본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EB%B0%95%EC%98%A4%EC%98%A5
최신순
조회순
박오옥 교수, 포도당 기반의 그래핀 양자점 합성 기술 개발
우리 대학 생명화학공학과 박오옥 교수 연구팀이 포도당을 기반으로 한 그래핀 양자점의 합성 기술을 개발해, 이를 이용해 안정적인 청색 빛을 내는 그래핀 양자점 발광소자를 제작하는 데 성공했다. 연구팀은 위 그래핀 양자점을 발광체로 응용해 디스플레이를 제작했고, 현 디스플레이 분야의 난제인 청색 발광을 구현하면서 안정적인 전압 범위에서 발광하는 것을 확인했다. 이석환 박사과정이 1 저자로 참여한 이번 연구 결과는 국제 학술지 ‘나노 레터스(Nano Letters)’ 7월 5일 자 온라인판에 게재됐다. (논문명 : Synthesis of Single-Crystalline Hexagonal Graphene Quantum Dots from Solution Chemistry) 그래핀은 우수한 열, 전기 전도도와 투명도를 가져 차세대 전자재료로 주목받고 있지만, 단층 및 다층 그래핀은 도체의 특성을 가져 반도체로 적용하기 어려운 단점이 있다. 그러나 그래핀을 작은 나노 크기로 줄이게 되면 반도체의 특성인 밴드갭을 가져 발광특성을 보이게 돼 활용할 수 있게 된다. 이를 그래핀 양자점이라 한다. 기존 단결정 그래핀은 구리-니켈 기반 금속 박막 위에 화학 기상 증착법(CVD)을 이용하거나 흑연을 물리·화학적 방법으로 벗겨내는 기술로 만들었다. 물리·화학적 방법으로 제작한 그래핀은 결함이 매우 많아 순수한 단결정의 특성을 가지지 못하는 단점이 있었다. 연구팀이 개발한 그래핀 양자점은 기존과는 매우 다른 우수한 합성 과정을 보였다. 포도당 수용액에 아민과 초산을 일정 비율로 혼합해 반응 중간체를 형성하고 이를 안정적인 용액으로 구현했다. 이후 형성된 중간체의 자가조립을 유도해 단결정의 그래핀 양자점을 용액상으로 합성하는 데 성공했다. 연구팀은 이 과정에서 기존의 복잡한 분리 정제법을 개선한 저온 침전 분리법을 개발했다. 연구팀의 이번 합성 기술은 단일상(single phase) 반응을 통해 균일한 핵 성장(homogeneous nucleation)반응을 최초로 유도했다는 의의가 있다. 박 교수 연구팀은 이번 연구를 통해서 수 나노미터에서 100 나노미터 수준의 단결정 크기를 원하는 대로 조절 가능한 용액상 합성 기술을 개발했다. 박오옥 교수는 “최초로 개발된 단결정 그래핀 양자점 용액 합성법은 그래핀의 다양한 분야 접목에 크게 기여할 것이다”라며 “이를 잘 응용하면 유연 디스플레이 또는 베리스터와 같은 반도체 성질을 갖는 그래핀의 역할이 제시될 것이다”라고 말했다. 이번 연구는 고려대학교 화공생명공학과 임상혁 교수 연구팀과 공동으로 진행됐으며, 한국과학연구재단의 나노원천 과제, 한국전자통신연구원의 나노물질 기술 연구 과제, KAIST EEWS 과제, 대한민국 정부 BK21+ 사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 용액 화학으로 합성된 잘 정렬된 다양한 크기의 단결정 그래핀 양자점
2019.07.30
조회수 16041
박오옥 교수, 페트병 대체 가능한 바이오플라스틱 개발
우리 대학 생명화학공학과 박오옥 교수 연구팀과 롯데케미칼(대표이사 허수영)이 산학협력 연구를 통해 기존의 플라스틱 페트 소재를 대체할 수 있는 식물 기반의 바이오 플라스틱을 수지를 개발했다. 이 기술은 식물 기반의 퓨란(furan)계 바이오 플라스틱을 고분자량으로 합성한 것으로 기존 페트 수지를 양산하는 생산 공정을 통해서 상업화가 가능할 것으로 기대된다. 이 연구는 국제 학술지 ‘그린 케미스트리(Green chemistry)’ 10월 7일자 뒷 표지 논문으로 게재됐다. 퓨란계 바이오플라스틱은 식물에서 추출한 원료로 만든 플라스틱이다. 식물을 소재로 하기 때문에 지구 온난화의 주범인 이산화탄소를 줄일 수 있고, 석유 기반의 플라스틱을 대체하기 때문에 자원도 절감할 수 있다. 또한 기체 차단성과 내열성이 좋아 기존 페트 소재가 사용되지 못했던 좀 더 넓은 분야에 사용 가능하다. 많은 연구자들이 퓨란계 바이오플라스틱이 가진 장점을 활용하기 위해 상용화가 가능하도록 연구 중이다. 그러나 퓨란계 바이오플라스틱은 분자 구조가 유연하지 않아 물성이 깨지기 쉽고 결정화(분자의 확산) 속도가 느려 고상중합을 통한 고분자량화에 한계가 있어 다양한 용도로 활용이 어렵다. 무엇보다도 결정화 속도가 느리다는 것은 기존의 상업 설비에서 양산을 할 수 없음을 의미한다. 문제 해결을 위해 연구팀은 먼저 퓨란계 플라스틱이 왜 깨지기 쉬운 특성을 갖는지 확인했다. 기존 페트는 화학구조상 선형구조이기 때문에 외부 충격에 유연하게 반응할 수 있고 결정화 속도가 빠른 편이다. 반면 퓨란계 플라스틱의 화학구조는 약간 꺾여있는 비선형 구조로 유연성이 떨어져 깨지기 쉽고 분자의 확산이 빠르지 않아 결정화 속도가 상대적으로 느리다. 연구팀은 문제 해결을 위해 육각환형의 고리 화합물을 공 단량체로 도입해 새로운 퓨란계 폴리에스터를 합성했다. 이 과정을 통해 유연성이 높아져 기계적 물성(연성, 내충격성)이 개선됐고 결정화 속도도 빨라졌다. 이 새로운 퓨란계 폴리에스터의 결정화 속도 개선으로 인해 고상중합공정이 가능해졌다. 고상중합공정이 중요한 이유는 수지의 변색 없이 분자량을 단시간에 고분자량으로 올릴 수 있기 때문이다. 고분자량으로 올리지 못하고 분자량이 낮으면 플라스틱의 모양을 형성하는 블로우 몰딩(Blow molding : 녹인 뒤 불어서 모양을 만드는 방식)과정에서 물질이 찢어지게 된다. 연구팀의 바이오플라스틱은 기존 고상중합공정에서 고분자량화에 성공해 상업적으로 활용할 수 있는 공정이 가능할 것으로 예상된다. 연구팀은 “이 기술은 병, 옷, 섬유, 필름 등 기존에 페트 소재가 사용되던 분야를 넘어 페트가 쓰이지 못했던 분야에도 적용 가능하다”며 “기존 페트보다 내열성과 기체 차단성이 높기 때문에 유리 용기를 일정 정도 대체할 수 있을 것이다”고 말했다. 1저자인 홍성민 연구원은 “학술적인 부분 뿐 아니라 상업적으로도 의미가 있는 기술이다”며 “탄탄한 기초연구를 바탕으로 실제로 우리 산업과 국가 경쟁력에 기여할 수 있는 기술이 될 것으로 기대한다”고 말했다. □ 그림 설명 그림1. 논문 표지 그림-퓨란계 수지를 성공적으로 합성, 고상중합을 통해서 고분자량화한 모식도 그림2. 퓨란계 폴리에스터의 파단면의 전자현미경 사진 그림3. 퓨란계 폴리에서트 화학 구조
2016.10.11
조회수 10785
박오옥, 한상우 교수, 팔 14개 달린 금 나노입자 개발
우리 대학이 중심 입자에 14개의 팔 모양 입자가 달린 이원 구조의 금 나노입자를 개발했다. 이 기술은 팔 모양 입자 주변에서 전기장을 강하게 증폭시켜 표면증강 라만분광을 이용해 미량의 물질도 검출할 수 있다. 이를 통해 화폐 보안물질, 인체 광열치료 등에도 활용 가능할 것으로 기대된다. 생명화학공학과 박오옥 교수, 화학과 한상우 교수, 한국화학연구원 김도엽 박사와가 공동으로 진행한 이번 연구 성과는 광학 재료분야 학술지 ‘저널 오브 머티리얼스 케미스트리 씨(Journal of Materials Chemistry C)’ 4월 21일자 표지논문으로 게재됐다. 중심에 팔 모양의 입자가 달린 이원구조의 금 나노입자는 외부의 빛과 반응해 팔 모양 주변에서 전기장이 강하게 증폭된다. 이를 통해 금 나노입자를 기판으로 활용해 물질을 그 위에 올리면 적은 농도로도 쉽게 물질의 검출이 가능해진다. 하지만 기존 기술은 중심 나노입자에 달린 팔 모양 입자의 크기, 길이를 정밀하게 제어하지 못해 형태가 제각각인 금 나노입자만 얻을 수 있었다. 연구팀은 문제 해결을 위해 14개의 꼭지점을 갖는 사방십이면체 형태의 금 나노입자를 먼저 합성 후 꼭지점 부분만 선택적으로 성장시켰다. 이를 통해 팔이 14개 달린 이원구조의 금 나노입자를 합성했고 팔 크기나 길이를 조절해 광학특성 및 전기장 세기 증폭을 조절할 수 있게 됐다. 연구팀은 유한차분 시간영역법을 통한 시뮬레이션과 표면증강라만산란 실험을 통해 이원 구조에서의 팔의 크기가 작을수록, 몸통 입자의 크기가 클수록 전기장 세기가 강하게 증폭됨을 증명했다. 이 기술을 표면증강라만분광(surface-enhanced Raman spectroscopy)에 이용한다면 물질의 분자 검출 및 분석 등에 응용할 수 있다. 박 교수 연구팀은 이전 연구에서도 美 워싱턴대학 유난 시아(Younan Xia) 교수와의 공동연구를 통해 6개의 팔 모양 입자가 달린 이원구조의 금 나노입자 합성기술을 개발한 바 있다. 이번 연구에서는 이원 구조 금 나노입자의 성장과정 분석과, 더 나아가 이론적 계산을 통한 금 나노입자 표면에서의 전기장 세기가 증폭됨을 확인했다. 또한 실제 표면증강 라만산란 실험을 통한 특정분자 검출 등 다각적 연구를 통해 이원구조 금 나노입자의 응용 가능성을 높였다. 연구팀은 “새로운 접근법을 통한 이원구조 금 나노입자의 팔 개수, 길이 등의 조절로 광학특성 등 물리적 성질을 제어하는 기술을 개발했다”며 “이를 통해 라만분광법을 이용한 물질 검출이나 화폐보안물질 등에 응용 가능할 것으로 기대된다”고 말했다. 이번 연구는 미래창조과학부 산하의 한국연구재단-선도연구센터지원사업, 나노·소재기술개발사업 및 기초연구사업과 KAIST 기후변화연구허브사업의 지원으로 수행됐다. □ 그림 설명 그림1. 중심입자에 14개의 팔이 달린 이원구조의 금 나노입자와 팔의 크기만 선택적으로 조절된 금 나노입자의 전자현미경 이미지 그림2. 팔 크기 변화에 따른 전기장 세기를 유한차분 시간영영법으로 시뮬레이션한 결과와 표면증강라만 신호 결과
2016.05.10
조회수 16574
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1