본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EA%B8%88+%EB%82%98%EB%85%B8%EC%84%A0
최신순
조회순
감도 1000배 높은 금나노선 탐침 개발
우리 학교 화학과 김봉수 교수 연구팀(제1저자 강미정 박사)은 단결정 금 나노선을 이용해 만든 세계에서 가장 가는 나노탐침으로 쥐의 신경신호를 측정하는데 성공했다. 굵기가 100nm(나노미터, 10억분의 1미터)에 불과한 이 나노탐침은 기존보다 1,000배 이상 뛰어난 감도를 나타냈으며 1mm 이하의 극히 정밀한 간격으로 뇌신경 신호 측정이 가능하다. 기존 신경탐침은 삽입 시 조직 손상이 커서 검출신호가 약한 반면 개발된 탐침은 손상을 최소화해 신경 신호가 상대적으로 크다. 뇌에서 발생하는 전기적 신경신호를 정확하게 수집·분석하는 신경탐침은 뇌 연구에서 가장 핵심적인 요소다. 신경탐침은 조직손상을 최소화해야하며 우수한 전기적 감도를 가져야한다. 연구팀은 탐침의 재료인 금에 열을 가해 증기상태로 만든 다음 온도가 낮은 기판으로 운반한 후 기판에서의 응결에 의해 단결정 금 나노구조가 생성되는 원리를 이용해 금 나노선을 개발했다. 만들어진 금 나노선은 결함이 없는 단결정구조이기 때문에 전기전도성이 높으면서도 강하고 유연한 특성을 보였다. 김 교수 연구팀은 개발된 나노탐침을 간질을 유발하는 약물을 투여한 쥐의 뇌에 삽입해 신경신호를 측정한 결과 간질을 일으키는 뇌의 특정 영역을 정확히 찾을 수 있었다. 또 낯선 쥐의 침입에 의한 신경신호의 변화도 탐지해냈다. 김봉수 교수는 “뇌 신경 세포를 손상시키지 않으면서 단일 신경세포로부터의 신호를 높은 감도로 포착할 수 있다”며 “정밀한 뇌신경 3차원 지도 작성에 유용할 뿐 아니라 치매, 파킨슨병 등의 전기치료에도 도움이 될 것”이라고 말했다. 연구결과는 나노분야 국제학술지 ‘ACS 나노(ACS Nano)’ 12일자 온라인 판에 게재됐다. □ 금나노선 합성 방법석영관으로 이루어진 가열로 내에서 금 slug를 가열하여 형성시킨 금 vapor가 수송 기체에 의해 사파이어 기판에 도달하여 나노선으로 성장함 □ 금나노선 성장사파이어 기판에 도달한 금 vapor가 half-octahedral seed를 형성하고, 그 seed에 금 vapor가 결합하여 나노선으로 성장함 □ 금나노선 탐침 제작방법텅스텐 팁으로 기판 위에 수직 성장된 나노선 중 하나를 집어낸 뒤, 텅스텐 팁은 절연층으로 코팅함 □ 신경신호 감도 비교금 나노탐침과 텅스텐 마이크로탐침을 쥐 뇌에 삽입하여 측정한 신경신호 비교. 금 나노탐침에서 스파이크 형태의 신경 신호가 뚜렷하게 관찰됨 □ 행동실험낯선 쥐의 침입에 의한 신경신호의 변화를 금 나노탐침과 텅스텐 마이크로탐침으로 측정. 금 나노탐침에서만 뚜렷한 신호 변화가 측정됨 □ 약물실험세 개의 금 나노탐침 또는 텅스텐 마이크로탐침을 쥐 뇌에 삽입한 후, 쥐에 간질을 유발하는 약물을 주사하여 발작 상태를 보일 때 측정한 신경신호. 세 개의 금 나노탐침은 세 영역의 신호를 구분하여 간질 중심을 찾아낼 수 있는 반면 세 개의 텅스텐 마이크로탐침은 세 영역의 신호를 구분하지 못함
2014.08.27
조회수 12212
김봉수 교수 연구팀, 그래핀을 이용한 플렉서블 전계방출 디스플레이(FED)용 이미터 전극 개발
-『Advanced Materials』온라인판 11월 5일자 게재 - 우리대학 화학과 김봉수 교수 연구팀이 新소재 그래핀 위에 코발트 게르마늄 나노선을 성장시켜 ‘차세대 플렉서블 전계방출 디스플레이’용 이미터 전극을 개발했다. ‘차세대 플렉서블 전계방출 디스플레이(FED)"용 고효율 · 고내구성 이미터(Emitter) 전극 기술이 개발되어, 향후 초박형(超薄形) 두루마리 컴퓨터 · TV, 3차원 디스플레이 등 다양한 분야에 응용될 것으로 기대된다. ‘꿈의 디스플레이로’로 불리는 전계방출 디스플레이(Field Emission display, FED)는 LCD보다 얇게, 브라운관 화질보다 선명하게 화면을 구현할 수 있고, 전력소모가 LCD의 1/4, PDP의 1/6밖에 안 들며 내부에 수은 등 공해 물질이 전혀 없는 친환경 디스플레이다. 특히 휘도가 아주 높아서 차세대 3차원 디스플레이를 구현할 수 있다. FED는 상하 기판 사이에 진공으로 채워진 구조로 되어있으며, 상판(양극판)에는 형광체가 도포되어 있고, 하판(음극판)에는 미세한 마이크론 크기의 전자발사체(Emitter) 들이 무수히 형성되어 있다. 우수한 FED를 만들기 위해서는 고효율․안정한 구조의 이미터가 무엇보다 중요한 데, 지금까지 이미터 재료로서 주로 연구되던 탄소나노튜브(CNT)는 깜빡거림 및 내구성 등의 문제점을 가지고 있었다. 김봉수 교수 연구팀은 새로운 이미터 재료로 최근 新소재로 각광받고 있는 그래핀과 단결정 코발트 게르마늄 합금을 활용하여, ‘플렉서블’하면서 ‘효율적인’ 전계 방출 디스플레이 개발의 새로운 전기(轉機)를 마련했다. 그래핀은 흑연에서 얇은 한 층을 떼어낸 것으로 투명하고 수 nm이하의 초박형 제작이 가능하며, 뛰어난 전기전도성과 열전도성을 지니고 있어 고성능 투명전극으로 적합하다. 금번 연구팀은 큰 종횡비를 가지고 화학적 및 열적 내구성이 매우 우수한 단결정 코발트 게르마늄 합금 나노선을 최초로 개발했고, 이를 다층 그래핀 위에 수직으로 성장시키는 데 성공했다. 이 구조는 탄소나노튜브(CNT)에 필적하는 뛰어난 전계방출 특성을 보이면서 보다 우수한 내구성을 가지는 것으로 나타났다. 김봉수 교수는 "투명하고 구부릴 수 있는 그래핀 전극 위에 코발트 게르마늄 합금 나노선을 결합시켜 개발된 고효율 전계 방출 이미터는, 초박형 두루마리 컴퓨터·TV 및 3차원 디스플레이 등의 다양한 응용이 가능하여 차세대 디스플레이 시장을 선도할 수 있는 핵심 원천기술이 될 것이다.“라고 밝혔다. 한편, 이번 연구결과는 신소재 분야의 세계적 학술지인 "어드밴스드 머티리얼즈 (Advanced Materials)"지 온라인판 11월 5일자에 게재되었고, 현재 국·내외 특허 출원 중이다.
2009.11.13
조회수 18441
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1