했다.
연구팀은 개발된 시스템을 활용해 8,000여 개의 실험적으로 합성된 MOF 구조를 대규모 스크리닝한 결과, 100개 이상의 유망한 탄소 포집 후보 소재를 발굴했다. 특히 기존의 고전 역장 기반 시뮬레이션으로는 확인되지 않았던 새로운 후보 소재들을 제시했으며, MOF의 화학 구조와 흡착 성능 간의 상관관계를 분석해 DAC용 소재 설계에 유용한 7가지 핵심 화학적 특징도 함께 제안했다.
이번 연구는 MOF–CO2 및 MOF-H2O 간 상호작용을 정밀하게 예측함으로써, DAC 분야의 소재 설계 및 시뮬레이션 기술을 크게 향상한 사례로 평가된다.
우리 대학 생명화학공학과 임윤성 박사과정과 박현수 박사가 공동 제1 저자로 참여한 이번 연구 결과는 국제 학술지 `매터 (Matter)'에 지난 6월 12일 게재됐다.
※논문명: Accelerating CO2 direct air capture screening for metal-organic frameworks with a transferable machine learning force field
※DOI: 10.1016/j.matt.2025.102203
한편, 이번 연구는 Saudi Aramco-KAIST CO2 Management Center와 과학기술정보통신부의 글로벌 C.L.E.A.N. 사업의 지원을 받아 수행됐다.
2025.06.30
조회수 726
-
AI가 여론 조작? 한국어 'AI 생성 댓글' 탐지 기술 개발
생성형 AI 기술이 발전하면서 이를 악용한 온라인 여론 조작 우려가 커지고 있다. 이에 따른 AI 생성글 탐지 기술도 개발되었는데 대부분 영어로 된 장문의 정형화된 글을 기반으로 개발돼, 짧고(평균 51자), 구어체 표현이 많은 한국어 뉴스 댓글에는 적용이 어려웠다. 우리 연구진이 한국어 AI 생성 댓글을 탐지하는 기술을 개발해서 화제다.
우리 대학 전기및전자공학부 김용대 교수 연구팀이 국가보안기술연구소(국보연)와 협력해, 한국어 AI 생성 댓글을 탐지하는 기술 'XDAC'를 세계 최초로 개발했다고 23일 밝혔다.
최근 생성형 AI는 뉴스 기사 맥락에 맞춰 감정과 논조까지 조절할 수 있으며, 몇 시간 만에 수십만 개의 댓글을 자동 생성할 수 있어 여론 조작에 악용될 수 있다. OpenAI의 GPT-4o API를 기준으로 하면 댓글 1개 생성 비용은 약 1원 수준이며, 국내 주요 뉴스 플랫폼의 하루 평균 댓글 수인 20만 개를 생성하는 데 단 20만 원이면 가능할 정도다. 공개 LLM은 자체 GPU 인프라만 갖추면 사실상 무상으로도 대량의 댓글 생성을 수행할 수 있다.
연구팀은 AI 생성 댓글과 사람 작성 댓글을 사람이 구별할 수 있는지 실험했다. 총 210개의 댓글을 평가한 결과, AI 생성 댓글의 67%를 사람이 작성한 것으로 착각했고, 실제 사람 작성 댓글도 73%만 정확히 구분해냈다. 즉, 사람조차 AI 생성 댓글을 정확히 구별하기 어려운 수준에 이르렀다는 의미다. AI 생성 댓글은 오히려 기사 맥락 관련성(95% vs 87%), 문장 유창성(71% vs 45%), 편향성 인식(33% vs 50%)에서 사람 작성 댓글보다 높은 평가를 받았다.
그동안 AI 생성글 탐지 기술은 대부분 영어로 된 장문의 정형화된 글을 기반으로 개발되어 한국어의 짧은 댓글에는 적용이 어려웠다. 짧은 댓글은 통계적 특징이 불충분하고, 이모지·비속어·반복 문자 등 비정형 구어 표현이 많아 기존 탐지 모델이 효과적으로 작동하지 않는다. 또한, 현실적인 한국어 AI 생성 댓글 데이터셋이 부족하고, 기존의 단순한 프롬프팅 방식으로는 다양하고 실제적인 댓글을 생성하는 데 한계가 있었다.
이에 연구팀은 ▲14종의 다양한 LLM 활용 ▲자연스러움 강화 ▲세밀한 감정 제어 ▲참조자료를 통한 증강 생성의 네 가지 전략을 적용한 AI 댓글 생성 프레임워크를 개발해, 실제 이용자 스타일을 모방한 한국어 AI 생성 댓글 데이터셋을 구축하고 이 중 일부를 벤치마크 데이터셋으로 공개했다. 또 설명 가능한 AI(XAI) 기법을 적용해 언어 표현을 정밀 분석한 결과, AI 생성 댓글에는 사람과 다른 고유한 말투 패턴이 있음을 확인했다.
예를 들어, AI는 "것 같다", "에 대해" 등 형식적 표현과 높은 접속어 사용률을 보였고, 사람은 반복 문자(ㅋㅋㅋㅋ), 감정 표현, 줄바꿈, 특수기호 등 자유로운 구어체 표현을 즐겨 사용했다.
특수문자 사용에서도 AI는 전 세계적으로 통용되는 표준화된 이모지를 주로 사용하는 반면, 사람은 한국어 자음(ㅋ, ㅠ, ㅜ 등)이나 특수 기호(ㆍ, ♡, ★, • 등) 등 문화적 특수성이 담긴 다양한 문자를 활용했다.
특히, 서식 문자(줄바꿈, 여러 칸 띄어쓰기 등) 사용에서 사람 작성 댓글의 26%는 이런 서식 문자를 포함했지만, AI 생성 댓글은 단 1%만 사용했다. 반복 문자(예: ㅋㅋㅋㅋ, ㅎㅎㅎㅎ 등) 사용 비율도 사람 작성 댓글이 52%로, AI 생성 댓글(12%)보다 훨씬 높았다.
XDAC는 이러한 차이를 정교하게 반영해 탐지 성능을 높였다. 줄바꿈, 공백 등 서식 문자를 변환하고, 반복 문자 패턴을 기계가 이해할 수 있도록 변환하는 방식이 적용됐다. 또 각 LLM의 고유 말투 특징을 파악해 어떤 AI 모델이 댓글을 생성했는지도 식별 가능하게 설계됐다.
이러한 최적화로 XDAC는 AI 생성 댓글 탐지에서 98.5% F1 점수로 기존 연구 대비 68% 성능을 향상시켰으며, 댓글 생성 LLM 식별에서도 84.3% F1 성능을 기록했다.
고우영 선임연구원은 "이번 연구는 생성형 AI가 작성한 짧은 댓글을 높은 정확도로 탐지하고, 생성 모델까지 식별할 수 있는 세계 최초 기술"이라며 "AI 기반 여론 조작 대응의 기술적 기반을 마련한 데 큰 의의가 있다"고 강조했다.
연구팀은 XDAC의 탐지 기술이 단순 판별을 넘어 심리적 억제 장치로도 작용할 수 있다고 설명했다. 마치 음주단속, 마약 검사, CCTV 설치 등이 범죄 억제 효과를 가지듯, 정밀 탐지 기술의 존재 자체가 AI 악용 시도를 줄일 수 있다는 것이다.
XDAC는 플랫폼 사업자가 의심스러운 계정이나 조직적 여론 조작 시도를 정밀 감시·대응하는 데 활용될 수 있으며, 향후 실시간 감시 시스템이나 자동 대응 알고리즘으로 확장 가능성이 크다.
이번 연구는 설명가능 인공지능(XAI) 기반 탐지 프레임워크를 제안한 것이 핵심이며, 인공지능 자연어처리 분야 최고 권위 학술대회인 7월 27일부터 개최되는 'ACL 2025' 메인 콘퍼런스에 채택되며 기술력을 인정받았다.
※논문 제목: XDAC: XAI-Driven Detection and Attribution of LLM-Generated News Comments in Korean
※논문원본: https://github.com/airobotlab/XDAC/blob/main/paper/250611_XDAC_ACL2025_camera_ready.pdf
이번 연구는 우리 대학 김용대 교수의 지도 아래 국보연 소속이자 우리 대학 박사과정인 고우영 선임연구원이 제1 저자로 참여했으며, 성균관대학교 김형식 교수와 우리 대학 오혜연 교수가 공동 연구자로 참여했다.
2025.06.24
조회수 2323
-
가벼운 숨결·압력·소리까지 감지, 맞춤형 촉각 센서 개발
로봇이 물체를 잡을 때나, 의료기기가 몸의 맥박을 감지할 때 촉각 센서는 손끝처럼 ‘눌림’을 느끼는 기술이다. 기존 센서들은 반응이 느리거나 여러 번 쓰면 정확도가 떨어지는 단점이 있었는데, 한국 연구진이 가벼운 숨결, 압력, 소리까지 정확하고 빠르게 감지할 수 있어, 일상적인 움직임부터 의료용 진단까지 폭넓게 사용할 수 있는 센서를 개발하는데 성공했다.
우리 대학 기계공학과 박인규 교수 연구팀이 국가과학기술연구회(NST, 이사장 김영식) 산하 한국전자통신연구원(ETRI, 원장 방승찬)과의 공동연구를 통해 기존 촉각 센서 기술의 구조적 한계를 극복한 혁신적 기술을 개발했다고 23일 밝혔다.
이번 공동연구의 핵심은 ‘열성형 기반 3차원 전자 구조(Thermoformed 3D Electronics, T3DE)’를 적용해 유연성과 정밀성, 반복 내구성을 동시에 확보한 맞춤형 촉각 센서를 구현한 것이다.
특히, 소프트 엘라스토머(고무, 실리콘 등 쭉 늘렸다가 놓으면 다시 원래 모양으로 돌아오는 재료) 기반 센서가 갖는 느린 응답속도, 높은 히스테리시스*, 크립(오랫동안 힘을 가했을 때 재료가 천천히 변형되는 현상) 오차 등 구조적 문제를 극복하면서도 다양한 환경에서 정밀하게 작동하는 플랫폼으로 주목받고 있다.
* 히스테리시스(Hysteresis): 한 번 받았던 힘이나 변화가 기억처럼 남아서, 똑같은 자극을 주더라도 항상 같은 결과가 나오지 않는 현상
T3DE 센서는 2차원 필름 위에 정밀하게 전극을 형성한 후, 열과 압력을 가해 3차원 구조로 성형하는 과정을 통해 제작된다. 특히 센서 상부의 전극과 지지 다리 구조는 목적에 따라 기계적 물성을 조절할 수 있도록 설계되어 있으며, 지지 다리의 두께, 길이, 개수 등 미세한 구조 매개변수를 조정함으로써 센서의 영률(Young’s modulus)*을 10Pa에서 1MPa까지 폭넓게 설정할 수 있다. 이 수치는 피부, 근육, 힘줄 등의 생체조직과 유사한 수준으로, 실제 생체 인터페이스용 센서로도 유용하다.
* 영률(Young’s modulus): 재료의 강성을 나타내는 지표로, 이번 연구에서는 다양한 생체조직과 일치하는 수준까지 조절 가능함
이번에 개발된 T3DE 센서는 공기를 유전체로 활용해 전력 소비를 줄이는 동시에, 민감도, 응답속도, 온도 안정성, 반복 정밀도 측면에서도 우수한 성능을 보였다.
실험 결과, 해당 센서는 △민감도 5,884 kPa⁻¹ △응답속도 0.1ms(1,000분의 1초보다 짧은 시간) △히스테리시스 0.5% 이하 △5,000회 반복 측정에서도 정밀도 99.9% 이상을 유지하는 내구성을 입증했다.
연구팀은 이 센서를 활용해 고해상도 40×70 배열하여, 총 2,800개의 센서를 촘촘히 구성, 운동 중 발바닥의 압력 분포를 실시간 시각화하고, 손목 맥박 측정을 통한 혈관 건강 상태 평가 가능성도 확인했다. 또한, 상용 음향 센서 수준의 소리 감지 실험에서도 성공적인 결과를 얻었다. 즉, 이 센서는 발바닥 압력, 맥박, 소리까지 매우 정확하고 빠르게 측정할 수 있어서 운동, 건강, 소리 감지 등 다양한 분야에 활용될 수 있다.
T3DE 기술은 증강현실(AR) 기반 외과 수술 훈련 시스템에도 적용됐다. 각 센서 요소마다 서로 다른 영률을 부여해 실제 생체조직과 유사한 강성을 구현했으며, 수술 절개 시 가해지는 압력 강도에 따라 시각·촉각 피드백을 동시에 제공하고, 너무 깊이 베거나, 위험한 부위를 건드리면 실시간 위험 경고 기능까지 갖춘 시스템이 구현되었다. 이는 의료 교육의 몰입도와 정확성을 획기적으로 향상할 수 있는 기술로 평가된다.
우리 대학 박인규 교수는 “이 센서는 설계 단계에서부터 정밀하게 조절할 수 있어 다양한 환경에서도 안정적으로 작동한다”며, “일상생활은 물론 의료, 재활, 가상현실 등 다양한 분야에서 쓸 수 있을 것”이라고 밝혔다.
본 연구는 ETRI 최중락 박사, KAIST 한찬규 석사, 이돈호 박사과정이 공동 제1저자로 참여했으며, 박인규 교수가 전체 연구를 총괄했다. 연구 결과는 세계적 권위의 학술지 ‘사이언스 어드밴시스(Science Advances)’ 2025년 5월호에 게재됐으며, 해당 논문은 사이언스 어드밴시스 공식 SNS 채널(Facebook, Twitter)을 통해 전 세계에 소개되기도 했다.
※ 논문명: Thermoforming 2D films into 3D electronics for high-performance, customizable tactile sensing
※ DOI: 10.1126/sciadv.adv0057
이번 연구는 산업통상자원부, 한국연구재단, 한국산업기술평가관리원의 지원을 받아 수행됐다.
2025.06.23
조회수 1361
-
‘뻔하지 않은 창의적인 의자’그리는 AI 기술 개발
최근 텍스트 기반 이미지 생성 모델은 자연어로 제공된 설명만으로도 고해상도·고품질 이미지를 자동 생성할 수 있다. 하지만, 대표적인 예인 스테이블 디퓨전(Stable Diffusion) 모델에서 ‘창의적인’이라는 텍스트를 입력했을 경우, 창의적인 이미지 생성은 아직은 제한적인 수준이다. KAIST 연구진이 스테이블 디퓨전(Stable Diffusion) 등 텍스트 기반 이미지 생성 모델에 별도 학습 없이 창의성을 강화할 수 있는 기술을 개발해, 예컨대 뻔하지 않은 창의적인 의자 디자인도 인공지능이 스스로 그려낼 수 있게 됐다.
우리 대학 김재철AI대학원 최재식 교수 연구팀이 네이버(NAVER) AI Lab과 공동 연구를 통해, 추가적 학습 없이 인공지능(AI) 생성 모델의 창의적 생성을 강화하는 기술을 개발했다.
최 교수 연구팀은 텍스트 기반 이미지 생성 모델의 내부 특징 맵을 증폭해 창의적 생성을 강화하는 기술을 개발했다. 또한, 모델 내부의 얕은 블록들이 창의적 생성에 중요한 역할을 한다는 것을 발견하고, 특징 맵을 주파수 영역으로 변환 후, 높은 주파수 영역에 해당하는 부분의 값을 증폭하면 노이즈나 작게 조각난 색깔 패턴의 형태를 유발하는 것을 확인했다. 이에 따라, 연구팀은 얕은 블록의 낮은 주파수 영역을 증폭함으로써 효과적으로 창의적 생성을 강화할 수 있음을 보였다.
연구팀은 창의성을 정의하는 두 가지 핵심 요소인 독창성과 유용성을 모두 고려해, 생성 모델 내부의 각 블록 별로 최적의 증폭 값을 자동으로 선택하는 알고리즘을 제시했다.
개발된 알고리즘을 통해 사전 학습된 스테이블 디퓨전 모델의 내부 특징 맵을 적절히 증폭해 추가적인 분류 데이터나 학습 없이 창의적 생성을 강화할 수 있었다.
연구팀은 개발된 알고리즘을 사용하면 기존 모델 대비 더욱 참신하면서도 유용성이 크게 저하되지 않은 이미지를 생성할 수 있음을 다양한 측정치를 활용해 정량적으로 입증했다.
특히, 스테이블 디퓨전 XL(SDXL) 모델의 이미지 생성 속도를 대폭 향상하기 위해 개발된 SDXL-Turbo 모델에서 발생하는 모드 붕괴 문제를 완화함으로써 이미지 다양성이 증가한 것을 확인했다. 나아가, 사용자 연구를 통해 사람이 직접 평가했을 때도 기존 방법에 비해 유용성 대비 참신성이 크게 향상됨을 입증했다.
공동 제1 저자인 KAIST 한지연, 권다희 박사과정은 "생성 모델을 새로 학습하거나 미세조정 학습하지 않고 생성 모델의 창의적인 생성을 강화하는 최초의 방법론ˮ이라며 "학습된 인공지능 생성 모델 내부에 잠재된 창의성을 특징 맵 조작을 통해 강화할 수 있음을 보였다ˮ 라고 말했다.
이어 “이번 연구는 기존 학습된 모델에서도 텍스트만으로 창의적 이미지를 손쉽게 생성할 수 있게 됐으며, 이를 통해 창의적인 상품 디자인 등 다양한 분야에서 새로운 영감을 제공하고, 인공지능 모델이 창의적 생태계에서 실질적으로 유용하게 활용될 수 있도록 기여할 것으로 기대된다”라고 밝혔다.
KAIST 김재철AI대학원 한지연 박사과정과 권다희 박사과정이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `국제 컴퓨터 비전 및 패턴인식 학술대회 (IEEE Conference on Computer Vision and Pattern Recognition, CVPR)’에서 6월 15일 발표됐다.
※논문명 : Enhancing Creative Generation on Stable Diffusion-based Models
※DOI: https://doi.org/10.48550/arXiv.2503.23538
한편 이번 연구는 KAIST-네이버 초창의적 AI 연구센터, 과학기술정보통신부의 재원으로 정보통신기획평가원의 지원을 받은 혁신성장동력프로젝트 설명가능인공지능, AI 연구거점 프로젝트, 점차 강화되고 있는 윤리 정책에 발맞춰 유연하게 진화하는 인공지능 기술 개발 연구 및 KAIST 인공지능 대학원 프로그램과제의 지원을 받았고 방위사업청과 국방과학연구소의 지원으로 KAIST 미래 국방 인공지능 특화연구센터에서 수행됐다.
2025.06.19
조회수 1223