본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
1st-Principles+Nano-Devices+Lab
최신순
조회순
김용훈 교수 연구팀, 점점 작아지는 나노소자 더 똑똑하게 설계한다
우리 대학 연구진이 차세대 반도체 소자 설계의 기반이 되는 물리학 표준이론의 대안(alternative)을 제시했다. 전기및전자공학부 김용훈 교수 연구팀은 현대 양자수송 표준이론의 대안을 제시, 나노소자의 에너지 특성 까지 정확히 예측할 수 있는 이론을 확립하고 소프트웨어로 구현 했다고 14일 밝혔다. 일상적으로 쓰는 가전제품에서는 전자가 입자적 성격을 띠고 고전적으로 흐르지만, 최신 전자제품에 들어있는 첨단 나노소자에서는 전자가 양자적 특성을 띠고 전혀 다르게 움직인다. 원자나 분자 수준에서 단위정보를 처리하는 신개념 반도체 소자나 수소전지 같은 차세대 에너지 소자의 설계를 위해서는 이 같은 미시세계에서의 전자 및 스핀의 양자수송(quantum transport) 특성을 반영하여 소자의 동작을 미리 예측하는 과정이 필수적이다. 20세기 후반에 확립된 양자수송에 대한 표준이론은 나노소자를 채널영역과 그에 연결된 무한한 두 개의 전극으로 구성된 열린 양자계(open quantum system)로 기술한다. 이를 바탕으로 첨단 트랜지스터, 태양전지, LED 등 다양한 반도체 소자의 구동을 해석하려는 노력이 있지만, 이 방법으로는 전도성 이외 무한한 전극이 포함된 소자의 에너지를 기술할 수 없어 에너지 소자의 설계에 활용하기에는 한계가 있었다. 연구팀은 이 한계를 극복하고자 비평형 상태의 나노소자를 닫힌 양자계로 보고, 이 안에서의 양자수송 현상을 한 쪽 전극에서 다른 쪽 전극으로 전자가 광학여기(optical excitation) 되는 현상에 대응시키는 관점을 제안했다. 또한 이를 통해 소자의 에너지를 최소화하는 방식의 이론을 개발 하고 소프트웨어로 구현했다. 이 계산방식을 활용하면 소자의 전류-전압 특성 이외 에너지 특성까지 기술할 수 있어, 특히 배터리 같은 에너지 저장소자, 촉매나 연료전지 같은 에너지 변환소자 등 원자 수준 에너지 소자 설계의 중요한 실마리가 될 것으로 기대된다. 과학기술정보통신부와 한국연구재단이 추진하는 중견연구지원사업, 나노소재원천기술개발사업, 기초연구실지원사업, 글로벌프론티어 사업의 지원으로 수행된 이번 연구의 성과는 세계적인 학술지 어드밴스드 사이언스(Advanced Science)에 7월 1일 게재됐다.
2020.07.14
조회수 20516
70년 만에 준-페르미 준위 분리 현상 제1 원리적으로 규명
국내 연구진이 70년 난제로 꼽히던 준-페르미 준위 분리 현상의 원자 수준 규명에 성공했다. 우리 대학 전기및전자공학부 김용훈 교수 연구팀이 반도체 소자 동작의 기원인 준-페르미 준위(quasi-Fermi level) 분리 현상을 제1 원리적으로 기술하는 데 최초로 성공했다고 27일 밝혔다. 제1 원리적인 방법이란 실험적 데이터나 경험적 모델을 사용하지 않고 슈뢰딩거 방정식을 직접 푸는 양자역학적 물질 시뮬레이션 방법이다. 김용훈 교수 연구팀의 연구 결과는 특히 비평형 상태의 나노 소자 내에서 발생하는 복잡한 전압 강하의 기원을 새로운 이론 체계와 슈퍼컴퓨터를 통해 규명함으로써, 다양한 첨단 반도체 소자의 분석 및 차세대 나노 소자 개발을 위한 이론적 틀을 제공할 것으로 기대되고 있다. 이주호 박사과정 학생이 제1 저자로 참여한 이번 연구 성과는 국제학술지 미국‘국립과학원회보(Proceedings of the National Academy of Sciences)’ 4월 23일 字 온라인판에 게재됐다. (논문명: Quasi-Fermi level splitting in nanoscale junctions from ab initio) 반도체 관련 교과서에도 소개되고 있는 준-페르미 준위 개념은 반도체 소자 내 전압인가 상황을 기술하는 표준적인 이론 도구로서 그동안 트랜지스터, 태양전지, 발광다이오드(LED) 등 다양한 반도체 소자들의 구동 원리를 이해하거나 성능을 결정하는데 경험적으로 사용돼왔다. 하지만 준-페르미 준위 분포 현상은 1956년 노벨 물리학상 수상자 윌리엄 쇼클리(William B. Shockley)가 제시한 지 70년이 지난 현재에도 전압 인가 상황의 반도체 소자 채널 내에서 측정을 하거나 계산을 해야 하는 어려움 때문에 원자 수준에서는 이해되지 못한 상황이 계속돼왔다. 연구팀은 차세대 반도체 소자의 후보군으로 주목을 받는 단일분자 소자에서, 나노미터 길이에서 발생하는 복잡한 전압 강하 현상을 최초로 규명해냈다. 특히 전도성이 강한 특정 나노 전자소자에 대해 비 선형적 전압 강하 현상이 일어나는 원인이 준-페르미 준위 분리 현상임을 밝혔다. 이러한 연구 성과는 김 교수 연구팀이 다년간에 걸쳐 새로운 반도체 소자 제1 원리 계산 이론을 확립하고 이를 소프트웨어적으로 구현했기에 가능했다. 이는 외산 소프트웨어에만 의존하던 반도체 설계 분야에서 세계적으로 경쟁력 있는 차세대 나노소자 전산 설계 원천기술을 확보했다는 점에서 큰 의미를 부여할 수 있다. 한편 이번 연구는 과학기술정보통신부 중견연구자지원사업, 나노소재원천기술개발사업, 기초연구실지원사업, 글로벌프론티어사업의 지원을 받아 수행됐다.
2020.04.27
조회수 15276
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1