-
딥러닝 통해 MRI 다중 대조도 영상 복원 기법 개발
바이오및뇌공학과 박성홍 교수 연구팀이 자기공명영상장치(MRI)의 다중 대조도 영상을 복원하기 위한 새로운 딥러닝 네트워크를 개발했다. 이번 연구를 통해 병원에서 반복적으로 획득하는 다중 대조도 MRI 영상을 얻는 시간이 크게 줄어 편의성 증대, 촬영비용 절감 등의 효과를 볼 것으로 기대된다.
도원준 박사가 1 저자로, 서성훈 박사과정이 공동 1 저자로 참여한 이번 연구는 우수성을 인정받아 국제 학술지 ‘메디컬 피직스 (Medical Physics)’ 2020년 3월호 표지 논문으로 게재됐다.
일반적으로 임상적 환경에서 MRI 촬영은 정확한 진단을 위해 두 개 이상의 대조도로 진행돼 촬영시간이 길어진다. 이에 따라 MRI 촬영비용도 비싸지며 환자들의 불편함을 유발하고, 영상의 품질 역시 환자의 움직임 등으로 인해 낮아질 수 있다.
문제 해결을 보완하기 위해 박 교수 연구팀은 다중 대조도 획득의 특징을 활용한 새로운 딥러닝 기법을 개발해 기존 방식보다 데이터를 적게 수집하는 방식으로 MRI 영상획득 시간을 크게 단축했다. MRI 영상에서 데이터를 적게 수집하는 것은 영상의 주파수 영역에서 이뤄지며, 일반적으로 위상 인코딩의 개수를 줄이는 것으로 영상획득 시간을 감소시키는 것을 뜻한다. 영상획득 시간은 줄어든 인코딩 개수의 비율만큼 줄어들게 되며, 이번 연구에서는 촬영시간을 최대 8배까지 줄여 영상을 복원했다.
연구팀은 임상에서 정확한 진단을 위해 MRI 영상을 다중 대조도로 얻는다는 점을 활용해 복원의 효율을 높였으며, 실제로 데이터를 얻을 당시의 전략을 고려해 네트워크들을 따로 개발했다. 구체적으로 ▲다중 대조도 전체 프로토콜의 촬영시간을 모두 줄이는 네트워크(X-net)와 ▲하나의 프로토콜은 전체 인코딩 데이터를 획득하고 나머지 프로토콜들은 촬영시간을 크게 줄이는 네트워크(Y-net)를 따로 개발해 MRI 다중 대조도 영상을 촬영하는 목적에 맞춰 다르게 최적화했다.
박성홍 교수는 “병원에서 반복적으로 시행하는 다중 대조도 MRI 촬영의 특성을 잘 살려서 성능을 극대화한 딥러닝 네트워크의 개발에 의의가 있다”라며, “병원에서 환자의 MRI 촬영시간을 줄이는 데 도움을 줄 것으로 기대한다”라고 말했다.
서울대학교병원 최승홍 교수와 공동연구로 진행한 이번 연구는 한국연구재단과 한국보건산업진흥원의 지원을 받아 수행됐다.
2020.03.27
조회수 12851
-
섬유 위에 기능성 나노구조체 구현
기계공학과 박인규 교수와 한국기계연구원 정준호 박사 공동 연구팀이 섬유 위에 다양한 기능성 나노 구조체를 구현하는 생체적합성 공정을 개발했다.
연구팀은 개발한 공정을 통해 다양한 재료의 나노 구조체를 섬유 위에 자유롭게 구현하는 데 성공했다. 섬유 위에 직접 나노 구조체를 전사할 수 있어 추가적인 기판이나 접착층 없이도 기능성 기기를 손쉽게 제작할 수 있다. 연구팀은 전기적·광학적 특성을 이용해 환경 및 신체 움직임 모니터링, 나노 구조색을 이용한 보안패턴, 광촉매를 이용한 자가 세정 기능 등을 섬유에 부여할 수 있으며, 스마트 섬유로 활용 가능할 것으로 전망했다.
고지우 박사과정이 1 저자로 참여한 이번 연구는 나노분야의 권위 있는 국제 학술지인 ‘에이씨에스 나노(ACS Nano, IF: 13.903)’2월 25일 자 14권 2호 논문에 게재됐다. (논문명: Nanotransfer Printing on Textile Substrate with Water-Soluble Polymer Nanotemplate, 수용성 폴리머 나노템플릿을 이용한 섬유에의 나노패턴전사)
최근 웨어러블 디바이스에 대한 관심이 커짐에 따라 섬유를 기판으로 하는 스마트 섬유 연구가 활발히 진행되고 있다. 섬유에 초미세 패턴을 구현하기 위해 다양한 방법이 시도되지만, 섬유의 거친 표면 특성으로 인해 기존의 공정은 기기 소형화 및 성능 향상에 필수적인 정교한 패턴을 구현할 수 없다는 한계가 있다. 이번 연구에서는 이를 해결하기 위해 물에 잘 젖는 섬유의 특성을 이용해 수용성 고분자이며 생체적합성이 우수한 히알루론산의 나노 패턴을 사용했다.
연구팀은 히알루론산 기판에 나노 패턴의 템플릿을 제작한 후 다양한 기능성 소재의 박막을 진공증착을 통해 형성했다. 그 후 섬유에 흡수된 물을 이용해 히알루론산 템플릿을 녹여냄으로써 최소 선폭 50 나노미터인 나노 구조체를 섬유 위에 전사했다. 이 방법을 통해 금, 은, 팔라듐, 알루미늄, 이산화규소와 같은 금속과 비금속 소재의 나노 패턴 형성이 모두 가능하며 동시에 다양한 나노 구조체의 조합을 자유롭게 섬유 위에 제작할 수 있다.
연구팀은 개발한 공정을 통해 팔라듐 나노 구조체를 전사해 수소 감지 센서를 제작했고, 나노 구조체가 없는 센서와 비교해 센서의 감도가 향상됐음을 확인했다. 또한, 나노 구조체가 갖는 광학적 특성인 국소 표면 플라즈몬 공명 현상으로 인한 나노 구조색을 이용해 같은 금속 및 구조이지만 두께 및 형상 파라미터에 따라 서로 다른 고유한 색을 나타냄으로써 보안패턴에 적용할 수 있음을 입증했다.
박인규 교수는 “스마트 섬유를 구현할 수 있는 간편하면서도 범용성 있는 나노 패터닝 공정을 개발했다. 다양한 섬유에 센서, 배터리, 보안패턴, 자가 세정 등의 첨단 기능을 쉽게 구현할 수 있는 데 큰 의의가 있다”라고 말했다.
이번 연구는 한국연구재단의 중견 연구 과제 (올인원 스마트 스킨을 위한 웨어러블 멀티센서 시스템 핵심기술 연구)와 글로벌 프론티어 사업 (극한물성시스템 제조 플랫폼기술)의 지원을 통해 수행됐다.
2020.03.18
조회수 16640
-
재촬영 없이 MRI 강조영상 얻는 AI 기술 개발
우리 대학 바이오및뇌공학과 예종철 교수 연구팀 자기공명영상(magnetic resonance imaging: MRI)에서 재촬영 없이도 누락된 강조영상을 얻을 수 있는 인공지능 기술을 개발했다.
이 연구를 통해 각 질환별로 강조영상이 암의 진단에 미치는 영향을 객관적으로 밝힐 수 있으며, 실제 임상에서 고비용의 MRI를 효과적이고 체계적으로 활용할 수 있는 방안을 설계할 수 있을 것으로 기대된다.
이동욱 박사가 1 저자로 참여하고 건국대 의과대학 영상의학과 문원진 교수팀이 참여한 이번 연구 결과는 국제 학술지 ‘네이처 머신인테리젼스(Nature Machine Intelligence)’ 1월 18일 자 온라인판에 게재됐다. (논문명 : Assessing the importance of magnetic resonance contrasts using collaborative generative adversarial networks).
MRI는 엑스선 컴퓨터 단층촬영, 초음파와 더불어 임상 진단에서 중요한 역할을 하는 진단 장비이다. 특히 비침습적 방법으로 고해상도의 영상을 얻기 때문에 종양이나 병변을 관찰하며 진단하는데 매우 중요한 임상 정보를 제공한다. 이는 영상의 대조도 (contrast)를 다양하게 조절할 수 있는 MRI의 특징 덕분이다.
예를 들어 뇌종양을 진단하는 데 활용되는 T1·T2 강조영상, FLAIR 기법 영상, T1 조영증강 영상 등 여러 가지 대조 영상을 얻어 진단에 사용함으로써 종양을 찾을 수 있다.
하지만 실제 임상 환경에서는 강조영상을 모두 얻기 어려운 경우가 많다. 여러 장의 강조영상 촬영을 위해 촬영시간이 길어지기도 하고, 잡음이나 인공음영 발생으로 인해 진단에 사용하기 어려운 경우가 많기 때문이다.
또한, 뇌질환진단을 위한 MRI 검사는 의심 질환이 무엇인지에 따라 필수 강조영상이 달라지며, 이후 특정 질환으로 진단명이 좁혀지면서 부득이하게 누락된 강조영상을 확보하기 위한 재촬영이 필요한 경우가 많다. 이러한 상황에 의해 많은 시간과 비용이 소모된다.
최근 인공지능 분야에서 생성적 적대 신경망(Generative adversarial networks, GAN)이라는 딥러닝을 이용해 영상을 합성하는 기술이 많이 보고되고 있지만, 이 기술을 MRI 강조영상 합성에 사용하면 준비하고 미리 학습해야 하는 네트워크가 너무 많아지게 된다.
또한, 이러한 기법은 하나의 영상에서 다른 영상으로의 관계를 학습하기 때문에 몇 개의 강조영상의 존재하더라도 이 정보 간의 시너지를 활용하는 영상 학습기법이 없는 현실이다.
예 교수 연구팀은 자체 개발한 ‘협조·생성적 적대신경망(Collaborative Generative Adversarial Network : CollaGAN)’이라는 기술을 이용해 여러 MRI 강조영상의 공통 특징 공간을 학습함으로써 확장성의 문제를 해결했다.
이를 통해 어떤 대조 영상의 생성이 가능한지와 불가능한지에 대한 질문과, 그에 대한 체계적인 대답 기법을 제안했다.
즉, 여러 개의 강조영상 중에서 임의의 순서 및 개수로 영상이 없어져도 남아있는 영상을 통해 사라진 영상을 복원하는 기법을 학습한 후 합성된 영상의 임상적 정확도를 평가해, 강조 영상 간 중요도를 자동으로 평가할 수 있는 원천 기술을 개발했다.
예 교수 연구팀은 건국대 문원진 교수 연구팀과의 협력을 통해 T1강조·T2강조 영상과 같이 내인성 강조영상은 다른 영상으로부터 정확한 합성이 가능하며, 합성된 강조영상이 실제 영상과 매우 유사하게 임상 정보를 표현하고 있다는 것을 확인했다.
연구팀은 확보한 합성 영상이 뇌종양 분할기법을 통해 뇌종양 범위를 파악하는데 유용한 정보를 제공한다는 것을 확인했다. 또한, 현재 많이 사용되는 합성 MRI 기법(synthetic MRI)에서 생기는 인공음영 영상도 자동 제거가 가능함이 증명됐다. 이 기술을 이용하면 추가적인 재촬영을 하지 않고도 필요한 대조 영상을 생성해 시간과 비용을 비약적으로 줄일 수 있을 것으로 기대된다.
건국대 영상의학과 문원진 교수는 “연구에서 개발한 방법을 이용해 인공지능을 통한 합성 영상을 임상현장에서 이용하면 재촬영으로 인한 환자의 불편을 최소화하고 진단정확도를 높여 전체의료비용 절감 효과를 가져올 것이다”라고 말했다.
예종철 교수는 “인공지능이 진단과 영상처리에 사용되는 현재의 응용 범위를 넘어서, 진단의 중요도를 선택하고 진단 규약을 계획하는 데 중요한 역할을 할 수 있는 것을 보여준 독창적인 연구이다”라고 말했다.
이 연구는 한국연구재단의 중견연구자지원사업을 받아 수행됐다.
□ 그림 설명
그림1. CollaGAN의 작동 원리의 예
2020.01.30
조회수 12867
-
심흥선 교수, 전자 움직임 포착할 수 있는 나노셔터 개발
〈 심흥선 교수, 류성근 연구원〉
우리 대학 물리학과 심흥선 교수팀(응집상 양자 결맞음 선도연구센터)이 나노 전기소자 내에서 전자 파동함수의 피코초(1조분의 1초) 수준의 초고속 움직임을 관찰하는 방법을 개발했다.
일본전신전화주식회사(NTT) 연구소, 영국국가표준기관(NPL) 연구소와 공동으로 수행하고 우리 대학 물리학과 류성근 연구원이 1 저자로 참여한 이번 연구 결과는 국제 학술지 ‘네이처 나노테크놀로지(Nature Nanotechnology)’ 11월 4일 자 온라인판에 게재됐다. (논문명 : Picosecond coherent electron motion in a silicon single-electron source)
움직이는 물체를 관찰하기 위해서는 카메라를 이용해 연속적으로 촬영하면 된다. 그러나 이 방법은 셔터의 작동 속도보다 더 빠른 물체의 움직임을 포착할 수 없다는 한계가 있다.
이러한 문제점은 나노 전기소자에도 동일하게 적용된다. 10기가헤르츠(GHz) 보다 더 빠른 전기 신호를 실시간으로 관측하는 것은 현재 기술로 불가능해 서브 마이크론 길이 내에서 104-105 m/sec의 속력으로 빠르게 움직이는 전자의 움직임을 기존 기술로는 포착할 수 없다.
심 교수 연구팀은 ‘나노 셔터’를 나노 전기소자 옆에 부착해 이 문제점을 해결할 수 있다는 이론을 제시했다. 여기서 나노 셔터는 공명 상태(resonance state)를 갖는 불순물로, 나노 전기소자 내의 전자가 불순물 근처에 도달할 때 전자는 공명 상태를 통해 소자 바깥으로 나오게 돼 전류 신호로 관측된다.
전자 에너지와 공명 상태 에너지가 같을 때만 바깥으로 나올 수 있으므로 공명 상태 에너지를 시간에 따라 변화시켜 나노 셔터를 빠르게 열거나 닫을 수 있다. 나노 셔터를 여는 시간을 바꾸면서 전류를 측정하면 전자가 불순물 근처에 도달한 시점 정보를 얻게 돼 나노 전기소자 내의 전자 움직임을 포착할 수 있다.
심 교수 연구팀의 이론적 해결책에 따라 일본 NTT 연구소는 영국의 국가표준기관인 NPL과 협력을 통해 나노 셔터 구현에 성공했다. 실험 연구팀이 이용한 나노 전기소자는 양자점 전자 펌프(quantum dot single-electron pump)로, 이 소자는 단일 전자를 정해진 주기로 발사하는 역할을 하며 전류의 표준을 연구할 때 사용된다.
양자점 전자 펌프의 출구에 불순물 공명 상태를 구현해 양자점 전자 펌프 내에서 전자 파동함수가 공간적으로 진동하고 있음을 관찰했다. 진동수는 무려 250기가헤르츠로 시간으로 환산하면 수 피코초 수준의 진동이다. 10 GHz 이상의 진동수의 전자 움직임을 포착한 것은 이번 연구가 처음이다.
심흥선 교수는 “양자역학 상태를 제어해 기존 기술의 한계를 돌파할 수 있음을 보여줬다”라며, “개발한 나노 셔터는 전자의 양자역학 근본원리를 탐구하는 데에 활용될 뿐 아니라 전류 표준, 초정밀 전자기장 센서, 초고속 큐빗 제어 등 차세대 양자정보 소자에 응용될 것이다”라고 말했다.
이 연구는 한국연구재단의 기초과학 선도연구센터 지원사업의 지원을 통해 수행됐다.
□ 그림 설명
그림1. 실리콘 기반 양자점 전자 펌프
그림2. 나노 전기소자 내에서 초고속으로 움직이는 전자 측정법
2019.11.05
조회수 8545
-
김현우 교수, 알코올 화합물의 광학활성 분석기술 개발
〈 김현우 교수 〉
우리 대학 화학과 김현우 교수 연구팀이 핵자기공명(NMR) 분광분석기를 통해 알코올 화합물의 광학활성을 간단히 분석할 수 있는 기술을 개발했다.
이 기술은 빠르고 간편한 분석 방법을 가지고 있어 다양한 알코올 화합물의 광학활성뿐만 아니라 비대칭 합성반응의 모니터링까지 폭넓게 응용 및 적용할 수 있을 것으로 기대된다.
장수민 박사과정이 1 저자로 참여한 이번 연구 결과는 국제 학술지 셀의 자매지 ‘아이 사이언스 (iScience)’ 9월 27일 자 온라인판에 게재됐다. (논문명 : A Gallium-Based Chiral Solvating Agent Enables the Use of 1H NMR Spectroscopy to Differentiate Chiral Alcohols)
광학이성질체는 오른손과 왼손의 관계처럼 서로 같은 물질로 이뤄져 있으나 거울상 대칭이 되는 화합물을 말한다. 우리 몸의 필수 구성요소인 아미노산과 당은 하나의 광학이성질체로 이뤄져 있어, 새 화합물이 생체 내에 들어가면 그 화합물의 광학활성에 따라 서로 다른 생리학적 특징을 나타내기 때문에 신약개발에서 광학활성을 조절하고 분석하는 연구가 필수적이다.
광학활성을 분석하는 방법으로 고성능 액체크로마토그래피(HPLC)가 주로 사용되며, 이를 통한 광학활성 분석 시장은 일본이 전체의 50% 이상을 차지하고 있다. 하지만 고성능 액체크로마토그래피는 분석에 30분에서 1시간이 소요되고 분석물이 발색단(發色團)을 가져야 분석 가능하다는 단점이 있다.
이에 비해 화합물의 분자 구조를 분석하는 데 많이 활용되는 핵자기공명(NMR) 분광분석기는 1~5분의 분석시간을 가지고 있으나, 광학활성 화합물의 신호를 분리하는 효과적인 방법이 규명되지 않았다.
김 교수 연구팀은 갈륨금속 중심의 음전하를 띤 금속 화합물을 합성하고 핵자기공명(NMR) 분광분석기를 활용해 효과적인 광학활성의 분석 방법을 개발했다.
연구팀은 금속 화합물과 광학활성 알코올 화합물 간 비공유 상호작용을 통해 핵자기공명 분광분석기의 신호가 구별돼 광학활성을 분석할 수 있는 원리를 이용했다. 기존 핵자기공명(NMR) 분광분석기를 통한 광학활성 분석은 알코올의 상온 분석 방법은 보고되지 않았다.
이번 연구는 다양한 작용기를 포함하고 있는 알코올 화합물의 상온 광학활성을 규명했다는 의의를 갖는다.
이번 연구에서 개발된 방법은 많은 신약 및 신약후보 물질의 광학활성 분석에 활용될 수 있으며, 특히 일본의 의존도가 높은 고성능 액체크로마토그래피(HPLC)를 이용한 광학활성 분석 방법을 대체할 수 있을 것으로 기대된다.
김 교수는 “핵자기공명 분광기를 활용한 광학활성 분석 관련 최고 수준의 기술이며, 신약개발에 필요한 광학활성 분석에 활용될 것으로 기대한다”라고 말했다.
이번 연구는 삼성미래기술육성재단의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 김현우 교수 연구성과 개념도
2019.10.10
조회수 9778
-
윤동기 , 김형수 교수, DNA 마이크로패치 제작 기술 개발
〈 윤동기 교수, 김형수 교수, 박순모 연구원 〉
우리 대학 화학과/나노과학기술대학원 윤동기, 기계공학과 김형수 교수 공동 연구팀이 마이크로 크기의 DNA 2차원 마이크로패치 구조체를 제작하고 이를 제어, 응용하는 기술을 개발했다.
윤 교수 연구팀은 커피가 종이에 떨어지고 물이 마르면 동그랗게 환 모양이 생기는 이른바 ‘커피링 효과’라 불리는 현상을 DNA 수용액에 적용해 세계 최초로 DNA 기반의 마이크로패치를 제작했다.
차윤정 박사, 박순모 박사과정 학생이 공동 1 저자로 참여한 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 6월 7일 자 온라인판에 게재됐다. (논문명 : Microstructure arrays of DNA using topographic control)
유전 정보를 저장하는 기능을 하는 DNA는 이중나선 구조와 나노미터 주기의 규칙적인 모양을 가져 소재 분야에서 일반적인 합성방법으로는 구현하기 힘든 정밀한 구조재료이다. 정밀한 DNA 합성과 오리가미(Origami) 기술을 이용해 스마일 패치(smile patch) 등의 재미있는 모양을 구현해 왔지만, 재료의 가격이 높아 실제 응용에 어려움을 겪었다.
윤 교수 연구팀은 이를 극복하기 위해 연어에서 추출한 DNA 물질을 이용해 기존보다 1천 배 이상 저렴한 비용으로 잘 정렬된 뜨개질(knit) 혹은 아이스크림콘 모양의 기존에 없던 마이크로패치 구조체를 대면적에서 구현했다.
연구팀은 DNA가 물에 녹으면 마치 물풀과 끈적끈적해지면서 서로 적당한 힘으로 끌어당기며 일정한 방향으로 정렬하는 액정상(liquid crystal phase)을 보인다는 점에 주목했다.
액정 표시장치(LC display 혹은 LCD)에서 액정분자들이 전기장을 통해 방향성이 제어되는 것처럼 수용액 상태의 DNA 액정상이 두 기판 사이에서 문질러지며 물의 증발이 이뤄질 때 DNA 나노 구조체들이 원하는 방향으로 정렬하게 된다. 과일 잼을 식빵에 바르면 과일 알맹이(pulp)가 한 방향으로 잘 펴 발라지면서 마르는 현상과 유사하다.
연구팀은 DNA가 한 방향으로 문질러져서 마를 때 바닥에 평평한 기판 대신 일정한 모양을 갖는 수 마이크론 크기의 기둥(혹은 요철)들이 있는 기판을 사용하면 2차원의 뜨개질 모양, 아이스크림콘 모양 등 좀 더 흥미로운 들을 제작할 수 있음을 확인했다.
또한, 금 나노막대와 같은 플라즈몬 공명(plasmon resonance)을 나타내는 소재와 결합해 디스플레이 소자에 응용을 시도했다. 플라스몬 공명은 금속으로 만들어진 기판에 빛을 쪼일 때 그 표면 위에서 전자가 일정하게 진동하면서 자신의 에너지와 일치하는 빛에만 반응하는 현상으로 특정한 색만 반사하여 선명도와 표현력을 높이는 데 사용된다.
이 방식에서 가장 중요한 점은 어떤 방향으로 금 나노막대가 정렬하는지를 나타내는 배향(orientation)이다. 즉 막대들이 한 방향으로 나란히 정렬될 때 광학·전기 특성이 극대화된다. 윤 교수 연구팀은 이러한 점에 착안해 DNA 마이크로패치를 일종의 틀로 삼아 금 나노막대들을 독특한 형태로 배향하고 플라즈몬 컬러 기판을 제작하는 데 성공했다.
연구팀이 개발한 DNA 2차원 마이크로패치 제작 기술은 DNA를 구조재료 및 전자소재로써 활용할 수 있는 단서를 마련했을 뿐 아니라 증발 현상과 DNA 액정물질이 접목될 때 나타나는 독특한 형태의 복잡한 분자 거동 해석에 대한 단서를 제공할 것으로 기대된다.
윤 교수는 “연구를 통해 밝힌 것처럼 DNA가 금 나노막대와 같은 광학 소재와 복합체를 쉽게 만들 수 있는 만큼, 자연계에 무한히 존재하는 DNA를 디스플레이 관련 분야의 신소재로서 응용할 수 있을 것으로 기대한다”라고 말했다.
이번 연구는 과학기술정보통신부-한국연구재단의 전략과제, 멀티스케일 카이랄 구조체 연구센터, 미래유망 융합기술 파이오니아사업과 신진연구 과제의 지원을 받아 수행됐다.
□ 그림 설명
그림1. DNA 분자 배향 모식도
그림2. DNA-금 막대 입자 복합체의 배향 양상과 나타나는 플라즈모닉 광학 현상
2019.06.18
조회수 17338
-
박현욱 교수, 머신러닝 통해 MRI 영상촬영시간 단축기술 개발
우리 대학 전기및전자공학부 박현욱 교수 연구팀이 머신러닝 기반의 영상복원법을 이용해 자기공명영상장치(이하 MRI)의 영상 획득시간을 6배 이상 단축시킬 수 있는 기술을 개발했다.
이번 연구를 통해 MRI의 영상획득시간을 대폭 줄임으로써 환자의 편의성을 높일 뿐 아니라 의료비용 절감 효과를 기대할 수 있을 것으로 보인다.
권기남 박사과정이 1저자로 참여한 이번 연구는 국제 학술지 ‘메디컬 피직스(Medical Physics)’ 12월 13일자에 게재됐고 그 우수성을 인정받아 표지 논문에 선정됐다.
MRI는 방사능 없이 연조직의 다양한 대조도를 촬영할 수 있는 영상기기이다. 다양한 해부학적 구조 뿐 아니라 기능적, 생리학적 정보 또한 영상화 할 수 있기 때문에 의료 진단을 위해 매우 높은 빈도로 사용되고 있다.
하지만 MRI는 다른 의료영상기기에 비해 영상획득시간이 오래 걸린다는 단점이 있다. 따라서 환자들은 MRI를 찍기 위해 긴 시간을 대기해야 하고 촬영 과정에서도 자세를 움직이지 않아야 하는 등의 불편함을 감수해야 한다.
특히 길게 소요되는 영상획득시간은 MRI의 비싼 촬영 비용과 직접적인 연관이 있다.
박 교수 연구팀은 MRI의 영상획득시간을 줄이기 위해 데이터를 적게 수집하고 대신 부족한 데이터를 기계학습(Machine Learning)을 이용해 복원하는 방법을 개발했다.
기존의 MRI는 주파수 영역에서 여러 위상 인코딩을 하면서 순차적으로 한 줄씩 얻기 때문에 영상획득시간이 오래 걸린다. 획득 시간을 단축시키기 위해 저주파 영역에서만 데이터를 얻으면 저해상도 영상을 얻게 되고 듬성듬성 데이터를 얻으면 영상에서 인공물이 생기는 에일리어싱 아티팩트 현상이 발생한다.
이러한 에일리어싱 아티팩트를 해결하기 위해 다른 민감도를 갖는 여러 수신 코일을 활용한 병렬 영상법과 신호의 희소성을 이용한 압축 센싱 기법이 주로 활용됐다.
그러나 병렬 영상법은 수신 코일들의 설계에 영향을 받기 때문에 시간을 많이 단축할 수 없고 영상 복원에도 시간이 많이 걸린다.
연구팀은 MRI의 가속화에 의해 발생하는 에일리어싱 아티팩트 현상을 없애기 위해 라인 전체를 고려한 인공 신경망(Deep Neural Networks)을 개발했다.
연구팀은 위 기술과 함께 기존 병렬 영상법에서 이용했던 복수 수신 코일의 정보를 활용했고, 이 방식을 통해 직접적으로 영향을 주는 부분만을 연결해 네트워크의 효율성을 높였다.
기존 방법들의 경우 서브 샘플링 패턴에 많은 영향을 받았지만 박 교수 연구팀의 기술은 다양한 서브샘플링 패턴에 적용 가능하며 기존 방법대비 복원 영상의 우수함을 보였고 실시간 복원 또한 가능하다.
박 교수는 “MRI는 환자 진단에 필요한 필수 장비가 됐지만 영상 획득 시간이 오래 걸려 비용이 비싸고 불편함이 많았다”며 “기계학습을 활용한 방법이 MRI의 영상 획득 시간을 크게 단축할 것으로 기대한다”고 말했다.
이번 연구는 과학기술정보통신부의 인공지능 국가전략프로젝트와 뇌과학원천기술개발사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 국제 학술지 ‘메디컬 피직스 (Medical Physics)’12월호 표지
그림2. 제안하는 네트워크의 모식도
그림3. MRI의 일반적인 영상 획득 및 가속 영상 획득 모식도
2017.12.29
조회수 17608
-
치매 정복의 열쇠, PET-MRI 국산화 시대 열린다!
- 순수 국내기술로 PET-MRI 동시 영상 시스템 상용화기술 개발 -- KAIST, 나노종합기술원, 서강대, 서울대병원 융합연구 쾌거 -
수입에만 의존하던 최첨단 의료영상기기 분야에서 국산화에 대한 기대감이 높아지고 있다.
우리 학교 원자력및양자공학과 조규성 교수가 총괄책임을 맡고 있는 3개 대학 공동연구팀은(KAIST, 서강대, 서울대) KAIST 부설기관인 나노종합기술원(원장 이재영)과 함께 순수 국내기술로 PET-MRI 동시영상 시스템을 개발하고 이 시스템을 이용해 자원자 3명의 뇌 영상을 획득하는데 성공했다.
PET-MRI는 인체의 해부학적 영상을 보는 자기공명영상기기(MRI, Magnetic Resonance Imaging)와 세포활동과 대사상태를 분석할 수 있는 양전자방출단층촬영기기(PET, Positron Emission Tomography)의 장점이 융합된 최첨단 의료영상기기다. 신체 내 해부학적 정보와 기능적 정보를 동시에 확인할 수 있기 때문에 종양은 물론 치매의 정밀한 조기 진단이 가능하고 신약 개발과 같은 생명과학연구에서도 필수적인 장치다.
기존의 장비는 MRI에서 발생되는 강한 자기장의 영향으로 인해 PET과 MRI 영상을 각각 찍은 후 결합하는 분리형 방식을 주로 사용해 왔다. 이 때문에 촬영시간이 길어지고 환자의 움직임으로 인한 오차가 발생해 두 기기의 영상을 동시에 측정하는 기술이 필요해 자기장내에서 동작되는 PET 개발이 절실했다.
연구팀이 국내 최초로 개발한 일체형 PET-MRI의 핵심 기술은 크게 △자기장 간섭이 없는 PET 검출기 기술 △PET-MRI 융합시스템 기술 △PET-MRI 영상 처리 기술로 나뉜다.
PET 검출기는 전체 시스템 가격의 절반을 차지할 정도로 비싸고 가장 핵심적인 요소다. 조 교수와 나노종합기술원 설우석 박사 연구팀은 강한 자기장 내에서 사용 가능한 실리콘 광증배센서(방사선 검출기에 들어오는 빛을 증폭) 개발에 성공했다. 개발된 센서는 반도체 공정을 최적화해 95% 이상의 높은 양산성과 10%대의 감마선 에너지 분해능을 확보해 글로벌 경쟁력을 갖췄다.
서강대 전자공학과 최용 교수는 신개념 전하신호전송방법과 영상위치판별회로를 적용한 최첨단 PET 시스템을 개발했다. 연구결과는 창의성 및 우수성을 인정받아 지난 6월 의학물리(Medical Physics)지에 표지논문으로 게재됐다.
서울대병원 핵의학과 이재성 교수는 △실리콘 광증배센서 기반 PET 영상재구성 프로그램 △MRI 영상기반 PET 영상 보정기술 △PET-MRI 영상융합 소프트웨어 개발을 맡았다.
이 밖에 KAIST 전기및전자공학과 박현욱 교수는 PET과 MRI가 동시설치 가능한 무선주파차폐(RF Shielding) 기술을 확보하고 이를 기반으로 PET과 연계해 설치 가능한 뇌전용 헤드코일을 개발했다.
이 기술들을 바탕으로 공동연구팀은 뇌전용 PET-MRI 시스템 개발에 성공, 지난 6월 3명의 PET-MRI 융합 뇌 영상을 획득했다. 이는 실리콘 광증배센서 기반의 PET과 MRI를 융합한 기기에서 세계 최초로 획득한 인체영상이라고 연구팀은 전했다.
특히, 이 시스템은 기존 전신용 MRI시스템에 뇌전용 PET 모듈 및 MRI 헤드코일이 탈부착 가능하도록 제작해 낮은 설치비용으로 PET-MRI 동시영상을 획득할 수 있는 게 큰 특징이다.
조규성 교수는 “국산 PET의 상용화 기반을 마련하고 세계적으로도 도입기인 PET-MRI 시스템 기술에서 세계 최고 기업들과 견줄 수 있게 됐다”며 “향후 수요가 급증할 것으로 예상되는 치매를 비롯한 뇌질환 진단 비용을 획기적으로 절감할 수 있을 것”이라고 이번 연구의 의의를 밝혔다.
산업통상자원부 산업원천기술개발사업으로 지원(7년간 총 98억원)받아 수행된 이번 연구를 통해 20여편의 특허를 출원하고 20여편의 SCI 논문을 발표했다.
그림1. 개발한 PET-MRI에서 획득한 뇌팬텀(모형) MRI, PET 및 융합 영상
그림2. 개발한 PET-MRI에서 획득한 인체(뇌) MRI, PET 및 융합 영상
그림3. 국산 PET-MRI 임상 영상 촬영 모습
그림4. MRI 내에 삽입된 Head RF 코일과 PET 검출기
그림5. 제작된 삽입형 PET 검출기 모듈
그림6. 제작된 실리콘 광증배센서(좌)와 섬광 크리스탈 블록(우)의 모습
그림7. 제작된 실리콘 광증배센서
그림8. PET 검출원리
2013.11.13
조회수 21267
-
양자점 이용한 고효율 투명 태양전지 개발
- 양자점 전해질에 분산해 9%대 고효율 염료감응 태양전지 원천기술 개발 -- 네이처 자매지 ‘사이언티픽 리포트’ 19일자 게재 -
우리 학교 신소재공학과 강정구 교수 연구팀은 모바일 양자점(mobile quantum dots)을 활용해 투명한 고효율 염료감응 태양전지 원천기술을 개발하는데 성공했다.
연구 결과는 세계적 학술지인 네이처(Nature)에서 발간하는 사이언티픽 리포트(Scientific Reports) 19일자 온라인판에 게재됐다.
현재 양산 가능한 염료감응 태양전지는 효율이 약 14% 정도로 낮아 가시광선 및 적외선 영역의 빛 흡수를 높이기 위해 염료, 빛 산란층, 플라즈몬 구조 등을 적용해 왔다. 그러나 이러한 구조들로 인해 태양전지가 두꺼워져 고효율의 투명 태양전지 구현에 한계가 있었다.
연구팀은 빛 흡수를 높이기 위해 염료감응 태양전지의 전해질에 양자점을 분산시켜 빛 산란층과 플라스몬 구조 없이도 9%대의 고효율을 달성했다.
아직은 현재 양산 가능한 태양전지보다 효율이 낮고, 상용화에는 많은 시간이 소요될 것으로 예상되지만 근본적으로 두께가 얇고 저렴한 염료감응 태양전지의 장점으로 인해 매우 의미 있는 연구결과라고 연구팀은 전했다.
이와 함께 연구팀은 전해질에 분산돼 있는 양자점이 염료와 함께 빛을 흡수하고 나서 다시 빛을 방출해 TiO2-염료 층과 전해질이 있음에도 불구하고 투명한 태양전지를 구현해내는데 성공했다.연구팀은 또 이번 연구를 통해 △가시광선 영역대에서도 양자점의 흡수와 방출 스펙트럼에 따라 형광공명 에너지 이동과 빛을 흡수한 양자점이 산화된 염료의 환원을 가속화시켜 태양전지 효율이 증가했으며 △빛 분산층과 플라즈몬 구조가 있는 투명하지 않은 셀과의 비교에서도 양자점의 흡수에 의한 효율 증가가 다른 효과보다 크고 투명한 특성을 보였음을 밝혀냈다.
강정구 교수는 이번 연구에 대해 “염료감응 태양전지의 높은 효율과 투명성을 모두 확보할 수 있게 됐으며, 투명한 유리창에 태양전지를 설치하는 것이 최종 목표”라며 “적외선 영역의 빛을 사용해 전기를 만들 수 있는 방법을 제시해 염료감응 태양전지의 적용 범위가 더욱 확대될 것으로 기대된다”고 말했다.
이번 연구는 KAIST 인공광합성센터, 고효율박막태양전지센터, 나노계면센터, WCU, 글로벌프론티어 사업 등의 지원을 통해 수행됐다.
그림1. 모바일 양자점이 포함된 염료감응태양전지의 흡수 스펙트럼, 외부양자효율, 전압-전류.(상단) 플라즈몬 구조, 빛반사층과 모바일 양자점이 구현된 태양전지의 외부양자효율, 산란파워, 그리고 사진의 비교. (하단)
그림2. 모바일 양자점이 전해질에서 염료에 흡수된 빛 에너지를 전달하는 메커니즘(좌측)과 염료 및 양자점의 흡수스펙트럼과 양자효율 (우측): Foster Resonance Energy Transfer (FRET) (상단), 양자점에서 흡수된 빛에너지에 의한 산화된 염료의 환원 작용(중단), 2광자 흡수 (하단)
그림3. 염료감응 태양전지 샘플
그림4. 연구원 사진
2013.09.25
조회수 16613
-
손상된 DNA의 돌연변이 유발 메커니즘 규명
- DNA 손상을 용인하는 특수 복제효소 Rev1의 조절 메커니즘 밝혀 -- “암 치료 및 예방에 크게 기여할 것” -
우리 학교 화학과 최병석 교수는 생체정보를 저장하는 DNA가 손상돼 회복하고 복제하는 과정에서 돌연변이가 발생하는 메커니즘을 규명했다.
연구결과는 분자세포생물학분야 세계적 학술지 ‘분자세포생물학(Journal of Molecular Cell Biology)’ 6월호 표지논문으로 실렸다.
산업의 급격한 발전으로 현대인들의 유전자는 예전에 비해 훨씬 다양하게 위협받고 있다. 오존층의 파괴로 인해 자외선에 그대로 노출되는 것은 물론 담배연기를 비롯한 수많은 발암물질의 공격은 우리 몸속의 DNA를 손상시킨다.
하루에도 수 만 번 끊임없이 일어나는 DNA의 손상을 효과적으로 회복시켜주지 못하면 암 등 치명적인 질병이 발생한다.
손상된 DNA가 회복반응에 의해 복구되지 않은 상태에서 자기복제가 일어나면 정상적인 복제를 담당하는 폴리머라제는 손상부위에 도달하면 DNA 합성을 정지하게 되고 세포의 죽음을 초래 한다.
인체는 이 같은 비상사태를 맞이해 복제담당 폴리머라제를 잠깐 쉬게 하고 손상된 DNA 부위를 그냥 지나치는 능력이 있는 특수한 복구담당 폴리머라제들을 동원해 손상부위를 통과하고 DNA 합성을 다시 시작한다.
이때 DNA는 많은 오류가 발생돼 심각한 돌연변이를 유발시킨다. 즉, 열악한 상황에 놓인 세포가 복제를 진행하지 못해 죽음을 맞기 보다는 생존을 위해 매우 부정확한 DNA 복제일지라도 선수를 교체하면서까지 복제를 진행하게 된다.
지금까지 학계에서는 Rev1 단백질이 이러한 과정을 조절할 것이라고 추정해 왔지만 그 구조와 기능은 명확하게 밝혀내지 못했다.
연구팀은 핵자기공명 분광법(NMR)과 X-ray를 이용해 DNA 복제과정에서 중추적인 역할을 하는 단백질(Polκ과 Rev1, Rev1과 Rev3/Rev7) 각각의 복합구조를 밝혀냈다.
이를 통해 ▲DNA가 손상 시 돌연변이가 유발되는 메커니즘 ▲DNA 복제효소간의 상호작용 ▲손상부위를 통과한 합성된 DNA가 더 연장되는 메커니즘을 분자수준에서 규명했다.
암의 직접적인 발병 원인이 DNA의 손상인 만큼 이에 대한 메커니즘을 밝혀내고 응용하면 개인별로 암의 원인을 제거할 수 있어 부작용 없는 맞춤형 항암제를 개발할 수 있을 것으로 전망된다.
최병석 교수는 이번 연구에 대해 “판코니 빈혈 환자들에게 암이 많이 발생되는 문제를 조사해보니 DNA복제 시 회복 기능이 고장 나 있더라”며 “손상된 DNA의 회복과 복제 과정에 대한 메커니즘 규명을 통해 암을 예방하고 치료하는데 크게 기여할 것”이라고 말했다.
이번 연구는 KAIST 화학과 최병석 교수와 류디난 박사의 주도로 수행됐고, KAIST 화학과 이지오 교수, 고준상 박사, 임경은 박사과정, 기초과학지원연구원 류경석 박사와 황정미 박사가 참여했다.
그림1. Polκ/Rev1/Rev7/Rev3 단백질 복합체 구조
그림2. Rev1, Polκ와 Rev7와 Rev3를 상호형질 주입된 세포의 공초점 현미경 영상
그림3. 논문표지
2013.06.03
조회수 16644
-
KAIST, 의료영상기기의 블루오션을 개척한다!
- PET-MR 검출기 용 반도체형 실리콘 광증배관 국산화개발 성공 -
- 2년 이내에 순수 국내기술로 상용화 가능 -- 전량수입에 의존하던 방사선 검출기의 국산화도 가능 -
우리 학교 원자력 및 양자공학과 조규성 교수 연구팀과 나노종합팹센터(소장 이귀로) 설우석 박사 연구팀이 공동으로 의료영상기기 중 하나인 PET-MR의 핵심소자인 ‘실리콘 광증배관(SiPM)’을 개발하는 데 성공했다.
실리콘 광증배관은 의료영상기기의 방사선 검출기에 들어오는 빛을 증폭하는 부품이다. 현재 국내에서 시판되는 PET-MR 가격이 약 50억원인데 이 부품은 전체 가격의 10% 이상을 차지할 정도로 매우 고가다.
실리콘 광증배관의 필요성이 최근 들어 크게 대두되고 있지만, 개발이 어려워 전 세계에서 독일, 일본, 미국 등 선진국들만 이 기술을 보유하고 있다. 앞으로 조 교수 연구팀이 개발한 기술이 상용화되면 국내시장 규모가 2010년 3000억원에 달했으나 국산 부품이 전무했던 PET 분야에서 커다란 경제적 파급효과를 낼 것으로 예상된다.
PET-MR은 인체조직의 해부학적 영상과 물질대사의 분석이 가능한 자기공명영상기기(MRI, Magnetic Resonance Imaging)와 인체의 세포활동과 대사상태를 분자 수준까지 분석할 수 있는 양전자방출단층촬영기기(PET, Positron Emission Tomography)의 장점이 결합된 최첨단 의료영상기기다.
이처럼 PET와 MRI의 장점만 갖춘 꿈의 의료영상기기인 PET-MR의 상용화를 위해 실리콘 광증배관 개발이 필수적이다.
진공관식 광증배관을 이용하는 기존의 PET는 MR장비의 강한 자기장으로 인해 심각한 영상 왜곡이 발생하기 때문이다.
연구팀은 조도가 낮은 PET 감마선 섬광신호를 측정하는 실리콘 광증배관의 구조를 최적화하고 반응속도를 높여 에너지와 시간분해능을 동시에 향상시켰다. 또 소자 내부증폭을 통해 저조도의 광량을 100만배 증폭 시킬 수 있어 단일광자까지 측정 가능하도록 만들었다.
이와 함께 제작 공정을 단순화해 진공관식 광증배관 대비 1/10 수준의 가격경쟁력을 갖췄으며, 크기는 1/1000 수준으로 소형화를 실현했다.
조 교수 연구팀이 개발한 실리콘 광증배관은 올해 동물실험을 거쳐 앞으로 2년 이내에 우선적으로 뇌전용 PET-MR에 적용해 상용화할 계획이다.
조규성 교수는 “실리콘 광증배관의 국산화를 통해 PET와 같은 의료영상기기는 물론 후쿠시마 원전사고 이후 세계적인 수요가 급증하고 있지만 우리나라로서는 전량 수입에 의존하는 방사선 검출기의 국산화도 가능하게 됐다”며 “원전수출의 급물살에 이어 국내 방사선기기 기술의 해외시장 진출도 머지않았다”고 말했다.
한편, 이번 연구는 지식경제부가 지원하는 산업 원천기술개발사업의 일환으로 지난 4년간 수행됐다.
<용어설명>
● 실리콘 광증배관(SiPM)- Silicon Photo Multiplier의 약자로 소자의 내부증폭을 이용하는 광다이오드의 한 종류다. 일반적인 광다이오드는 흡수한 광신호를 외부 증폭회로를 통해 증폭시키게 되는데 이때 외부 잡음도 함께 증폭되는 문제가 있다. 실리콘 광증배관은 소자의 내부에서 100만배로 신호를 증폭시킬 수 있어 단일 광자까지 측정가능 한 소자이다.
● 진공관식 광증배관(PMT)- 광전효과를 이용하여 빛을 증폭시키는 소자이다. 입사된 광자를 전자로 변환시킨 뒤 전기장하에서 가속하여 증폭시키는 과정을 반복한다. 증폭률이 100만배에 가깝고 그 성능을 인정받아 현제까지 가장 많이 사용되고 있는 광소자이다. 하지만 자기장 하에서 전자의 움직임이 영향을 받아 PET-MR에 사용할 수 없다.
● 양전자방출단층촬영기기(PET)- 환자에 양전자를 방출하는 동위원소를 주입한 뒤 특정부위에서 양전자가 방출되면 180° 방향으로 전자의 소멸에 의한 소멸방사선이 발생된다. 이때 환자를 둘러싼 링형태의 검출기에서 두 개의 소멸방사선을 동시에 계측하여 위치를 추정하게 된다. 암은 형성 초기에 다량의 포도당을 이용하여 에너지를 사용하므로 동위원소 표지가된 포도당을 주입하여 암의 조기 진단이 가능하다. 또한 CT나 MRI와 달리 신진대사 및 분자의 거동을 볼 수 있어 분자영상기기라고도 불린다.
● 감마선 - 방사선의 일종으로 에너지가 높아 투과율이 가장 높다. PET에서
사용되는 동위원소에서는 전자의 소멸에 의해 511keV의 감마선 쌍이 180도 방향으로 방출된다.
● 에너지 분해능 - 방사선 측정기에서 서로 다른 에너지의 방사선을 구별할 수
있는 능력. 에너지 분해능이 높아야 잡음 및 외부 방사선으로부터 표적물질이 구분 가능하다.
● 시간 분해능 - 방사선 측정기에서 측정된 서로 다른 신호의 반응 시간을 구별 할 수 있는 능력. 시간 분해능이 높아야 180도 방출된 소멸방사선의 동시계수가 가능하다.
<보충자료>
▣ 의료영상기기의 특징 및 현황(2011년 6월 기준)
1) CT
- 원리 : 빛 에너지인 X선을 360도 각도에서 촬영해 재구성한다. 2차, 3차원 영상촬영이 가능하다
- 특징 : 조직의 밀도차이를 구별한다. 움직이는 장기(심장, 폐, 내장) 촬영에 적합하다. MRI보다 저렴하며 조영제를 쓰기도 한다.국내보유 : 1743대, 대당가격 : 15억원
2) PET
- 원리 : 방사성 약을 인체에 주사하면 포도당 등과 결합해 양전자가 나온다. 이때 나오는 감마선 신호를 영상화 한다.
- 특징 : 인체 조직의 기능과 대사 상태를 영상화한다. 한 번 만에 전신을 찍는다. 문제 위치를 정확히 드러내지 않아 최근 CT와 융합해서 많이 사용한다.국내보유 : 155대, 대당가격 : 20억원
3) MRI
- 원리 : 체내 물 성분의 하나인 수소 원자핵에 자기장을 걸고 핵 진동을 일으켜 신호를 분석한다.
- 특징 : 수분이 많은 근육, 인대, 물렁뼈, 디스크, 혈관, 지방, 뇌를 CT보다 정확히 보여준다. 방사선을 쓰지 않는다.국내보유 : 985대, 대당가격 : 20억원
▣ PET-MR의 임상적 유용성
PET-MR은 PET(양전자단층촬영장치)와 MRI(자기공명영상장치)의 장점만을 합친 퓨전(융합)영상기기이다.
–PET는 뇌세포의 유전자 및 분자과학적인 변화를 알 수 있지만, 공간해상도가 떨어진다는 단점이 있다.
–반대로 MR은 수백 mm 정도로 해상도가 높으나 유전자 및 분자과학적인 변화를 볼 수 없다.
•PET-MR은
–두 영상기기의 단점을 해결해, 뇌 세포의 기능 및 분자과학적인 변화를 3차원 고정밀 영상으로 얻을 수 있다.
–6겹으로 이루어진 뇌의 피질을 층마다 분리해 정밀하게 볼 수 있으며(해부학적 고해상도 영상), 뇌의 미세혈관도 분자수준에서 관찰(생리학적 고민감도 영상)이 가능하다.
–MRI영상과 PET 영상을 동시에 얻음으로써 같은 위치에 있는 조직의 생화학적 변화를 동시에 관찰하여 진단의 민감도(sensitivity, TP)와 특이도(specificity, TN)를 향상시킬 수 있다.–저해상도 PET 영상이 호흡이나 심장박동과 같이 인체의 motion artifact에 의해 저해되는 것을 gated MR 영상을 이용하여 보정할 수 있다.
▣ 시장규모-2010년 미국의 PET 및 PET-CT 시장은 약 5.2조원으로 5년 평균 16.7%성장률을 기록하고 있다. 한국의 PET시장은 2010년 까지 150대에 이르는 PET기기 도입으로 3400억에 이르는 시장을 형성하고 있다. 또한 고령화 사회로 진입함에 따라 암, 치매에 대비한 PET-CT 혹은 PET-MR 융합기기의 수요가 증가하여 더 큰 규모의 시장형성이 예상된다.
▣ SiPM개발의의Siemens사는 실리콘 Avalanche photodiode (APD)를 이용하여 직접 융합하는 방식의 PET-MR을 2010년 후반부에 출시한 바 있다. 하지만 실리콘 APD는 진공관식 증배관에 비해 자기장에 강하지만 증폭도가 낮고 이득이 불안정한 것이 단점이다. 실리콘 광증배관은 5~6년전 아일랜드의 SensL사가 최초로 상용화한 광센서로서 실리콘 APD와 진공관식 광증배관의 장점만을 취할 수 있기 때문에 낮은 조도의 광신호를 크게 증폭시킬 수 있는 데 심지어는 단일 광자까지 측정 가능하다. 또한 기존 진공관식 광증배관에 비해 소형이고 양산성이 좋아 경제성이 높은 새로운 광 소자로써 각광을 받아 국내외 연구가 활발히 진행되고 있다.
<그림설명>
그림1. 반도체형 광증배관과 섬광체 단결정이 결합된 PET 검출기 개념도
그림2. 연구팀이 개발한 PET-MR용 반도체형 광증배관 사진
그림3. 마이크로 셀 어레이로 구성된 실리콘 광증배소자
그림4. 단일 광증배소자 (우상) 및 4x4 어레이구조의 16채널 광증배소자(우하)
그림5. 격자형 섬광결정과 어레이형 실리콘 광증배소자 및 신호처리회로가 결합된 PET 검출기 모듈
2012.01.26
조회수 25148
-
김상규교수 화학반응의 비밀을 밝히다
네이처 케미스트리誌 발표, "화학반응을 원하는 대로 제어할 수 있는 방법 개발 가능성 열어"
화학반응의 핵심적인 개념이지만, 지난 60년간 학계에서 이론적으로만 예측되었던 원뿔형 교차점(conical intersection)의 존재와 분자구조가 국내연구진에 의해 실험적으로 규명되었다.
우리학교 김상규 교수와 임정식 박사가 주도한 이번 연구는 교육과학 기술부(장관 안병만)와 한국연구재단(이사장 박찬모)이 추진하는 중견 연구자지원사업(도약연구)과 우수연구센터(SRC)사업의 지원을 받아 수행되었고, 연구결과는 화학분야 세계 최고 권위의 과학 전문지인 ‘네이처 케미스트리(Nature Chemistry)’지 온라인 속보(7월 4일자)에 주요 논문으로 게재되었다.
김상규 교수 연구팀은 지금까지 이론적으로만 존재했던 원뿔형 교차점을 실험적으로 구체화하고, 화학반응의 핵심이론을 검증했으며, 화학 반응을 제어하는 새로운 방법론 구축에 성공하였다.
원뿔형 교차점은 화학반응은 물론이고, 우리 눈의 망막에서 일어나는 광이성질체화(光異性質體化)* 반응 및 DNA의 강한 자외선 보호 메커니즘 등 화학과 의학 문제를 설명하는데 필수적인 매우 중요한 화학적 개념이다. ※ 광이성질체화(photoisomerization) : 분자가 빛을 흡수하여 들뜬상태를 거쳐 이성질체화를 일으키는 현상
학계는 눈 깜짝할 사이에 사라지고, 다차원적 위치에너지의 복잡한 구조를 지닌 ‘화학반응의 특이점’에 접근하는 것이 사실상 불가능해, 지금까지 원뿔형 교차점의 존재를 실험적으로 규명하기 위해 무수히 시도하였지만 실패하였다.
김상규 교수팀은 서로 다른 두 개의 전자적 양자상태가 화학반응을 하면서 중첩하는 지점에 발생한 원뿔형 교차점을 관측하고, 에너지 위치와 자세한 분자구조를 유추해냈다.
김 교수팀은 레이저와 분자선 기술을 사용하여 분자의 특정 양자 상태에서 일어나는 화학반응의 자세한 동역학적 움직임을 살펴본 결과, 두 개의 서로 다른 전자적 양자상태가 중첩될 때 뚜렷한 공명 (resonance)현상이 발생하며, 이것은 원뿔형 교차점에 의한 것임을 확인하였다.
김상규 교수는 “화학반응에서 전자와 핵 사이에 상호작용이 가장 크게 일어나는, 화학반응의 핵심개념인 원뿔형 교차점을 최초로 관측한 점은 이번 연구의 가장 큰 성과로, 향후 화학반응을 원하는 대로 제어하여, 치료 및 제약 등 다각적으로 활용될 수 있는 원천적 기초지식 기반을 마련하였다”라고 연구의의를 밝혔다.
2010.07.06
조회수 18911