본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
complex+molecular-systems+multiscale+design+lab
최신순
조회순
우성일, 김형준 교수, 귀금속 성능에 버금가는 육각형 아연촉매 개발
우리 대학 생명화학공학과 우성일 교수와 EEWS 대학원 김형준 교수 공동연구팀이 이산화탄소를 높은 효율로 환원시킬 수 있고 내구성이 강한 육각형 아연 촉매를 개발했다. 연구 결과는 화학분야 학술지 앙게반테 케미(Angewandte Chemie International Edition) 6월 28일자 온라인 판에 게재됐다. 이산화탄소는 온실가스로 지구 온난화의 주범으로 알려져 있다. 이산화탄소를 탄소의 자원으로 사용해 연료를 만든다면 기후 문제는 물론 에너지 고갈 문제를 해결할 수 있는 혁신적 기술이 될 것이다. 하지만 이러한 시스템 개발을 위해서는 열역학적으로 안정적인 이산화탄소를 성공적으로 변환시킬 수 있는 촉매를 개발하는 것이 중요하다. 연구팀은 문제 해결을 위해 전기화학적 시스템과 아연을 이용했다. 전기화학적 시스템은 여러 이산화탄소 변환 시스템 중 태양에너지처럼 지속가능한 전기에너지와 결합이 가능하다는 점에서 각광받고 있다. 아연은 이산화탄소 변환 촉매 중 일산화탄소를 선택적으로 생성할 수 있다는 장점과, 같은 특성을 갖는 금, 은에 비해 2만분의 1에 불과한 저렴한 가격 경쟁력을 갖는다. 그러나 부족한 성능으로 인해 많은 주목을 받지 못했다. 연구팀은 아연 촉매의 성능 향상을 위해 화학 반응에 참여하는 부분의 표면적을 최대한 넓혔다. 그리고 흡착에너지를 수월하게 조절할 수 있도록 전기화학적 증착법을 통해 육각형 형태로 배열된 아연 촉매를 제작했다. 육각형이라는 구조적 특성은 효율적인 이산화탄소 변환을 가능하게 했고, 선택적으로 일산화탄소가 생성되고 부산물로 수소가 발생했다. 일산화탄소와 수소는 합성가스(syngas)로서 탄화수소 연료를 생산할 수 있는 유용한 원료이다. 연구팀은 이 육각형 아연 촉매에 가하는 전압에 따라 일산화탄소와 수소 생성 비율을 다양하게 조절할 수 있음을 확인했다. 또한 일산화탄소와 수소를 각각 잘 생성하는 아연의 결정면이 Zn(101)과 Zn(002)임을 밀도범함수이론(density functional theory) 계산을 통해 이론적으로 밝혔다. 향후 이 두 면의 비율을 조절함으로써 원하는 공정이나 생성물의 비율을 얻을 수 있음을 규명했다. 육각형 아연 촉매는 이산화탄소 변환의 반응 선택성을 의미하는 페러데이 효율(Faradaic efficiency)에서 95%를 기록했고, 이 성능이 30시간 이상 지속돼 기존 귀금속을 포함한 모든 일산화탄소 생성 촉매 중 가장 긴 시간 동안의 안정성을 보였다. 연구팀은 태양에너지와 같은 신재생에너지로부터 전기에너지를 얻고, 이산화탄소를 환원시켜 일산화탄소 및 수소를 생성하고 이 합성가스를 피셔-트롭쉬 반응에 직접 이용할 예정이다. 이를 통해 추가적인 이산화탄소 배출 없이도 높은 에너지 밀도를 가진 탄화수소 연료 생산이 가능해진다고 밝혔다. 우 교수는 “생산한 연료들을 연소하면 다시 이산화탄소와 물이 발생하므로 이것이야말로 지속가능한 에너지 생산 시스템이 될 것이다”고 말했다. 생명화학공학과 원다혜 박사가 제 1저자로 참여한 이번 연구는 EEWS대학원의 BK21PLUS 연구사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 육각형 아연 촉매 위에서의 반응 모식도 그림2. 육각형 아연 촉매의 FE-SEM 이미지 그림3. 장시간 진행된 전기화학적 이산화탄소 환원 반응 그림4. 밀도범함수계산 결과 (Free energy diagram)
2016.07.26
조회수 13556
최민기, 김형준 교수, 1년 이상 유지 가능한 백금 단일원자 촉매 개발
우리 대학 생명화학공학과 최민기 교수, EEWS 대학원의 김형준 교수 공동 연구팀이 1년 이상 유지가 가능하고 과산화수소를 생산할 수 있는 단일 원자 크기의 백금 촉매 개발에 성공했다. 연구 결과는 ‘네이처 커뮤니케이션즈(Nature Communications)’ 8일자 온라인 판에 게재됐다. 백금 고체 촉매는 산업계에서 널리 이용된다. 고가의 촉매 활성물질인 백금을 최대한 효율적으로 활용하기 위해 백금 촉매입자를 최대한 작게 합성하려는 연구가 많이 이뤄지고 있다. 과학계에서는 효율적인 금속의 사용을 위해 가장 작은 구성원소인 단일 원자로 이뤄진 백금 촉매(1/10 나노미터 수준)를 개발했다. 백금을 비롯한 모든 금속은 나노미터 수준에서는 매우 불안정하기 때문에 특정 금속 산화물을 담지체로 사용해 백금 원자를 안정화해야 한다. 그러나 이 방법으로 합성된 촉매 또한 장기적으로는 안정성이 떨어지는 경우가 대부분이다. 탄소 소재의 경우 전기전도성이 높고 저렴해 담지체로서 장점을 갖지만 금속을 안정화시키는 능력이 매우 떨어져 탄소 전극 위에서 백금을 합성시키기 어려웠다. 연구팀은 문제 해결을 위해 금속과 강하게 결합할 수 있는 황 원자를 이용했다. 제올라이트를 거푸집으로 사용해 황 원자가 다량으로 분포된 탄소 나노구조를 합성했고, 이 물질에 백금 촉매를 형성했을 때 단일 원자 형태로도 백금을 안정화시키는 것을 발견했다. 연구팀은 황과 결합된 이 탄소 소재가 일반적인 촉매 합성 방법을 통해서도 백금이 단일 원자 크기로 존재하는 것을 확인했다. 또한 기존의 단일 원자 촉매는 불안정성으로 인해 구조가 쉽게 변했지만 연구팀이 개발한 촉매는 상온에서 1년이 지난 후에도 대부분의 촉매가 단일 원자로 존재하는 안정성을 보였다. 그밖에도 연구팀은 추가적인 성과를 확인했다. 일반적인 단일 원자 백금 촉매를 수소와 산소를 이용해 연료 전지 기술에 적용할 경우 대부분 물(H2O)이 형성되지만, 연구팀의 단일 원자 백금 촉매는 고부가가치 물질인 과산화수소가(H2O2) 95% 이상의 선택도로 생성돼 저렴하게 과산화수소를 생산할 수 있을 것으로 기대된다. 최 교수는 “기존의 불균일계 촉매로는 불가능했던 특이 촉매 선택성을 구현할 수 있을 것으로 예상된다” 며 “다른 단일 원자 촉매군 에 비해 훨씬 높은 안정성을 가져 촉매 수명을 획기적으로 늘릴 수 있을 것으로 기대된다"고 말했다. 김 교수는 “양자역학 시뮬레이션을 이용해 단일 원자 백금 촉매가 탄소 담지체에서 갖는 안정성 및 특이한 선택성 등의 원인을 규명했다”고 말했다. 이번 연구는 미래창조과학부의 지원을 받아 수행됐다. □ 그림 설명 그림1. 백금 단일 원자 촉매에서의 과산화수소 (H2O2) 생성 반응 모식도 그림2. 백금 단일 원자 사진
2016.03.14
조회수 10865
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1