-
값싸고 40% 향상된 리튬이온전지 만든다
전기자동차, 스마트폰 등에 사용되는 리튬이온전지 원가 중 가장 높은 비율을 차지하는 가장 비싼 재료는 니켈, 코발트와 같은 고가 희귀금속이 다량 포함된 양극재다. 국제공동연구진이 리튬이온전지의 에너지 밀도와 가격 경쟁력을 모두 높이는 새로운 전략을 제시했다.
우리 대학 신소재공학과 서동화 교수 연구팀이 UNIST, 캐나다 맥길대(McGill University)와 공동연구를 통해 리튬이온전지 양극의 핵심 광물인 값비싼 니켈, 코발트 없이도 에너지밀도가 40% 향상된 고성능 차세대 리튬이온전지 양극을 개발했다고 1일 밝혔다.
국제공동연구팀은 망간 기반의 양이온-무질서 암염(Disordered rock-salt, 이하 DRX) 양극재에 주목했다. DRX 양극재는 값싸고 매장량이 풍부한 망간, 철 등을 사용할 수 있으면서 양극재 무게 기준 기존 상용화된 삼원계양극재(약 770Wh/kg)보다 높은 에너지밀도(약 1,000Wh/kg)를 가질 수 있기 때문이다. 무엇보다, 값비싼 니켈과 코발트 없이도 소재를 설계할 수 있다는 장점이 있어 차세대 리튬이온전지 양극재로 주목받고 있다.
그러나 망간 기반 DRX 양극재의 경우 양극재 비율이 90% 이상인 전극으로 전지를 만들면 전지 성능이 매우 낮고 급격하게 열화되는 문제가 있었다. 따라서 DRX 양극재 연구자들은 양극재 비율을 70%로 낮춰 전극을 만들어야 했는데, 이 경우 전극 수준에서 삼원계(약 740Wh/kg)보다 오히려 낮은 에너지밀도(약 700Wh/kg)를 가지게 되는 문제가 있었다.
공동연구팀은 전극 내 망간 기반 DRX 양극재 비율이 높을수록 전자 전달 네트워크가 잘 형성되지 않고, 충·방전 간 부피 변화율이 높을수록 충·방전 동안 네트워크 붕괴가 잘 일어나 전지의 저항이 크게 증가한다는 것을 밝혔다. 고성능 차세대 양극재를 사용하더라도 저항이 크게 걸려 전지가 제 성능을 낼 수 없었던 것이다.
공동연구팀의 연구에 따르면, 망간 기반 DRX 전극 제조 시 다중벽 탄소나노튜브*를 사용하여 DRX 양극재의 낮은 전자전도도를 보완하고 충·방전 간 부피 변화를 견딜 수 있게 되어 전극 내 양극재의 비율을 96%까지 끌어올리더라도 전자 전달 네트워크와 전지 성능이 열화되지 않았다. 이를 통해 니켈, 코발트 없이 전극 무게 기준 약 1,050Wh/kg의 높은 에너지밀도를 보이는 차세대 리튬이온전지 양극을 개발했다. 이는 리튬이온전지 양극 중 세계 최고 수준이며, 상용 삼원계 양극 대비 에너지밀도가 40% 향상된 수준이다.
*다중벽 탄소나노튜브: 여러 개의 농축된 원통형 그래핀 층으로 구성된 나노 스케일의 튜브
또한, DRX 양극재 내 망간 함량이 높을수록 전자전도도는 높지만, 동시에 부피 변화율도 높다는 상관관계를 발견했다. 이러한 이해를 기반으로 망간 함량을 낮춰 부피 변화를 억제하고, 다중벽 탄소 나노튜브를 사용해 낮은 전자전도도를 극복한다는 차세대 리튬이온전지 양극 설계 전략을 연구팀은 제시했다.
서동화 교수는 “상용화를 위해 풀어야 할 문제들이 아직 남아있지만 대 중국 의존도가 높은 니켈, 코발트 광물이 필요 없는 차세대 양극 개발 시 자원 무기화에 대비할 수 있고 리튬 인산철 양극 주도의 저가 이차전지 시장에서 우리 기업의 글로벌 경쟁력이 강화될 것으로 기대된다”라고 말했다.
이번 연구에는 이진혁 맥길대 교수가 공동교신저자로, 이은렬 UC버클리 박사후연구원(연구 당시 UNIST 에너지화학공학과 박사과정), 이대형 KAIST 신소재공학과 박사과정이 공동 제1 저자로 참여했다. 또, KAIST 신소재공학과 박상욱 박사과정, 김호준 석사과정이 공저자로 참여했다. 연구 수행은 한국연구재단의 과학기술분야 기초연구사업, 나노 및 소재 기술개발사업, 원천기술 개발사업 및 산업통상자원부의 에너지인력 양성사업의 지원을 받아 이뤄졌고, 한국과학기술정보연구원의 슈퍼컴퓨터를 지원받아 수행됐다.
연구 결과는 에너지 분야 국제학술지 ‘에너지 및 환경과학(Energy & Environmental Science)’ 지난 3월 27일자로 온라인 공개되었고, 6월호 표지 논문으로 출판될 예정이다. (논문명 : Nearly all-active-material cathodes free of nickel and cobalt for Li-ion batteries).
2024.05.02
조회수 3736
-
백금보다 80배 저렴한 수소전지 대체 촉매 개발
탄소 중립에 도달하기 위해 수소가 미래 에너지원으로 주목받고 있다. 수소 연료전지는 수소와 공기 중의 산소를 반응시켜 전기를 생산하는 발전장치로, 중소형 발전뿐만 아니라 승용차, 버스, 선박 등과 같은 운송 수단의 동력원으로 개발되고 있다. 그러나, 현재 전극 재료로 귀금속인 백금을 사용하고 있어 가격을 낮추는 데 걸림돌이 되고 있다.
우리 대학 신소재공학과 에너지 변환 및 저장재료 연구실 조은애 교수 연구팀이 백금을 대체할 수 있는 저렴하지만 고성능을 가진 전극 소재를 개발하는 데 성공했다고 11일 밝혔다.
조은애 교수 연구팀은 차세대 연료전지로 개발되고 있는 음이온 교환막 연료전지용 전극 소재로 백금보다 우수한 성능을 갖는 `니켈-몰리브데넘 소재'를 개발했다고 밝혔다. 특히, 신규 개발 촉매를 실제 연료전지에 적용하는 경우 다양한 변수에 의해 실성능을 얻지 못하는 경우가 많다. 그러나, 연구팀은 이번 연구에서 이를 극복하고 실제 연료전지에 신규 개발 촉매를 적용하는 것에 성공했다.
니켈은 음이온 교환막 연료전지용 비귀금속 전극 소재로 주목받았으나, 백금 성능의 100분의 1에도 미치지 못하여 실제 적용되지 못하고 있었다. 그러나 이번에 연구팀이 개발한 니켈-몰리브데넘 촉매는 백금보다 성능이 우수하고 (백금: 1.0 mA/cm2, 니켈-몰리브데넘 촉매: 1.1 mA/cm2), 가격은 80분의 1에 불과하여 백금을 대체할 수 있을 것으로 기대된다. 연구팀은 니켈-몰리브데넘 촉매를 연료전지에 적용하여 성능을 확보하는 데에도 성공하였다.
조은애 교수는 "순수한 니켈은 성능이 낮지만, 산화 몰리브데넘을 이용해 니켈의 전자구조를 변화시켜 성능을 비약적으로 향상했다ˮ고 설명하며 “공정 특성상 대량 생산에도 적합하며 향후 음이온 교환막 연료전지에 적용할 수 있을 것으로 기대한다”고 말했다.
신소재공학과 권용근 박사가 제1 저자로 참여한 이번 연구 결과는 재료 분야 저명 국제 학술지 `어플라이드 카탈리시스 비: 엔바이론멘탈(Applied Catalysis B: Environmental)' 2023년 4월 5일 자 온라인판에 게재됐다. (논문명: A Ni-MoOx composite catalyst for the hydrogen oxidation reaction in anion exchange membrane fuel cell)
한편, 조은애 교수팀이 수행한 이번 연구는 한국연구재단이 추진하는 중 나노 및 소재기술개발사업의 지원을 받아 이뤄졌다.
2023.05.11
조회수 5683
-
기존 대비 10배 이상 빠른 마그논 전송현상 발견
우리 대학 물리학과 이경진, 김세권 교수 연구팀이 고려대학교 이동규 대학원생, 싱가포르국립대 양현수 교수, 이규섭 박사와 공동연구를 통해 *반강자성체에서 초고속 *마그논 전송을 실험적으로 관측하고 그 원리를 이론적으로 규명했다고 4일 밝혔다.
☞ 반강자성체(antiferromagnetic substance): 인접한 원자의 자기 모멘트들이 서로 반대방향으로 향하기 때문에 전체로서는 자력이 나타나지 않는 물질. 어떤 온도를 넘어서면 상자성체와 같은 자성을 나타낸다.
☞ 마그논(magnon): 자기 양자(Magnetic quantum)의 줄여진 신조어로 양자화된 스핀 파동을 뜻한다. 즉, 스핀파를 양자화한 준입자를 가리킨다.
양현수 교수 연구팀은 반강자성 절연체인 산화니켈(NiO)에서 마그논 전송속도가 그동안 알려져 있던 최대 속도보다 10배 이상 빠름을 실험적으로 관측했다. 그리고 이경진 교수 연구팀은 이러한 초고속 마그논 전송이 마찰력에서 기인함을 이론적으로 규명했다.
이 공동연구 결과는 반강자성 마그논을 이용한 정보처리 소자의 고속화 가능성을 열었다는 측면과 마찰력은 소자 특성을 나쁘게 한다는 기존 상식과 달리 짧은 거리에서 마그논 속도를 오히려 증가시킨다는 사실을 규명했다는 측면에서, 스핀트로닉스 분야 응용과 기초과학 모두에서 향후 관련분야 발전에 기여할 것으로 기대된다.
이규섭 박사와 이동규 학생이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 나노테크놀로지(Nature Nanotechnology)'에 온라인 출판됐다. (논문명 : Superluminal-like magnon propagation in antiferromagnetic NiO at nanoscale distances).
산화니켈(NiO)은 반강자성 특성으로 인해 효율적인 마그논 전송이 가능하고, 전기적 절연특성으로 인해 스핀 정보 전송 시 열 손실이 없어 차세대 마그논 기반 스핀트로닉스 소자용 소재로 주목받고 있다.
양현수, 이경진 교수 공동연구팀은 2019년 산화니켈(NiO)을 통한 마그논 전류가 매우 큰 스핀 각운동량을 전달하며 그 결과 효율적으로 자화를 반전시킬 수 있음을 보고한 바 있다. [Science 366, 1125-1128 (2019)] 2019년 연구는 마그논이 운반하는 스핀의 크기에 집중한 반면, 이번 연구는 그 속도에 집중했다. 마그논 기반 스핀트로닉스 소자의 저전력 구동을 위해서는 마그논이 전달하는 스핀 정보의 크기와 속도 모두 중요하다.
기존 연구에서는 산화니켈(NiO)의 마그논 속도를 밀리미터 크기의 샘플에 대해 비탄성 중성자 산란을 이용해 간접 측정한 반면, 이번 연구에서는 나노미터 크기의 샘플에 대해 테라헤르츠 분광 장비(THz emission spectroscopy)를 활용해 마그논 속도를 직접 측정했다. 그 결과 기존 간접 측정에서 보고되었던 40km/s에 비해 10배 이상 큰 650 km/s의 빠른 마그논 전송을 관측했다.
이론 연구를 통해 이러한 초고속 마그논 전송이 산화니켈(NiO) 내에서 마그논이 경험하는 마찰력 때문임을 밝혔다. 이러한 초고속 전송 현상은 광학 분야에서 `빛보다 빠른 전송(Superluminal propagation)'으로 불리는 현상과 유사하다. 아인슈타인의 특수상대성 이론에 의하면 빛보다 빠른 전송은 불가능하지만, 손실이 있는 매체에 빛이 지나가는 경우 비정상적 분산관계로 인해 마치 빛보다 빠른 전송이 일어나는 것처럼 보이며 이는 인과율을 위배하지 않는다.
이번 연구에서 연구팀은 빛의 경우와 마찬가지로 마찰력을 갖는 반강자성 물질에서 마그논이 전송되는 경우 비정상적 마그논 분산관계로 인해 유사한 현상이 발생함을 밝혔다. 실제 마그논 소자의 구동 시간은 이러한 비정상적 초고속 마그논 전송에 의해 결정되므로 응용 소자 측면에서 파급력이 있을 것으로 기대된다. 또한 마찰력은 모든 물질에 존재하기 때문에, 이 연구에서 밝힌 초고속 마그논 전송은 매우 일반적 물리현상이라는 측면에서 기초 학문적 가치도 클 것으로 기대된다.
제1 저자인 이규섭 박사는 "자성체 기반의 이중 층에서의 `스핀 전류의 발생현상'을 시분해 테라헤르츠 분광 장비를 통해 비접촉 방식으로 검출하는 연구가 활발히 진행되고 있으며, 이번 연구를 통해 `스핀 전류의 발생에 이은 수송현상에 대한 동역학' 또한 분석됨을 보였다ˮ라며, "나노미터 두께의 정보 소자의 정보전달속도를 초고속 시분해능(~10 펨토초)로 분석하는 데 활발히 사용될 것으로 기대한다ˮ라고 말했다.
이번 연구는 한국연구재단 중견연구과제, SRC센터과제, 싱가포르 정부과제의 지원을 받아 수행됐다.
2021.11.05
조회수 8251
-
조병진, 이건재 교수, 레이저빔 공정을 이용한 고성능 유연 열전소자 개발
우리 대학 전기및전자공학부 조병진 교수와 신소재공학과 이건재 교수 공동 연구팀이 전자기기의 전력공급원으로 사용될 수 있는 고성능 유연 열전 소자를 개발했다.
김선진 박사와 이한얼 박사과정이 공동 1저자로 참여한 이번 연구는 나노 및 에너지소재 분야 국제학술지 ‘에이씨에스 나노(ACS Nano)’ 2016년 12월 27일자에 게재됐다.
연구팀은 쿼츠 기판위에 스크린 프린팅 공정으로 열전 후막을 형성한 후 레이저빔 공정을 이용해 단단한 쿼츠 기판을 제거함으로써 쉽게 휘어지는 유연 열전 소자를 개발했다.
기존 상용 열전소자 양면에는 단단하고 무거운 세라믹 기판이 있어 휘어지지 않고 중량이 무거운 단점이 있었다. 따라서 굴곡이 있는 열원에 열전소자를 부착하여 사용하기 어려웠으며 활용이 매우 제한적이었다.
연구팀은 레이저빔을 열전소자 양면에 조사해 딱딱한 기판을 완전히 분리시키는 공정을 개발했다.
레이저빔을 이용한 기판 박리기술은 30 ns (ns : 10억분의 1초)의 매우 짧은 시간의 레이저빔을 조사하기 때문에 지난 2014년 동연구실에서 발표한 니켈박리 기술 (논문명: Wearable Thermoelectric Generator Fabricated on Glass Fabric) 보다 간편하고 공정 안전성이 매우 높다.
레이저를 이용한 기판 박리 공정기술을 개발함으로써 기존의 기판에서 발생하는 열에너지 손실문제를 개선함과 동시에 열전소자의 경량화와 유연화를 동시에 달성했다.
또한 스크린 프린팅으로 형성되는 열전후막 공정의 최적화를 통해 유연열전소자의 성능을 더욱 개선했다.
연구팀이 시험 개발한 유연 열전소자는 온도차 25 ֯C에서 단위 면적당 발전량 4.78 mW/cm2, 단위 무게당 발전량 20.8 mW/g로 최근 보고된 프린팅 기반 유연열전소자 중 가장 높은 전력밀도를 갖는다.
유연 열전소자는 잘 휘어지는 특성 때문에 굴곡이 있는 열원에 쉽게 부착해 여분의 전기에너지를 생산해 낼 수 있고 열이 발생하는 다양한 곳에 광범위하게 활용할 수 있다.
인체, 자동차, 항공기, 발전소, 산업현장 등 열이 발생하는 다양한 곳에 적용하여 여분의 전기에너지를 생산할 수 있기 때문에 그 활용성이 매우 넓다.
일례로 따뜻한 물이 흐르는 수도관 외부에 유연 열전소자를 부착하게 되면 물에서 발생하는 열을 이용해 전기에너지를 생산해 낼 수 있고, 무선 전자기기(wireless electronic device)를 동작 시킬 수 있다.
이번 연구는 미래창조과학부와 한국연구재단이 추진하는 선도연구센터지원사업의 지원으로 수행됐다.
□ 그림 설명
그림1. 레이저 멀티스캔 박리 공정으로 제작된 유연 열전소자
2017.01.23
조회수 15247
-
오일권 교수, 귀금속 촉매 대체할 친환경 물 분해 촉매 개발
우리 대학 기계공학과 오일권 교수 연구팀이 값비싼 백금 등의 귀금속 촉매를 대체할 수 있는 니켈-코발트 기반의 친환경 물 분해 기술을 개발했다.
물 분해 기술은 수소를 친환경적으로 생산할 수 있다. 연구팀이 개발한 원천기술을 통해 수소의 대량 생산 및 수소에너지 상용화에 기여할 것으로 기대된다.
배석후 박사과정이 1저자로 참여한 이번 연구는 화학, 에너지 및 소재 분야의 국제 학술지 ‘어드밴스드 에너지 머티리얼즈(Advanced Energy Materials)’ 1월호 표지논문에 게재됐다.
현재 가장 많이 사용되는 수소에너지의 발전 방식은 물을 전기 분해시켜 수소를 생산하는 방법이다. 이 방식은 공해 없이 순수한 수소를 생산할 수 있다.
하지만 비용이 많이 들어 상용화에 어려움이 있다. 특히 산소가 발생하는 플러스(+) 전극에는 이리듐 및 루테늄 산화물 기반의 귀금속 촉매가 필요하고, 수소가 발생하는 마이너스(-) 전극에는 백금이 필요하다.
따라서 이를 대체할 수 있는 값싼 재료의 촉매를 개발하는 것이 상용화를 앞당길 수 있는 길이다.
연구팀은 문제 해결을 위해 플러스 전극에 사용되는 이리듐 및 루테늄 산화물 기반의 촉매를 대체할 수 있는 니켈-코발트 금속 기반의 화합물 촉매를 제작하는 데 성공했다.
니켈-코발트 금속 화합물 촉매는 가격이 저렴하지만 이리듐 및 루테늄 산화물 촉매에 비해 높은 전압을 필요로 하는 등 상대적으로 낮은 성능으로 인해 사용되지 못했다.
연구팀은 문제 해결을 위해 수열합성을 이용했다. 수열합성은 고온, 고압 상태에서 물 혹은 수용액에 금속 등을 녹여 물질을 합성하는 기술이다.
연구팀은 니켈-코발트 전구체가 녹아 있는 용액을 바탕으로 수열합성을 진행했다. 이를 통해 니켈-코발트 촉매의 낮은 성능 문제를 해결하는 동시에 촉매의 표면적을 넓히는 데 성공했다.
또한 추가적인 수열합성을 통해 촉매 외부층을 전도성이 높은 탄소층으로 둘러싸면서 전극과 나노선 복합체 사이의 전하 전달 능력을 극대화시킨 이중 나노선 형태의 촉매를 제작했다.
외부층을 전도성이 높은 탄소층으로 구성했기 때문에 탄소 직물로 만들어진 전극 기판과 상승효과(Synergy)를 내면서 단일 니켈-코발트계 금속 촉매에 비해 30% 낮은 전압과 2.7배 높은 단위 면적당 촉매 활성도를 보였다.
기존의 나노선은 원뿔 모양으로 종횡비가 커 나노선 전체로 전달되는 전압이 일정하지 않았다. 이 때문에 나노선 전체가 촉매 반응에 참여하지 못하는 현상이 발생했으나, 연구팀의 촉매는 탄소층으로 둘러싸여 있기 때문에 전자의 활발한 이동이 가능했고 이는 일정한 전압 전달로 이어졌다.
연구팀은 “연이은 수열합성을 통해 비교적 간단한 공정으로 이상적인 이중 구조의 나노선 촉매를 제작하는 데 성공했다”며 “기존의 값비싼 귀금속 촉매에 비해 훨씬 저렴하면서도 성능은 거의 차이가 없다”고 말했다.
오 교수는 “생산 과정이 간단하고 대량 생산이 가능하며 성능 또한 기존 귀금속 촉매에 뒤지지 않는다 ”며 “이번 연구를 통해 물을 수소같은 화학에너지로 변환하는 기술의 상용화에 기여할 수 있을 것이다”고 말했다.
이번 연구는 기계기술연구소 김지은 박사, EEWS 대학원 박정영 교수가 참여했고, 미래창조과학부 리더연구자지원사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 선정된 표지논문(front cover) 이미지
그림2. 탄소층이 코팅된 니켈-코발트 이중 나노선 촉매 입자의 미세구조 사진
그림3. 이중 나노선 구조의 전기화학적 촉매로써의 작용 모습
그림4. 이중 나노선 형상의 촉매 제작 과정을 나타낸 모식도
2017.01.19
조회수 16082