-
공기를 이용한 가스하이드레이트 생산법 개발
그동안 전 세계적으로 석탄이나 석유를 능가하는 막대한 미래 에너지자원인 가스하이드레이트를 안정적으로 생산할 수 있는 방법을 찾으려고 심혈을 기울여 왔으나 뚜렷한 해답을 찾지 못하고 있다.
기존의 기술들이 지닌 한계성도 있지만, 해저 지층의 일부를 이루고 있는 가스하이드레이트 층의 붕괴로 인한 지반 침하 및 해저 생태계 파괴와 같은 엄청난 지구적 재앙과 피해를 극복할 획기적 기술이 아직 나오지 않고 있다.
우리 학교 생명화학공학과 이흔 교수팀은 해저에 묻혀 있는 가스하이드레이트 층을 거의 손상하지 않고 얼음 결정 형태로 이루어진 하이드레이트 구조에 갇혀있는 막대한 양의 천연가스를 회수하고, 대신 그 빈자리에 지상에서 주입된 공기나 공기와 혼합가스를 집어넣는 획기적인 개념을 수립했다.
연구팀은 다양한 조건의 가스하이드레이트 층에 해리와 맞교환이 동시에 일어나는 새로운 개념의 회수원리를 직접 적용해 자발적 천연가스 생산을 완벽히 입증했다.
이러한 공기 주입법은 이산화탄소 격리 저장과 해저 에너지 자원을 개발 생산하는 문제를 동시에 해결할 수 있는 새로운 개념의 원천기술이다.
자연현상 원리로 진행되는 천연가스 생산과정은 국내외에 특허 등록 및 출원됐으며 우리나라의 독보적인 기술로 KoFAST-2(Korea Field-Adapted Swapping Technology, 한국 필드 적응형 맞교환기술)라고 명명했다.
이에 앞서 이흔 교수팀이 개발해 국내외에 특허가 등록된 KoFAST-1은 이미 전 세계에 주목을 받고 있으며, 미국 메이저 석유가스회사인 코노코필립스(ConocoPhillips)가 2012년 4월 미국 알라스카 노스슬로프(North Slope)에 이산화탄소와 질소 혼합가스를 주입해 천연가스를 성공적으로 시험 생산함으로써 KoFAST 기술의 상업화 검증이 이루어졌다.
이번에 개발된 KoFAST-2에서는 대기 중의 공기를 직접 이용함으로써 생산 비용과 효율을 획기적으로 향상시켰다.
KoFAST-2는 KoFAST-1 보다 광범위한 천연 가스하이드레이트 필드에 적용 가능한 기술로, 기존 맞교환 기술의 잠재성을 최대한으로 끌어올린 신기술이다.
이흔 교수는 이번 연구에 대해 “셰일가스와 함께 차세대 에너지 양대 축인 가스하이드레이트 생산 원천기술을 국내에서 확보함으로써 전 세계 에너지자원 개발에 전환적 돌파구를 마련했다”며 “우리나라 동해에 부존된 막대한 양의 에너지자원 확보에도 절대적 기여가 가능할 것으로 기대된다”고 말했다.
이번 연구는 미래창조과학부와 한국연구재단이 추진하는 중견연구자지원사업과 산업통상자원부 가스하이드레이트사업으로 수행됐다.
<그림설명> 공기를 이용한 심해 가스하이드레이트 생산 모식도
2014.10.27
조회수 13225
-
이흔 교수팀, 물로 이뤄진 얼음 입자내 수소원자 저장 현상 규명
- 사이언스誌 최근호 에디터스초이스에 선정, 리서치 하이라이트로 소개
물을 얼려 만들어진 얼음 입자 내에 나노 크기의 수많은 빈 공간을 형성시켜 그 안에 수소원자가 저장될 수 있다는 사실이 국내 연구진에 의해 새롭게 규명됐다.
우리학교 생명화학공학과 이흔(李琿, 56) 교수팀과 서강대 강영수(46) 교수팀이 공동으로 물로 이뤄진 얼음 입자 내에 크기가 가장 작은 수소 원자가 안정적으로 저장될 수 있음을 최초로 규명, 이 연구결과를 미국화학회지에 발표하였으며, 사이언스(Science) 誌 최신호(7월11일자)의 ‘에디터스 초이스(Editor’s Choice)’에도 선정되어 리서치 하이라이트로 소개됐다.
李 교수는 지난 2005년 4월 7일자 네이처(Nature) 誌에 ‘얼음 형태의 입자 내로 수소저장’이란 제목의 논문으로 이 현상을 처음 발표한 바 있다. 당시에는 수소저장은 분자상태로 이뤄진 것으로 발표하였으나, 이후 3년여의 연구 끝에 수소가 분자 상태가 아니라, 가장 작은 크기의 원자로 얼음 내에 저장될 수 있음을 이번 연구에서 밝혀냈다.
고유가 시대에 석유, 천연가스를 대체할 새로운 에너지원 개발이 매우 시급한 이슈로 떠오르고 있다. 하나의 해결책으로 그동안 모든 국가들이 수소 에너지를 연구해 왔으나, 획기적 저장 원리의 부재로 기술개발에 많은 어려움을 겪고 있다.
따라서 미래의 거의 유일한 청정에너지인 수소에너지를 잘 활용할 수 있느냐의 성공여부는 이를 얼마나 효과적으로 저장시킬 수 있는 기초 원리의 확보에 있다. 그동안 널리 사용된 수소저장 방법으로는 영하 252℃ 극저온의 수소 끓는점에서 수소 기체를 액화시켜 특별히 제작된 단열이 완벽한 용기에 저장하거나 또는 350기압 정도의 매우 높은 압력에서 기체 수소를 저장하는 방법이 있지만 수소가 제일 작고 가벼운 원소여서 어떤 재질의 용기이건 속으로 침투하는 성질이 있다. 따라서 이 방법들은 경제성이나 효율성이 매우 떨어지게 되고 극저온이나 상당히 높은 압력으로 인한 여러 가지 기술적 난제들을 필연적으로 갖게 된다. 이러한 문제점들을 극복하기 위해 그동안 전 세계적으로 수소저장합금, 탄소나노튜브 등을 이용한 차세대 수소 저장 기술 연구가 활발히 이뤄지고 있지만 이러한 특수 물질들의 저장 재료로서의 한계성 때문에 현실적으로 적용하기가 어렵다. 더욱이 이 모든 방법들은 수소를 분자 상태로 저장하고 있다.
그러나 이번에 발표된 李 교수의 연구논문에서는 수소를 저장하기위한 기본물질로 분자대신 원자가 가능하다는 것을 밝혔다. 일단 수소 원자를 잡아두는 저장 창고로 물을 이용하기 때문에 매우 경제적이며, 또한 친환경적인 수소 저장 방법이라 할 수 있다. 순수 물로만 이뤄진 얼음 입자에는 수소를 저장할 수 있는 빈 공간이 존재하지 않는다. 그러나 순수한 물에 미량의 유기물을 첨가하여 얼음 입자를 만들 경우 내부에 수많은 나노공간을 만들게 되며, 바로 이 나노 공간에 수소 원자가 안정적으로 저장되는 특이한 현상이 나타난다. 李 교수는 “수소 분자 대신 원자를 이용하는 경우 반응과 결합성이 뛰어나 새로운 수소저장 원리를 구현할 수 있고 연료 전지를 비롯한 많은 수소 관련 분야에 이 새로운 현상이 적극적으로 이용될 수 있을 것으로 기대된다.”고 말했다. 이번 연구로 지구상 가장 보편적이고 풍부한 물질인 물로 이뤄진 얼음입자에 수소원자를 직접 저장할 수 있는 메커니즘이 밝혀짐에 따라 앞으로 미래 수소에너지를 이용하는 수소자동차, 연료전지 개발에 자연현상적 신개념 원리를 마련하게 됐다.
2008.08.04
조회수 18083
-
이흔교수, 온난화가스와 에너지가스 맞교환 원리 규명
“지구온난화 주범 이산화탄소를 천연 가스와 맞바꾼다”
- 천연가스 하이드레이트층에서 이산화탄소 저장과 천연가스 생산 동시에 일어나는 자연 현상적 메카니즘 이용
- 에너지 생산와 환경문제 해결 일거양득 효과 구현
- KAIST 이흔 교수팀, 미국 과학원 회보 최신호에 발표
해저에서 온난화 가스와 에너지 가스를 맞교환하여 에너지 생산과 환경 문제를 동시에 해결할 수 있는 획기적인 원리가 국내 연구진에 의해 실험적으로 입증됐다.
KAIST(총장 서남표) 생명화학공학과 이흔(李琿, 55) 교수팀과 한국지질자원연구원이 공동으로, 해저 천연가스 하이드레이트층에 이산화탄소나 배기가스를 직접 저장하고 동시에 천연가스를 생산할 수 있는 자연 현상적 맞교환 메커니즘을 규명, 그 연구결과가 저명 과학저널 미국 과학원 회보(PNAS) 8월 15일자 온라인판에 발표됐다.
지난 2003년 李교수는‘연료와 이산화탄소의 맞교환’이란 제목의 논문으로 이 기술을 처음 발표하였으며 또한 사이언스지 11월호에 리서치 하이라이트로 소개되어 세계적 주목을 받았다. 이후 3년여 연구 끝에 막연한 개념으로만 존재하던 지구 온난화가스의 대규모 해양 직접 저장 가능성을 실험적으로 입증했다. 즉, 모든 구조의 천연가스 하이드레이트층에 이 원리를 적용, 얼음 형태의 퇴적층으로부터 천연가스가 거의 대부분 회수될 수 있음을 이번 연구결과 밝혀낸 것이다.
이산화탄소 배출로 인한 지구온난화 문제는 최근 심각한 환경 문제를 야기하며 사회적 이슈로 대두되고 있다. 이러한 지구 온난화 문제를 해결하기 위해서는 발전소, 자동차 등 여러 배출원으로부터 나오는 이산화탄소를 줄이거나 없애는 방법 밖에 없다.
그동안 전 세계적으로 꾸준히 추진해온 산업구조 에너지 효율 향상이나 이산화탄소를 분리 처리하는 기술로는 지구온난화 문제를 적극적으로 대처하는데 극히 제한적일 수밖에 없었다. 따라서 대기권에 절대량으로 엄청나게 존재하는 이산화탄소를 지하나 바다 밑에 대규모로 저장하는 방법이 가장 현실성 있고 효과적인 대안으로 떠오르고 있다.
현재 바다 밑에는 천연가스 하이드레이트라고 하는 대규모 농축 메탄가스 퇴적층이 존재하는 것으로 확인되었다. 천연가스 하이드레이트의 매장량은 현 지구상 모든 화석 연료를 합친 것보다도 더 많은 것으로 알려져 있다. 이미 미국, 일본 캐나다, 러시아 등 세계 여러나라에서 이 미래 에너지원을 활용하기 위한 기술 개발 연구가 활발하게 진행되고 있다.
천연가스 하이드레이트는 불안정하기 때문에 깊은 바다 밑에 매장된 천연가스 하이드레이트를 채취할 때는 압력과 온도를 그대로 유지해야 한다. 李 교수팀은 이 천연가스 하이드레이트 상태를 유지하기 위해 이산화탄소가 포함된 혼합 배기가스를 주입, 천연가스와 배기가스를 맞교환시키는 방법을 개발했다. 이 맞교환 원리에 따라 해저 천연가스는 지상으로 끌어 올려져 에너지로 사용되고, 지상의 배기가스는 해저에 거의 반영구적으로 저장된다.
이번에 개발된 맞교환 원리 기술을 적용하면 ▲여러 종류의 성분들이 혼합된 배기가스를 바로 해저로 직접 투입 가능하기 때문에 지상에서 순수한 이산화탄소를 만들 필요가 없고 ▲광범위한 천연가스 하이드레이트층 개발은 심각한 해저 생태계 파괴를 가져올 수 있으나, 해저에서 맞교환을 일으키면 천연가스가 이산화탄소와 질소로 대체되기 때문에 본래 층의 골격은 파괴되지 않고 유지되어 환경 피해가 거의 없으며 ▲온난화 가스를 이용하여 해저의 천연가스를 90% 이상 대부분 회수할 수 있기 때문에 개발의 경제성을 높일 수 있다.
이는 2003년 당시의 순수 이산화탄소만 사용, 천연가스 회수율 64% 등의 제약 조건을 획기적으로 개선, 실용화로 직접 접근할 수 있는 연구결과로 평가받고 있다.
李 교수는 “이번 주요 연구 결과들을 우리나라, 미국, 일본 등에 이미 특허 출원했다”며 “확보된 원천 핵심 자료를 바탕으로 실제 공정이 구현될 경우, 지구온난화 문제와 새로운 에너지원 활용에 있어서 획기적인 성과를 거둘 것이다”라고 말했다.
<사진 1 : 맞교환 원리>
지상의 온난화 배기가스를 모아서 깊은 바다 밑에 있는 천연가스 하이드레이트층에 저장하고 동시에 맞교환을 일으켜 천연가스 하이드레이트층으로부터 천연가스를 회수한다.
<사진 2 : 천연가스 하이드레이트>
미국 오레곤 앞바다에서 끌어올린 천연가스 하이드레이트
<사진 3 : 해저 맞교환 현상>
깊은 바다 밑 천연가스 하이드레이트층에 존재하는 축구공과 같이 속이 빈 수많은 얼음 나노 공간 내에서 일어나는 천연가스와 배기가스가 맞교환되는 현상
2006.08.17
조회수 17917
-
얼음입자내 수소저장메커니즘 세계최초 규명
미래 수소에너지 개발에 획기적 전기마련
이흔 교수팀, 네이처(Nature)誌 7일자에 발표
섭씨 0℃ 부근의 온도에서 수소 분자가 얼음 입자 내에 만들어진 나노 크기의 수많은 빈 공간으로 저장될 수 있다는 사실이 世界最初로 규명됐다.
KAIST(한국과학기술원)는 생명화학공학과 이흔(李琿, 54) 교수팀이 이와 같은 자연 현상적 수소저장 메커니즘을 규명했으며, 관련 연구결과 논문이 세계적 과학전문저널인 네이처誌 7일자에서 가장 주목해야 할 논문으로 선정돼 해설 및 전망기사와 함께 발표되었다고 밝혔다.
미래의 거의 유일한 청정에너지인 수소에너지를 얼마나 잘 활용할 수 있느냐의 성공여부는 효과적인 저장 기술의 확보 여부에 달렸다. 그동안은 영하 252 ℃ 극저온의 수소 끓는점에서 수소 기체를 액화시켜 특별히 제작된 단열이 완벽한 용기에 저장하거나, 350 기압 정도의 매우 높은 압력에서 기체 수소를 저장하는 방법을 널리 사용해 왔다. 하지만 수소는 제일 작고 가벼운 원소여서 어떤 용기의 재질이건 속으로 침투하는 성질 때문에 이 방법들은 경제성이나 효율성이 떨어지게 되고 극저온이나 높은 압력의 사용으로 인한 여러 가지 기술적 난제들을 가질 수밖에 없었다.
이러한 문제점들을 극복하기 위해 그동안 전 세계적으로 수소저장합금, 탄소나노튜브 등을 이용한 차세대 수소저장 기술연구가 활발히 이뤄지고 있지만 이러한 특수 물질들의 저장 재료로서의 한계성 때문에 현실적으로 적용하기가 어려웠다.
그러나 이번에 발표된 李 교수의 연구결과는 수소를 저장하기 위한 기본 물질로 물을 이용하기 때문에 매우 경제적이며 또한 친환경적인 수소 저장 방법이라 할 수 있다. 순수 물로만 형성된 얼음 입자에는 수소를 저장할 수 있는 빈 공간이 존재하지 않는다. 그러나 순수한 물에 미량의 유기물을 첨가하여 얼음 입자를 만들 경우 내부에 수많은 나노 공간을 만들게 되며, 바로 이 나노 공간에 수소가 안정적으로 저장되는 특이한 현상이 나타난다.
특히, 주목할 만한 사실은 우리가 쉽게 다룰 수 있는 영상의 온도에서 수소가 저장되고, 수소를 포함하고 있는 얼음 입자가 상온에서 물로 변할 때 저장된 수소가 자연적으로 방출된다는 것이다. 이러한 수소의 저장과 방출이 짧은 시간 내에 단순한 과정으로 진행되며, 더욱이 수소를 저장하는 물질에 물을 사용함으로써 지금까지 알려진 저장합금이나 탄소나노튜브 등의 수소저장 재료와는 달리 거의 무한대로 얼음 입자를 반복해 활용할 수 있을 뿐만 아니라 필요시 방대한 얼음 입자로 이뤄진 공간에 수소의 대규모 저장이 가능하게 된다.
궁극적으로 물로부터 수소를 생산하고, 생산된 수소를 얼음 입자에 저장한 후 이를 최종 에너지원으로 이용하여 수소를 연소시키거나 연료전지에 사용하면 다시 수증기가 만들어지게 된다. 李 교수는 이렇게 물, 얼음, 수증기로 이루어지는 수소의 순환 시나리오를 제시할 수 있으며, 앞으로 이를 완성하기 위한 체계적이고 과학적인 접근이 필요할 것으로 판단된다.고 말했다.
지구상에서 가장 보편적이고 풍부한 물질인 물로 이루어진 얼음 입자에 수소를 직접 저장할 수 있는 메커니즘이 밝혀짐에 따라 앞으로 미래 수소 에너지를 이용하는 수소자동차, 연료전지 개발에 획기적인 전기를 마련한 것으로 보인다.
2005.04.07
조회수 21747