-
박종세 교수팀, 2024 IISWC 다수 상 동시 석권
우리 대학 전산학부 박종세 교수 연구팀이 지난 9월 15일부터 9월 17일까지 캐나다 밴쿠버에서 열린 ‘2024 IEEE 국제 워크로드 특성화 심포지엄(IEEE International Symposium on Workload Characterization, 이하 IISWC 2024)’에서 최우수 논문상(Best Paper Award)과 최우수 연구 기록물 상(Distinguished Artifact Award)’을 동시에 수상했다고 26일 밝혔다.
박 교수 연구팀은 ‘초거대 언어모델 추론 서비스 제공을 위한 HW/SW 공동 시뮬레이션 인프라(LLMServingSim: A HW/SW Co-Simulation Infrastructure for LLM Inference Serving at Scale)’ 논문으로 두 상을 동시에 수상했다.
IISWC는 컴퓨터 시스템 워크로드 특성화 분야에서 권위를 자랑하는 국제 학회이며, 개최시마다 최우수 논문상과 최우수 연구 기록물 상을 하나씩 수여하는데 올해에는 박 교수팀의 논문이 두 상을 모두 단독으로 수상했다.
이번 수상 연구는 대규모 거대언어모델(LLM) 추론 서비스를 위한 하드웨어와 소프트웨어 통합 시뮬레이션 인프라를 최초 개발한 점, 향후 LLM 추론 연구의 지속적인 발전을 위해 오픈소스로 공개한 코드의 완성도와 사용자 편의성 측면에서 높은 평가를 받았다.
이번 연구에서 연구팀은 챗GPT와 같은 LLM 추론 서비스를 실행하는 대규모 시스템을 여러 가지 하드웨어와 소프트웨어를 추가해 시뮬레이션할 수 있는 시뮬레이션 인프라를 제안했다.
이를 통해 GPU(그래픽처리장치), NPU(신경망처리장치)와 PIM(지능형메모리반도체)과 같은 다양한 하드웨어뿐만 아니라 반복 수준 스케쥴링, KV 캐시 페이징과 같은 초거대 언어모델 추론을 위한 소프트웨어적 요소를 모두 함께 시뮬레이션할 수 있었다.
이번 연구는 KAIST 전산학부 박종세 교수팀의 조재홍, 김민수, 최현민, 허구슬 학생들이 주도했다.
상을 받은 KAIST 전산학부 박종세 교수는 “이번 연구를 통해, LLM 클라우드 상에서 다양한 AI 반도체와 시스템 소프트웨어의 성능을 종합적으로 평가해 볼 수 있는 오픈소스 도구(Tool)을 공개할 수 있게 되어 기쁘고, 앞으로도 생성형 AI를 위한 클라우드 시스템 연구를 지속해 나갈 것이다”라고 소감을 전했다.
이번 연구 결과는, 챗GPT와 같이 LLM을 활용하는 단순한 챗봇 AI를 넘어, 생성형 AI(Generative AI)로 대표되는 미래 AI 산업에서 이종 AI 반도체 기반 클라우드 시스템을 구축하는 등 다양한 분야에 활용될 수 있을 것으로 기대된다.
한편 이번 연구는 한국연구재단 우수신진연구자지원사업, 정보통신기획평가원(IITP), 인공지능반도체대학원지원사업, 및 하이퍼엑셀의 지원을 받아 수행됐다.
2024.10.11
조회수 1394
-
고비용 인프라 없이 AI 학습 가속화 가능
우리 대학 연구진이 고가의 데이터센터급 GPU나 고속 네트워크 없이도 AI 모델을 효율적으로 학습할 수 있는 기술을 개발했다. 이 기술을 통해 자원이 제한된 기업이나 연구자들이 AI 연구를 보다 효과적으로 수행할 수 있을 것으로 기대된다.
우리 대학 전기및전자공학부 한동수 교수 연구팀이 일반 소비자용 GPU를 활용해, 네트워크 대역폭이 제한된 분산 환경에서도 AI 모델 학습을 수십에서 수백 배 가속할 수 있는 기술을 개발했다고 19일 밝혔다.
기존에는 AI 모델을 학습하기 위해 개당 수천만 원에 달하는 고성능 서버용 GPU(엔비디아 H100) 여러 대와 이들을 연결하기 위한 400Gbps급 고속 네트워크를 가진 고가 인프라가 필요했다. 하지만 소수의 거대 IT 기업을 제외한 대부분의 기업과 연구자들은 비용 문제로 이러한 고가의 인프라를 도입하기 어려웠다.
한동수 교수 연구팀은 이러한 문제를 해결하기 위해 '스텔라트레인(StellaTrain)'이라는 분산 학습 프레임워크를 개발했다. 이 기술은 고성능 H100에 비해 10~20배 저렴한 소비자용 GPU를 활용해, 고속의 전용 네트워크 대신 대역폭이 수백에서 수천 배 낮은 일반 인터넷 환경에서도 효율적인 분산 학습을 가능하게 한다.
기존의 저가 GPU를 사용할 경우, 작은 GPU 메모리와 네트워크 속도 제한으로 인해 대규모 AI 모델 학습 시 속도가 수백 배 느려지는 한계가 있었다. 하지만 연구팀이 개발한 스텔라트레인 기술은 CPU와 GPU를 병렬로 활용해 학습 속도를 높이고, 네트워크 속도에 맞춰 데이터를 효율적으로 압축 및 전송하는 알고리즘을 적용해 고속 네트워크 없이도 여러 대의 저가 GPU를 이용해 빠른 학습을 가능하게 했다.
특히, 학습을 작업 단계별로 CPU와 GPU가 나누어 병렬적으로 처리할 수 있는 새로운 파이프라인 기술을 도입해 연산 자원의 효율을 극대화했다. 또한, 원거리 분산 환경에서도 GPU 연산 효율을 높이기 위해, AI 모델별 GPU 활용률을 실시간으로 모니터링해 모델이 학습하는 샘플의 개수(배치 크기)를 동적으로 결정하고, 변화하는 네트워크 대역폭에 맞추어 GPU 간의 데이터 전송을 효율화하는 기술을 개발했다.
연구 결과, 스텔라트레인 기술을 사용하면 기존의 데이터 병렬 학습에 비해 최대 104배 빠른 성능을 낼 수 있는 것으로 나타났다.
한동수 교수는 "이번 연구가 대규모 AI 모델 학습을 누구나 쉽게 접근할 수 있게 하는 데 큰 기여를 할 것"이라고 밝혔다. “앞으로도 저비용 환경에서도 대규모 AI 모델을 학습할 수 있는 기술 개발을 계속할 계획이다”라고 말했다.
이번 연구는 우리 대학 임휘준 박사, 예준철 박사과정 학생, UC 어바인의 산기타 압두 조시(Sangeetha Abdu Jyothi) 교수와 공동으로 진행됐으며, 연구 성과는 지난 8월 호주 시드니에서 열린 ACM SIGCOMM 2024에서 발표됐다.
한편, 한동수 교수 연구팀은 2024년 7월 GPU 메모리 한계를 극복해 소수의 GPU로 거대 언어 모델을 학습하는 새로운 기술도 발표했다. 해당 연구는 최신 거대 언어 모델의 기반이 되는 전문가 혼합형(Mixture of Expert) 모델을 제한된 메모리 환경에서도 효율적인 학습을 가능하게 한다.
이 결과 기존에 32~64개 GPU가 필요한 150억 파라미터 규모의 언어 모델을 단 4개의 GPU만으로도 학습할 수 있게 됐다. 이를 통해 학습의 필요한 최소 GPU 대수를 8배~16배 낮출 수 있게 됐다. 해당 논문은 KAIST 임휘준 박사와 김예찬 연구원이 참여했으며, 오스트리아 빈에서 열린 AI 분야 최고 권위 학회인 ICML에 발표됐다. 이러한 일련의 연구 결과는 자원이 제한된 환경에서도 대규모 AI 모델 학습이 가능하다는 점에서 중요한 의미를 가진다.
해당 연구는 과학기술정보통신부 한국연구재단이 주관하는 중견연구사업 (RS-2024-00340099), 정보통신기획평가원(IITP)이 주관하는 정보통신·방송 기술개발사업 및 표준개발지원사업 (RS-2024-00418784), 차세대통신클라우드리더십구축사업 (RS-2024-00123456), 삼성전자의 지원을 받아 수행됐다.
2024.09.19
조회수 2056
-
지방간 치료제 개발에 최적화된 동물모델 개발
대사이상 지방간 질환은 전 세계 인구의 30%, 비만하지 않은 인구의 19%가 앓고 있으며, 지방간에서 시작해 간암까지 진행되는 심각한 만성질환이다. 현재 FDA에서 승인된 치료제인 레스메티롬(Resmetirom)이 있지만, 치료받은 환자의 70% 이상에서 충분한 효과를 보지 못해 새로운 치료제 개발이 시급하다. 한국 연구진이 지방간염 치료제 개발에 중요한 전환점이 될 사람의 대사이상 지방간 질환을 잘 모사하는 새로운 동물모델을 개발해 주목받고 있다.
우리 대학 의과학대학원 김하일 교수 연구팀과 연세대학교 의과대학 박준용 교수 연구팀, 한미약품 R&D센터(최인영 R&D센터장/전무이사) 및 ㈜제이디바이오사이언스(대표 안진희)와 공동연구를 통해 새로운 대사이상 지방간 질환 동물모델을 개발했다고 19일 밝혔다.
대사이상 지방간 질환의 유병률은 20~30%에 이르고, 지방간염 질환은 전 세계 성인 인구의 5% 이상이 보유하고 있을 정도로 높은 유병률을 보임에도 불구하고 현재까지 제품화된 치료제가 전혀 없다.
대사이상 지방간 질환은 지방간에서 시작해 지방간염, 섬유화, 간경화, 간암으로 진행되는 만성질환이며, 심혈관질환 및 간 관련 합병증 등에 의해 사망률이 증가하므로 발병 초기에 적절한 치료가 필요하다.
하지만 아직까지 사람의 질환을 모사할 수 있는 적절한 동물모델이 없어 병인 기전의 규명과 치료제의 개발에 어려움이 있다. 특히 기존의 동물모델들은 당뇨와 비만과 같은 대사이상이 간경화와 간암의 발병에 유발하는지를 반영하지 못한다는 문제점이 있었다.
김하일 교수 연구팀은 베타세포의 기능이 부족한 아시아인에서 비만과 당뇨병을 동반한 대사이상 지방간 질환의 유병률이 더 높다는 점에 착안했다. 마우스에 약물을 통해 베타세포를 파괴해 당뇨를 유발한 다음 고지방식이를 먹여서 비만과 당뇨를 동반한 지방간 질환이 빠르게 진행하는 동물모델을 개발했다.
이 마우스 모델은 1년 동안 점진적으로 지방간, 지방간염, 간 *섬유화 및 간암이 나타나는데, 해당 마우스의 간의 유전체를 분석한 결과 그 특징이 비만과 제2형 당뇨병을 동반한 대사이상 지방간 질환 환자들과 매우 유사한 것으로 나타났다. 특히 이 모델에서 발생하는 간암은 대사이상 지방간 질환 환자에서 발생하는 간암과 조직학적, 분자생물학적 특성이 유사한 것을 연구팀은 확인했다.
* 섬유화: 간의 일부가 굳는 현상으로, 지방간염 개선의 주요 지표로 쓰임
연구팀은 개발한 동물모델을 사용해, 최근 비만치료효과로 각광을 받고 있는 GLP-1 유사체의 효과를 시험했다. GLP-1 유사체의 투여가 이 마우스 모델에서 지방간, 간염과 간 섬유화의 진행을 억제하는 효과를 확인해, 마우스 모델이 신약 개발을 위한 전임상 모델로 유용하게 활용될 수 있음을 연구팀은 보였다. 또한 GLP-1 유사체의 투여가 간암의 발생을 억제함을 최초로 규명해, 대사이상 지방간 질환의 주요 사망 요인인 간암의 발병 억제를 위한 GLP-1 유사체의 활용 방안을 제시했다.
의과학대학원 김하일 교수는 “현재 대사이상 지방간 질환 동물모델은 대사이상 지방간 질환의 넓은 스펙트럼과 당뇨, 비만과 같은 대사질환을 잘 반영하지 못하는 문제점이 있으나, 우리 연구팀이 개발한 마우스 모델은 만성 대사질환의 특징을 잘 모사해, 대사이상 지방간 질환 동물모델로서 관련 연구에 중요한 전환점을 제시할 수 있을 것이다”고 강조했다.
우리 대학 의과학대학원 정병관 박사, 최원일 교수, 화순전남대학교병원 최원석 교수가 공동 제1 저자로 참여한 이번 연구 논문은 국제 학술지인 ‘네이처 커뮤니케이션즈(Nature Communications)’ 에 2024년 8월 2일 게재됐다.
(논문명: A male mouse model for metabolic dysfunction-associated steatotic liver disease and hepatocellular carcinoma)
한편 이번 연구는 과학기술정보통신부, 보건복지부, 교육부, 및 ㈜제이디바이오사이언스(JD Bioscience Inc.)에서 지원을 받아 수행됐다.
2024.08.19
조회수 1866
-
대형언어모델로 42% 향상된 추천 기술 연구 개발
최근 소셜 미디어, 전자 상거래 플랫폼 등에서 소비자의 만족도를 높이는 다양한 추천서비스를 제공하고 있다. 그 중에서도 상품의 제목 및 설명과 같은 텍스트를 주입하여 상품 추천을 제공하는 대형언어모델(Large Language Model, LLM) 기반 기술이 각광을 받고 있다. 한국 연구진이 이런 대형언어모델 기반 추천 기술의 기존 한계를 극복하고 빠르고 최상의 추천을 해주는 시스템을 개발하여 화제다.
우리 대학 산업및시스템공학과 박찬영 교수 연구팀이 네이버와 공동연구를 통해 협업 필터링(Collaborative filtering) 기반 추천 모델이 학습한 사용자의 선호에 대한 정보를 추출하고 이를 상품의 텍스트와 함께 대형언어모델에 주입해 상품 추천의 높은 정확도를 달성할 수 있는 새로운 대형언어모델 기반 추천시스템 기술을 개발했다고 17일 밝혔다.
이번 연구는 기존 연구에 비해 학습 속도에서 253% 향상, 추론 속도에서 171% 향상, 상품 추천에서 평균 12%의 성능 향상을 이뤄냈다. 특히, 사용자의 소비 이력이 제한된 퓨샷(Few-shot) 상품* 추천에서 평균 20%의 성능 향상, 다중-도메인(Cross-domain) 상품 추천**에서 42%의 성능 향상을 이뤄냈다.
*퓨샷 상품: 사용자의 소비 이력이 풍부하지 않은 상품.
**다중-도메인 상품 추천: 타 도메인에서 학습된 모델을 활용하여 추가학습없이 현재 도메인에서 추천을 수행. 예를 들어, 의류 도메인에 추천 모델을 학습한 뒤, 도서 도메인에서 추천을 수행하는 상황을 일컫는다.
기존 대형언어모델을 활용한 추천 기술들은 사용자가 소비한 상품 이름들을 단순히 텍스트 형태로 나열해 대형언어모델에 주입하는 방식으로 추천을 진행했다. 예를 들어 ‘사용자가 영화 극한직업, 범죄도시1, 범죄도시2를 보았을 때 다음으로 시청할 영화는 무엇인가?’라고 대형언어모델에 질문하는 방식이었다.
이에 반해, 연구팀이 착안한 점은 상품 제목 및 설명과 같은 텍스트뿐 아니라 협업 필터링 지식, 즉, 사용자와 비슷한 상품을 소비한 다른 사용자들에 대한 정보가 정확한 상품 추천에 중요한 역할을 한다는 점이었다. 하지만, 이러한 정보를 단순히 텍스트화하기에는 한계가 존재한다. 이에 따라, 연구팀은 미리 학습된 협업 필터링 기반 추천 모델로부터 사용자의 선호에 대한 정보를 추출하고 이를 대형언어모델이 이해할 수 있도록 변환하는 경량화된 신경망을 도입했다.
연구팀이 개발한 기술의 특징으로는 대형언어모델의 추가적인 학습이 필요하지 않다는 점이다. 기존 연구들은 상품 추천을 목적으로 학습되지 않은 대형언어모델이 상품 추천이 가능하게 하도록 대형언어모델을 파인튜닝(Fine-tuning)* 하는 방법을 사용했다. 하지만, 이는 학습과 추론에 드는 시간을 급격히 증가시키므로 실제 서비스에서 대형언어모델을 추천에 활용하는 것에 큰 걸림돌이 된다. 이에 반해, 연구팀은 대형언어모델의 직접적인 학습 대신 경량화된 신경망의 학습을 통해 대형언어모델이 사용자의 선호를 이해할 수 있도록 했고, 이에 따라 기존 연구보다 빠른 학습 및 추론 속도를 달성했다.
*파인튜닝: 사전 학습된 대규모 언어모델을 특정 작업이나 데이터셋에 맞게 최적화하는 과정.
연구팀을 지도한 박찬영 교수는 “제안한 기술은 대형언어모델을 추천 문제에 해결하려는 기존 연구들이 간과한 사용자-상품 상호작용 정보를 전통적인 협업 필터링 모델에서 추출해 대형언어모델에 전달하는 새로운 방법으로 이는 대화형 추천 시스템이나 개인화 상품 정보 생성 등 다양한 고도화된 추천 서비스를 등장시킬 수 있을 것이며, 추천 도메인에 국한되지 않고 이미지, 텍스트, 사용자-상품 상호작용 정보를 모두 사용하는 진정한 멀티모달 추천 방법론으로 나아갈 수 있을 것”이라고 말했다.
우리 대학 산업및시스템공학과 김세인 박사과정 학생과 전산학부 강홍석 학사과정(졸) 학생이 공동 제1 저자, 네이버의 김동현 박사, 양민철 박사가 공동 저자, KAIST 산업및시스템공학과의 박찬영 교수가 교신저자로 참여한 이번 연구는 데이터마이닝 최고권위 국제학술대회인 ‘국제 데이터 마이닝 학회 ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2024)’에서 올 8월 발표할 예정이다. (논문명: Large Language Models meet Collaborative Filtering: An Efficient All-round LLM-based Recommender System).
한편 이번 연구는 네이버 및 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행됐다. (NRF-2022M3J6A1063021, RS-2024-00335098)
2024.07.17
조회수 2556
-
종양모델 칩으로 다조건 항암제 동시 평가
실제 인체에 항암제가 투여되면 약물 분자는 혈류를 따라 수송된다. 이 약물 분자들은 혈관 벽을 투과하고 확산한다. 확산한 분자는 종양 덩어리 내부까지 점차 침투해 약물 효능이 나타나게 된다. 우리 연구진이 바이오프린팅 기술로 36가지의 종양 미세환경을 유체채널 내부에 모사하여 12가지 실험 조건에 따른 항암제 효능을 동시에 평가하는데 성공하여 화제다.
우리 대학 바이오및뇌공학과 박제균 교수 연구팀이 기존 바이오프린팅* 및 랩온어칩** 기술의 한계점을 극복하고 장점을 극대화하여 복잡한 종양 미세환경이 구현된 랩온어칩을 개발하여 여러 분석 변수가 반영된 약물 스크리닝을 수행하는 데 성공했다고 16일 밝혔다.
* 바이오프린팅(bioprinting): 세포와 생체재료로 구성된 바이오 잉크를 활용하여 생체조직 및 기관과 유사한 기능적 구조물을 제작하는 3D 프린팅 기술
** 랩온어칩(lab-on-a-chip): “칩 위의 실험실”이란 개념을 갖고 있으며 각종 시료분석에 필요한 전처리, 분리, 희석, 혼합, 반응, 검출 기능 등을 미세유체 회로로 이루어진 채널 내에서 일괄적으로 수행할 수 있도록 만들어진 미세유체 소자 및 시스템
바이오프린팅은 조직이나 장기의 복잡한 형상과 조성을 체외환경에서 재현할 수 있는 생체모사 기술이지만, 제작된 생체모델의 배양 환경 제어와 분석이 어렵다. 반면, 랩온어칩은 미세 유체채널 내에서의 유체 제어 기술에 기반해 배양 환경의 정교한 제어와 다양한 분석 수행이 가능하지만, 미세한 유체 통로 내부에 생체 환경을 모사하는 데 한계가 있었다.
연구진은 바이오프린팅 기술로 서로 다른 조성으로 구성된 총 36개의 종양 모델을 랩온어칩 내에 형성한 후, 동일한 소자 내에서 12가지 실험 조건에 따른 항암제 효능을 동시에 평가하는 데 성공했다.
연구팀은 바이오프린팅의 우수한 공간적 자유도와 다양한 생체재료를 활용할 수 있다는 장점을 이용해, 세 가지 서로 다른 조성으로 이루어진 36개의 종양 모델을 하나의 미세 유체소자에 집적시켰다. 세포를 유동 배양해 물질 수송에 핵심 구조물인 혈관 벽과 종양 덩어리를 모사하여 네 가지 농도의 항암제를 종양 모델에 유입함으로써, 하나의 소자에서 12가지 실험 조건의 약물 평가를 수행했다.
또한 연구팀은 혈관 벽에 의해 약물 분자의 수송이 저해되고 종양 덩어리 내부까지 침투되는 현상을 관찰할 수 있었고, 체내 수송 과정을 모사하지 못했던 기존 종양 모델과 약물 효능에 큰 차이를 보인다는 것을 확인했다.
이처럼 바이오프린팅-랩온어칩 통합기술을 활용해 모델 복잡성, 모델 수, 모델 처리량 등 다양한 변수를 고려한 체외 종양 모델을 제작할 수 있었고, 더욱 신뢰성 있는 약물 평가를 수행할 수 있었다.
연구를 주도한 박제균 교수는 “바이오프린팅과 랩온어칩의 통합기술로 제작된 미세 유체 세포배양 및 분석 플랫폼의 개발에 따른 신뢰성 있는 약물 평가 모델에 대한 성과”임을 강조하며, “향후 다양한 조직 및 장기 특성을 모사하고 생물학적 분석과 약물 효능 평가를 고효율로 수행할 수 있는 동물실험 대체용 차세대 체외 세포배양 및 분석 기술로 활용될 수 있을 것”이라고 말했다.
바이오및뇌공학과 이기현 박사가 제1 저자로 참여한 이번 연구 결과는 국제 학술지 '어드밴스드 헬스케어 머티리얼즈(Advanced Healthcare Materials)'에 2024년 6월 3일 자로 온라인판에 게재됐다.
(https://doi.org/10.1002/adhm.202303716. 논문명: Bioprinted multi-composition array mimicking tumor microenvironment to evaluate drug efficacy with multivariable analysis).
또한, 이번 논문은 와일리-VCH(Wiley-VCH) 출판사의 ‘핫 토픽: 종양과 암(Hot Topic: Tumors and Cancer)’세션과 ‘핫 토픽: 미세유체공학(Hot Topic: Microfluidics)’세션에 동시 선정됐다.
한편 이번 연구는 한국연구재단 기초연구사업(중견연구)의 지원을 받아 수행됐다.
2024.07.16
조회수 2168
-
챗MOF로 96.9% 금속 유기 골격체 물성 예측하다
우리 대학 연구진이 챗GPT를 활용해 큰 다공성, 높은 표면적, 그리고 뛰어난 조절 가능성으로 많은 화학 응용 분야에서 사용되는 금속 유기 골격체의 특성을 예측하고 새로운 재료를 자동으로 생성하는 챗봇 시스템(이하 챗MOF)을 개발했다. 챗MOF는 검색 및 예측 작업에서 각각 96.9% 및 95.7%의 높은 성공률을 보여 화제다.
생명화학공학과 김지한 교수 연구팀이 인공지능(AI)의 급격한 발전에 주목하며, 대규모 언어 모델(이하 LLMs) 활용을 통해 금속 유기 골격체(Metal-Organic Frameworks, MOFs)의 특성을 예측하고 새로운 재료를 자동으로 생성하는 챗봇 시스템(ChatMOF)을 개발했다고 26일 발표했다.
최근 인공지능(AI)의 발전에는 큰 도약이 있었지만 재료 과학에서의 LLM의 잠재력을 완전히 실현하기에는 여전히 물질의 복잡성과 재료별 특화된 훈련 데이터의 부족이라는 한계점이 존재했다.
김지한 교수 연구팀이 개발한 챗MOF는 재료 분야에서 전통적인 머신러닝 모델과 LLM을 결합한 혁신적인 접근 방식으로 계산 및 머신러닝 도구에 대한 초보자들과의 격차를 상당히 줄일 수 있는 잠재력을 가지고 있다.
또한 이 독특한 시스템은 인공지능의 변혁적인 능력과 재료 과학의 복잡한 측면들을 연결하며, 다양한 작업에서 뛰어난 성능을 보여준다. 챗MOF는 검색 및 예측 작업에서 각각 96.9% 및 95.7%의 높은 성공률을 보고한다. 한편, 더 복잡한 구조 생성 작업은 그 복잡함에도 불구하고 주목할 만한 87.5%의 정확도를 달성한다. 이러한 유망한 결과는 챗MOF가 가장 요구가 많은 작업을 관리하는 데도 효과적임을 강조한다.
김지한 교수는 “연구팀이 개발한 기술은 재료 과학 분야에서 인공지능의 더 높은 자율성을 달성하기 위한 중요한 진전을 나타낸다. 기술이 발전함에 따라, 모델 용량과 온라인 플랫폼에서의 데이터 공유에 대한 체계적인 개선을 통해 챗MOF의 성능을 더욱 최적화할 수 있으며, 이는 금속 유기 골격체 연구 분야에서 놀라운 진전을 촉진할 수 있다.”라고 말했다.
생명화학공학과 강영훈 박사과정이 제1 저자로 참여한 이번 연구 결과는 국제 학술지 `네이처 커뮤니케이션즈(Nature communications)'에 지난 6월 3일 게재됐다. (논문명: ChatMOF: An Artificial Intelligence System for Predicting and Generating Metal-Organic Frameworks Using Large Language Models)
한편 이번 연구는 과학기술정보통신부의 지원으로 국가 소재 연구 데이터 사업단, 그리고 한국연구재단 (NRF) 중견 연구자 지원 사업의 지원을 받아 수행됐다.
2024.06.26
조회수 3276
-
멀티모달 대형언어모델이 GPT-4V를 뛰어넘다
멀티모달 대형 언어모델이란 텍스트뿐만 아니라 이미지 데이터 유형까지 처리할 수 있는 초대형 언어모델을 말한다. 해외 대형 기업의 풍부한 컴퓨팅 자원의 지원으로부터 인간의 뇌에 있는 신경망의 개수와 유사한 수준초대형모델들이 만들어지고 있으나 학계에서는 이런 개발이 쉽지 않았다. KAIST 연구진이 오픈AI의 GPT-4V와 구글의 제미나이-프로(Gemini-Pro)를 뛰어넘는 멀티모달 대형언어모델을 개발하여 화제다.
우리 대학 전기및전자공학부 노용만 교수 연구팀이 오픈AI(OpenAI)의 GPT-4V 등 기업에서 비공개하고 있는 상업 모델인 초대형 언어모델의 시각 성능을 뛰어넘는 공개형 멀티모달 대형 언어모델을 개발해 출시했다고 20일 밝혔다.
노용만 교수 연구팀은 단순히 모델의 크기를 키우거나 고품질의 시각적 지시 조정 데이터셋을 만들지 않고 멀티모달 대형언어모델의 시각 성능을 획기적으로 높인 콜라보(CoLLaVO), 모아이(MoAI) 2가지 기술을 연속적으로 개발했다고 밝혔다.
연구팀이 개발한 첫번째 기술인 ‘콜라보(CoLLaVO)’는 현존하는 공개형 멀티모달 대형언어모델이 비공개형 모델의 성능에 비해 현저하게 낮은 이유를 일차적으로 물체 수준에 대한 이미지 이해 능력이 현저하게 떨어진다는 것을 먼저 검증해 보였다.
해당 능력을 효율적으로 증가시켜 시각-언어 태스크에 대한 성능을 향상 하기 위해 연구팀은 이미지 내의 정보를 배경과 물체 단위로 분할하고 각 배경 및 물체에 대한 정보를 멀티모달 대형언어모델에 입력으로 직접 넣어주는 새로운 방법‘크레용 프롬프트(Crayon Prompt)’라는 시각적 프롬프트를 새롭게 제안했다.
또한 시각적 지시 조정 단계에서 크레용 프롬프트로 학습한 정보를 잃어버리지 않기 위해 연구팀은 물체 수준 이미지 이해 능력과 시각-언어 태스크 처리 능력을 서로 다른 파라미터로 학습해 서로 간의 정보를 잃지 않게 만드는 획기적인 학습 전략인 ‘듀얼 큐로라(Dual QLoRA)’를 제안했다. 이를 통해, 콜라보(CoLLaVO) 멀티모달 대형언어모델은 이미지 내에서 배경 및 물체를 구분하는 능력이 뛰어나 일차원적인 시각 구분 능력이 크게 향상됐다고 밝혔다.
두 번째 대형언어모델인 ‘모아이(MoAI)’는 인간이 사물을 판단할 때 물체의 존재, 상태, 물체 간의 상호작용, 배경에 대한 이해, 텍스트에 대한 이해 등으로부터 상황을 판단하는 인지과학적인 요소에 영감을 받아서 만들어졌다고 밝혔다.
이는 기존 멀티모달 대형언어모델이 텍스트에 의미적으로 정렬된 시각 인코더(vision encoder)만을 사용하기 때문에, 이미지 픽셀 수준에서의 상세하고 종합적인 실세계 장면 이해가 부족하다는 점을 지적하며 이런 컴퓨터 비전 모델들의 결과를 받으면 모두 인간이 이해할 수 있는 언어로 변환한 뒤에 멀티모달 대형언어모델에 입력으로 직접 사용했다.
노용만 교수는 “연구팀에서 개발한 공개형 멀티모달 대형언어모델이 허깅페이스 일간 화제의 논문(Huggingface Daily Papers)에 추천됐고, 각종 SNS를 통해 세계 연구자에게 알려지고 있으며, 모든 모델을 공개형 대형언어모델로 출시 했기 때문에 이 연구모델이 멀티모달 대형언어모델 발전에 기여할 것이다”이라고 언급했다.
연구팀이 개발한 멀티모달 대형언어모델인 콜라보(CoLLaVO)와 모아이(MoAI)는 KAIST 전기및전자공학부 이병관 박사과정이 제1 저자로 참여하고 박범찬 석박사통합과정, 김채원 박사과정이 공동 저자로 참여했다.
콜라보(CoLLaVO)는 자연어 처리(NLP) 분야 최고의 국제 학회인 ‘Findings of the Association for Computational Linguistics(ACL Findings) 2024’에 5월 16일 자로 학회에 승인받았고, 모아이(MoAI)는 컴퓨터 비전 최고의 국제 학회인 ‘European Conference on Computer Vision(ECCV) 2024’학회 승인 결과를 기다리고 있다고 밝혔다.
한편 이번 연구는 KAIST 미래국방 인공지능 특화연구센터 및 전기및전자공학부의 지원을 받아 수행됐다.
[1] CoLLaVO 데모 GIF 영상
https://github.com/ByungKwanLee/CoLLaVO
[2] MoAI 데모 GIF 영상
https://github.com/ByungKwanLee/MoAI
2024.06.20
조회수 3845
-
기업 의사결정을 거대언어모델로 최초 해결
기업 내외의 상황에 따라 끊임없이 새롭게 결정해야 하는 기업 의사결정 문제는 지난 수십 년간 기업들이 전문적인 데이터 분석팀과 고가의 상용 데이터베이스 솔루션들을 통해 해결해 왔는데, 우리 연구진이 최초로 거대언어모델을 이용하여 풀어내어 화제다.
우리 대학 전산학부 김민수 교수 연구팀이 의사결정 문제, 기업 데이터베이스, 비즈니스 규칙 집합 세 가지가 주어졌을 때 거대언어모델을 이용해 의사결정에 필요한 정보를 데이터베이스로부터 찾고, 비즈니스 규칙에 부합하는 최적의 의사결정을 도출할 수 있는 기술(일명 계획 RAG, PlanRAG)을 개발했다고 19일 밝혔다.
거대언어모델은 매우 방대한 데이터를 학습했기 때문에 학습에 사용된 바 없는 데이터를 바탕으로 답변할 때나 오래전 데이터를 바탕으로 답변하는 등 문제점들이 지적되었다. 이런 문제들을 해결하기 위해 거대언어모델이 학습된 내용만으로 답변하는 것 대신, 데이터베이스를 검색해 답변을 생성하는 검색 증강 생성(Retrieval-Augmented Generation; 이하 RAG) 기술이 최근 각광받고 있다.
그러나, 사용자의 질문이 복잡할 경우 다양한 검색 결과를 바탕으로 추가 정보를 다시 검색하여 적절한 답변을 생성할 때까지 반복하는 반복적 RAG(IterativeRAG)라는 기술이 개발됐으며, 이는 현재까지 개발된 가장 최신의 기술이다.
연구팀은 기업 의사결정 문제가 GPT-3.5 터보에서 반복적 RAG 기술을 사용하더라도 정답률이 10% 미만에 이르는 고난도 문제임을 보이고, 이를 해결하기 위해 반복적 RAG 기술을 한층 더 발전시킨 계획 RAG(PlanRAG)라는 기술을 개발했다.
계획 RAG(PlanRAG)는 기존의 RAG 기술들과 다르게 주어진 의사결정 문제, 데이터베이스, 비즈니스 규칙을 바탕으로 어떤 데이터 분석이 필요한지에 대한 거시적 차원의 계획(plan)을 먼저 생성한 후, 그 계획에 따라 반복적 RAG를 이용해 미시적 차원의 분석을 수행한다.
이는 마치 기업의 의사결정권자가 어떤 데이터 분석이 필요한지 계획을 세우면, 그 계획에 따라 데이터 분석팀이 데이터베이스 솔루션들을 이용해 분석하는 형태와 유사하며, 다만 이러한 과정을 모두 사람이 아닌 거대언어모델이 수행하는 것이 커다란 차이점이다. 계획 RAG 기술은 계획에 따른 데이터 분석 결과로 적절한 답변을 도출하지 못하면, 다시 계획을 수립하고 데이터 분석을 수행하는 과정을 반복한다.
김민수 교수는 “지금까지 거대언어모델 기반으로 의사결정 문제를 푼 연구가 없었던 관계로, 기업 의사결정 성능을 평가할 수 있는 의사결정 질의응답(DQA) 벤치마크를 새롭게 만들었다. 그리고 해당 벤치마크에서 GPT-4.0을 사용할 때 종래의 반복적 RAG에 비해 계획 RAG가 의사결정 정답률을 최대 32.5% 개선함을 보였다. 이를 통해 기업들이 복잡한 비즈니스 상황에서 최적의 의사결정을 사람이 아닌 거대언어모델을 이용하여 내리는데 적용되기를 기대한다”고 말했다.
이번 연구에는 김 교수의 제자인 이명화 박사과정과 안선호 석사과정이 공동 제1 저자로, 김 교수가 교신 저자로 참여했으며, 연구 결과는 자연어처리 분야 최고 학회(top conference)인 ‘NAACL’ 에 지난 6월 17일 발표됐다. (논문 제목: PlanRAG: A Plan-then-Retrieval Augmented Generation for Generative Large Language Models as Decision Makers)
한편, 이번 연구는 과기정통부 IITP SW스타랩 및 ITRC 사업, 한국연구재단 선도연구센터인 암흑데이터 극한 활용 연구센터의 지원을 받아 수행됐다.
2024.06.19
조회수 2533
-
암 유발 물질 컴퓨터로 예측하다
암은 정상세포와 다르게 세포 내 비정상적인 축적을 통해 유발되는 대사 반응을 하며, 암의 치료 및 진단을 목적으로 이런 암 대사반응에 대해 다방면으로 연구되고 있다. 이에 우리 대학 연구진이 컴퓨터를 통해 24개 암종에 해당하는 1,043명의 암 환자에 대한 대사 모델 구축에 성공했다.
우리 대학 생명화학공학과 김현욱 교수, 이상엽 특훈교수 연구팀이 서울대학교병원 고영일 교수, 윤홍석 교수 및 정창욱 교수 연구팀과의 공동연구를 통해, 암 체세포 유전자 돌연변이와 연관된 새로운 대사물질 및 대사경로를 예측하는 컴퓨터 방법론을 개발했다고 18일 밝혔다.
최근 암 유발 대사물질(oncometabolite)*의 발견과 이를 표적으로 하는 신약들이 미국식품의약국(FDA)의 승인을 받으며 주목받고 있는데, 이에는 급성 골수성 백혈병의 치료제로 사용되고 있는 ‘팁소보(성분명: 아이보시데닙)’ 및 약물 ‘아이드하이파(성분명: 에나시데닙)’가 포함된다.
*암 유발 대사물질 (oncometabolite): 세포 내 비정상적인 축적을 통해 암을 유발하는 대사물질. 이러한 대사물질들은 특정 유전자 돌연변이의 영향으로 대사 과정 중에 비정상적으로 높은 농도로 축적되며, 이러한 축적은 암세포의 성장과 생존을 촉진함. 기존 연구에서 확인된 주요 암 유발 대사물질로는 2-하이드록시글루타레이트(2-hydroxyglutarate), 숙시네이트(succinate), 푸마레이트(fumarate) 등이 보고됨.
하지만, 암 대사 연구와 새로운 암 유발 대사물질 발굴에는 대사체학 등의 방법론이 필요하며, 이를 대규모 환자 샘플에 적용하기 위해서는 상당한 시간과 비용이 소요된다. 이러한 이유로, 암과 관련된 많은 유전자 돌연변이들이 밝혀졌음에도, 그에 상응하는 암 유발 대사물질은 극소수만 알려져 있다.
김현욱 교수 공동연구팀은 세포 대사 정보를 예측할 수 있는 게놈 수준의 대사 모델*에 국제 암 연구 컨소시엄에서 공개하고 있는 암 환자들의 전사체 데이터를 통합해, 24개 암종에 해당하는 1,043명의 암 환자에 대한 대사 모델을 성공적으로 구축했다.
*게놈 수준의 대사모델: 세포의 전체 대사 네트워크를 다루는 컴퓨터 모델로서, 세포 내 모든 대사반응에 대한 정보가 담겨 있으며, 다양한 조건에서 세포의 대사 활성을 예측하는 것이 가능
공동연구팀은 1,043명의 암 환자 특이 대사 모델과 동일 환자들의 암 체세포 돌연변이 데이터를 활용해, 다음의 4단계로 구성된 컴퓨터 방법론을 개발했다 (그림 1). 첫 단계에서는 암 환자 특이 대사 모델을 시뮬레이션해, 환자 별로 모든 대사물질들의 활성을 예측한다. 두 번째 단계로는 특정 유전자 돌연변이가 앞서 예측된 대사물질의 활성에 유의한 차이를 일으키는 짝을 선별한다. 세 번째 단계로, 특정 유전자 돌연변이와 연결된 대사물질들을 대상으로, 이들과 유의하게 연관된 대사경로를 추가로 선별한다. 마지막 단계로서, ‘유전자-대사물질-대사경로’ 조합을 완성해, 컴퓨터 방법론 결과로써 도출하게 된다.
이번 논문의 공동 제1 저자인 이가령 박사(現 다나파버 암센터 및 하버드 의과대학 박사후연구원)와 이상미 박사(現 하버드 의과대학 박사후연구원)는 “이번 연구에서 개발된 방법론은 암 환자 코호트의 돌연변이 및 전사체 데이터를 토대로 다른 암종에 대해서도 쉽게 적용될 수 있으며, 유전자 돌연변이가 대사경로를 통해 어떻게 세포대사에 변화를 일으키는지 체계적으로 예측할 수 있는 최초의 컴퓨터 방법론이라는 데 큰 의의가 있다” 한다고 말했다.
또한 김현욱 교수는 “이번 공동연구의 결과는 향후 암 대사 및 암 유발 대사물질 연구에서 중요한 참고 자료로 활용될 수 있을 것”이라고 강조했다.
한편 이번 논문은 바이오메드 센트럴(BioMed Central) 社가 발행하며, 생명공학 및 유전학 분야의 대표적 국제학술지인 게놈 바이올로지(Genome Biology, JCR 분야 상위 5% 이내)에 게재됐다.
※ 논문명 : Prediction of metabolites associated with somatic mutations in cancers by using genome-scale metabolic models and mutation data
※ 저자 정보 : 이가령(한국과학기술원, 공동 제1 저자), 이상미(한국과학기술원, 공동 제1 저자), 이성영(서울대학교병원, 공동저자), 정창욱(서울대학교병원, 공동저자), 송효진(서울대학교병원, 공동저자), 이상엽(한국과학기술원, 공동저자), 윤홍석(서울대학교병원, 교신저자), 고영일(서울대학교병원, 교신저자), 김현욱(한국과학기술원, 교신저자) 포함 총 9명
이번 연구는 과학기술정보통신부 한국연구재단의 지원을 받아 수행됐다.
2024.03.18
조회수 3575
-
극한 호우는 지구온난화 때문이었다
과거 60여 년간 동아시아지역에 호우 강도가 약 17% 증가했고 주된 원인이 인간 활동에 의한 지구온난화의 가속화임을 세계 최초로 입증하는 데 성공했다.
우리 대학 문술미래전략대학원(건설및환경공학과, 녹색성장및지속가능대학원 겸임) 김형준 교수와 인문사회연구소 문수연 박사가 한·미·일 국제 공동 연구를 통해 과거 60여 년간 관측된 동아시아 지역의 기상 전선에 의한 호우 강도의 증가가 인간 활동에 의한 기후변화의 영향이었음을 지구 메타버스 기술을 이용해 처음으로 증명했다고 5일 밝혔다.
여름 호우는 농업 및 산업에 큰 영향을 미치며 홍수나 산사태 등의 재해를 일으켜 지역의 생태계에도 영향을 주는 등 인간 사회 있어서 커다란 위협 중 하나라고 할 수 있다. 여름 호우의 강도가 과거 몇십 년간 변화돼 온 사실은 세계 각지에서 보고됐다. 그러나 동아시아의 여름 호우는 태풍, 온대 저기압, 전선과 같은 다양한 프로세스에 기인하며, 여름 호우의 40% 이상을 차지하는 전선이 야기하는 호우에 관한 연구는 아직 미흡하다. 또한, 호우는 기후 시스템의 자연 변동 혹은 우연성에 의한 영향 또한 존재하기 때문에 인간 활동에 의한 온난화가 전선 유래의 호우 강도에 어느 정도 영향을 주고 있는지는 아직 밝혀지지 않고 있다.
KAIST, 동경대, 동경공업대, 전남대, GIST, 유타주립대 등 한·미·일 8개 기관으로 구성된 국제 공동연구팀은 동아시아의 기상 전선에 의한 호우 강도를 과거 약 60년간 관측 데이터로 확인한 결과 중국 남동부의 연안 영역부터 한반도 그리고 일본에 걸쳐 호우의 강도가 약 17% 증가한 사실을 발견했다. 연구팀은 이러한 변화의 원인을 밝히기 위해 인간 활동에 의한 온실가스의 배출이 있는 지구와 그렇지 않은 지구를 시뮬레이션한 지구 메타버스 실험을 이용해 온실가스 배출에 의해 호우 강도가 약 6% 강화됐으며, 발견된 변화가 인간 활동에 의한 온난화의 영향을 배제하고서는 설명할 수 없음을 보이는 데 세계 최초로 성공했다.
교신 저자인 김형준 교수는 "이번 연구는 동아시아에서 기상 전선에 의한 호우의 강도가 최근 반세기에 걸쳐 유의미하게 증가했음을 밝히고 그러한 변화에 이미 인류의 흔적이 뚜렷하게 남겨져 있음을 증명한다ˮ며, "이는 기후변화의 영향을 이해하는 데 중요한 단서가 되며 동시에 탄소중립을 성공적으로 달성하더라도 필연적으로 진행되는 가까운 미래의 기후변화에 대해 효율적으로 적응하기 위해 필수 불가결한 정보라고 할 수 있다ˮ고 말했다.
이번 연구 결과는 국제 학술지 `사이언스 어드밴시스(Science Advances)'에 11월 24일 출판됐다. (논문명: Anthropogenic warming induced intensification of summer monsoon frontal precipitation over East Asia)
한편 이번 연구는 한국연구재단 해외우수과학자유치사업(BP+)와 인류세연구센터의 지원을 받아 수행됐다.
2023.12.05
조회수 3856
-
트랜스포머 대체할 차세대 월드모델 기술 세계 최초 개발
우리 대학 전산학부 안성진 교수 연구팀이 미국 럿거스 대학교와 협력하여 트랜스포머 및 재귀신경망 기반의 월드모델을 대체할 차세대 에이전트 월드모델 기술을 세계 최초로 개발했다.
월드모델은 인간의 뇌가 현실 세계의 경험을 바탕으로 환경 모델을 구축하는 과정과 유사하다. 이러한 월드모델을 활용하는 인공지능은 특정 행동의 결과를 미리 시뮬레이션해보고 다양한 가설을 검증할 수 있어, 범용 인공지능의 핵심 구성 요소로 여겨진다.
특히, 로봇이나 자율주행 차량과 같은 인공지능 에이전트는 학습을 위해 여러 가지 행동을 시도해 보아야하는데, 이는 위험성과 고장 가능성을 높인다는 단점을 갖는다. 이에 반해, 월드모델을 갖춘 인공지능은 실세계 상호작용 없이도 상상모델 속에서 학습을 가능케 해 큰 이점을 제공한다.
그러나 월드모델은 자연어처리 등에서 큰 발전을 가능하게 한 트랜스포머와 S4와 같은 새로운 시퀀스 모델링 아키텍처의 적용에 한계가 있었다. 이로 인해, 대부분의 월드모델이 성능과 효율성 면에서 제약이 있는 고전적인 재귀적 신경망에 의존하고 있었고 안성진 교수팀은 작년 세계최초로 트랜스포머 기반의 월드모델을 개발하였으나 추론 계산속도나 메모리능력에서 여전히 개선할 문제를 갖고 있었다.
이러한 문제를 해결하기 위해, 안성진 교수가 이끄는 KAIST와 럿거스 대학교 공동연구팀은 재귀적 신경망과 트랜스포머 기반 월드모델의 단점을 극복한 새로운 월드모델의 개발에 성공했다. 연구팀은 S4 시퀀스 모델에 기반한 S4 World Model (S4WM)을 개발하여, 재귀적 신경망의 최대 단점인 병렬처리가 가능한 시퀀스 학습이 불가능하다는 문제를 해결하였다. 또한, 재귀적 신경망의 장점인 빠른 추론시간을 유지하도록 하여 느린 추론 시간을 제공하는 트랜스포머 기반 월드모델의 단점을 극복했다.
연구를 주도한 안성진 교수는 "병렬 학습과 빠른 추론이 가능한 에이전트 월드모델을 세계 최초로 개발했다ˮ며, 이는 "모델기반 강화학습 능력을 획기적으로 개선해 지능형 로봇, 자율주행 차량, 그리고 자율형 인공지능 에이전트 기술 전반에 비용절감과 성능 향상이 예상된다ˮ고 밝혔다.
이번 연구는 12월 10일부터 16일까지 미국 뉴올리언스에서 열리는 세계 최고 수준의 인공지능 학회인 제37회 신경정보처리학회(NeurIPS)에서 발표될 예정이다.
관련논문: “Facing off World Model Backbones: RNNs, Transformers, and S4”Fei Deng, Junyeong Park, Sungjin Ahn, NeurIPS 23, https://arxiv.org/abs/2307.02064
2023.11.09
조회수 3761
-
인공지능으로 조현병 원인치료의 실마리 찾다
정신분열증으로도 알려진 조현병은 환청, 환영, 인지장애 등의 증상으로 대표되는 정신질환이다. 국내 연구진이 인공지능을 활용해 그동안 증상 억제만이 가능했던 조현병의 원인을 치료할 수 있는 실마리를 찾았다.
우리 대학 바이오및뇌공학과 이도헌 교수 및 한국한의학연구원(원장 이진용) 공동연구팀이 미국 스탠리 의과학연구소(이하 스탠리연구소) 와의 국제공동연구를 통해 인공지능으로 개인의 유전형과 조현병 사이의 선천적 병리 모델과 조현병 예측 마커를 발굴했다고 27일 밝혔다.
조현병은 2016년 강남역 살인사건, 2019년 진주 방화사건, 2023년 대전 칼부림 사건 등 일부 환자들의 강력범죄와 환자에 대한 사회적 낙인으로 인해 조현병은 심각한 사회적 문제가 되었다. 그러나 이러한 심각성에도 불구하고 조현병의 원인은 명확히 밝혀지지 않아, 리스페리돈(risperidone), 클로자핀(clozapine) 등 항정신병제에 의한 증상의 억제만이 가능한 실정이다.
이도헌 교수 연구팀은 미 스탠리연구소의 다수준 뇌 조직 데이터에 최근 주목받는 인공지능 기술인 `설명가능한 심층학습' 기술을 접목해, 선천적 유전형과 조현병 사이의 병리를 설명하는 인공신경망 모델을 구축했다. 그리고 모델을 해석하여, 선천적 유전형이 유전자·단백질 발현 조절을 통해 뇌의 전전두엽피질, 안와전두엽피질 신경세포의 발생을 변화시켜 조현병 취약성을 결정한다는 사실을 밝혀냈다. 또한, 뇌의 신경세포 밀도를 감소시키는 유전형 조합을 조현병 예측 마커로 제시해, 개인화된 조현병 예측과 세포 치료 등을 통한 조현병 원인치료의 가능성을 열었다.
이도헌 교수는 바이오의료 분야는 `속내를 알 수 없는 인공지능'보다는 `속내를 해석가능한 인공지능'이 꼭 필요한 분야라고 강조하면서, “기존의 인공지능과 비교했을 때 이번 연구에서는 인공신경망의 중간 노드에 유전자 이름, 세포의 상태와 같은 구체적인 생물학적 의미가 부여된 노드를 배치하고 그들간의 연결관계를 기계학습기법으로 분석했다”라고 말했다.
바이오및뇌공학과 이도헌 교수, 조유상 박사(現 한국한의학연구원 선임연구원), 미 스탠리연구소 김상현 박사, 마리 웹스터 박사가 공동으로 진행한 이번 연구는 영국 옥스퍼드대학교에서 발간하는 세계적 학술지인 `기능유전체학 브리핑(Briefings in Functional Genomics)'지 2023년 9월호에 게재됐다.
2023.09.27
조회수 5155