본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EB%AF%B8%EC%84%B8%EC%9C%A0%EC%B2%B4%EC%97%AD%ED%95%99
최신순
조회순
성형진 교수 연구팀, 랩온어칩(Lab on a Chip)지 표지논문 게재
우리 대학 기계공학과 성형진 교수 연구팀(초세대협업연구실)이 고주파수 표면탄성파 기반 마이크로스케일 음향흐름유동을 이용해 나노리터급 액적 내 화학적 농도 제어 기술을 개발했다. 동전 크기의 초소형 미세유체칩 내에 서로 섞이지 않는 두 유체로 조성된 마이크로스케일 액적을 기반으로 하는 액적 기반 미세유체역학 분야에서 개별 액적 내 화학적 농도를 제어하기 위해 그동안 많은 노력이 기울여져 왔다. 하지만 지금까지 개발된 액적 내 화학적 농도 제어 기술은 복잡한 미세유로 혹은 별도의 외부 구동시스템이 필요하거나, 만들어진 액적의 병합 혹은 희석을 통해 액적 내 화학적 농도를 제어하기 때문에 동적 제어가 불가능하고 액적 간 화학적 농도 구배를 형성하기 어렵다는 한계를 지니고 있었다. 이번 연구에서 성형진 교수 연구팀은 고주파수 표면탄성파를 미세유체칩 내 유동에 집속하여 음향흐름유동을 발생시켜 농도 제어가 필요한 액상 화학 시료와 완충용액을 혼합한 후, 혼합된 액상 시료를 분산상으로 하는 나노리터급 액적을 생성함으로써 액적 내 화학적 농도의 정밀 제어할 수 있음을 보였다. 개발된 기술을 활용하여 미세유체칩 내 고속으로 생성되는 개별 액적의 화학적 농도를 동적으로 제어할 수 있으며, 더 나아가 액적라이브러리 내 액적 간 화학적 농도 구배를 자유롭게 형성할 수 있는 최초의 기술이라는 점에서 기존 기술보다 진일보한 기술이라는 평가를 받았다. 아울러 평면파 각스펙트럼 이론과 등가 구경 이론을 이용해 원형 빗살무늬전극에서 생성되는 집속 표면탄성파의 집속점 위치가 기하학적 중심이 아니라는 점을 밝혔다. 또한 MHz 대역의 초음파 대역의 압전기판 위 표면탄성파 및 유체 내 종파의 감쇄에 의해 생성되는 마이크로스케일 음향흐름유동 및 와류를 전산유체역학적으로 가시화하여 인가되는 표면탄성파의 진폭과 생성되는 음향흐름유동장 사이의 관계를 규명해 효율적인 마이크로스케일 유동 혼합을 위한 조건을 제시했다. 이번 연구는 영국왕립화학회(Royal Society of Chemistry)에서 발간하는 미세유체역학 및 마이크로타스(microTAS) 분야의 세계적 권위 국제학술지인 랩온어칩(Lab on a Chip)지 2020년 21호의 표지논문으로 선정됐다 (논문명: Acoustofluidic generation of droplets with tunable chemical concentrations). 이는 성형진 교수의 Lab on a Chip 학술지 2016년 4호, 17호, 2017년 6호, 2018년 3호, 19호에 이은 여섯 번째 표지논문으로 미세유체역학 분야의 선도적 연구 성과다. 성형진 교수 연구팀은 그동안 미세유체역학, 난류, 고체-유체 상호작용 연구 분야에서 탁월한 연구 성과를 내 SCI급 국제학술지에 380여편의 논문을 게재했으며, 이번 연구는 과학기술정보통신부의 재원으로 한국연구재단의 중견연구와 초세대협업연구실의 지원으로 수행됐다. 박진수 박사 (현 전남대 교수)와 성형진 교수는 “이번 연구에서 개발된 음향미세유체역학 기술을 통해 마이크로스케일 액적 내 화학적 농도를 칩 내에서 정밀·동적 제어하고 액적 간 농도 구배를 형성할 수 있는 최초의 기술로서, 개발된 기술이 약물스크리닝, 단일 세포 및 입자 기반 분석, 기능성 마이크로캡슐 합성 등 액적 기반 미세유체역학 시스템이 사용되는 다양한 분야에서 핵심 원천기술로 널리 활용될 수 있을 것으로 기대된다”라며 연구 의의를 밝혔다.
2020.11.10
조회수 31071
성형진 교수, 마이크로스케일 액적 내 입자의 세정 및 집속기술 개발
우리 대학 기계공학과 성형진 석좌교수 연구팀(유동제어연구실)이 고주파수 표면탄성파 기반 음향방사현상을 이용해 마이크로스케일 액적 내 입자의 세정 및 집속 기술을 개발했다. 박진수 박사과정이 제 1저자로 참여한 이번 연구는 영국왕립화학회에서 발간하는 미세유체역학 및 마이크로타스 분야의 국제학술지 랩온어칩(Lab on a Chip)지 2018년 19호의 표지논문으로 선정됐다 (논문명: In-droplet microparticle washing and enrichment using surface acoustic wave-driven acoustic radiation force). 이는 같은 학술지 2016년 4호, 17호, 2017년 6호, 2018년 3호에 이은 다섯 번째 표지논문으로 미세유체역학 분야의 선도적 연구 성과이다. 동전 크기의 초소형 미세유체칩 내에 서로 섞이지 않는 두 유체로 조성된 마이크로스케일 액적을 기반으로 하는 액적 기반 미세유체역학 분야에서 액적 내 입자, 세포, 생체분자 등의 샘플을 제어하기 위해 많은 노력이 기울여져 왔다. 하지만 지금까지 개발된 액적 내 샘플 세정 및 집속 기술은 복잡한 시스템이 요구되고 자성 혹은 극성을 띈 샘플만 제어할 수 있다는 한계를 지니고 있었다. 이번 연구에서 성 석좌교수 연구팀은 고주파수 표면탄성파를 이용해 마이크로스케일 액적과 액적 내 입자에 음향방사력을 인가해 입자의 위치를 음향장 내에 고정시켰다. 그리고 액적을 포획, 분할, 병합, 방출함으로써 액적 내 입자의 매개 용액을 교체하고 더 나아가 입자의 개체수를 원하는 수준까지 농축할 수 있음을 증명했다. 개발된 기술은 액적 내 입자를 비접촉·비표지 방식으로 세정할 수 있으며 액적 내 샘플의 개체수를 증가시킬 수 있는 기술이라는 점에서 기존보다 진일보했다는 평을 받았다. 아울러 음파와 탄성 고체 입자의 상호작용 이론을 바탕으로 표면탄성파의 주파수와 액적 내 입자 크기 사이의 관계를 규명해 효율적인 음향영동 현상 유발을 위한 조건을 제시했다. 박진수 박사과정은 “개발된 음향미세유체역학 기술을 통해 마이크로스케일 액적 내 샘플의 매개용액을 자유롭게 교체할 수 있음은 물론 액적 내 샘플을 원하는 수준으로 농축할 수 있다”고 말했다. 성형진 석좌교수는 “이 기술이 다양한 액적 기반 미세유체역학 시스템에서 액적 내 입자, 세포, 생체분자 등 다양한 샘플의 전처리를 위한 핵심 기술로 널리 활용될 수 있을 것으로 기대된다”고 말했다. 성형진 석좌교수 연구팀은 그동안 광력과 음향력 기반의 미세유체역학, 난류, 고체-유체 상호작용 연구 분야에서 탁월한 연구 성과를 내 SCI급 국제학술지에 320여편의 논문을 게재한 바 있다. 특히 이번 연구는 올해 우리 대학에서 국내 최초로 시행된 초세대 협업연구실(헬스케어 음향미세유체 연구실)의 공동 연구 성과로, 헬스케어 음향미세유체 연구실은 기계공학과 성형진 석좌교수가 책임을 맡고 같은 학과 조연우 교수, 김형수 교수가 참여하고 있다. 이번 연구는 KAIST-KUSTAR, 한국연구재단의 창의연구지원사업과 글로벌박사펠로우십, 극지연구소, KAIST 초세대 협엽연구실(헬스케어 음향미세유체 연구실)의 지원으로 수행됐다. □ 그림 설명 그림1. 논문 대표 이미지 그림2. 표지논문 이미지
2018.10.05
조회수 13766
성형진 교수, 미세유체칩 내 액적 위치 제어 기술 개발
우리 대학 기계공학과 성형진 교수 연구팀(유동제어연구실)이 열모세관 현상을 이용해 미세유체칩 내 액적의 위치를 정교하게 제어하는 기술을 개발했다. 박진수 박사과정이 1저자로 참여한 이번 연구는 영국왕립화학회(Royal Society of Chemistry)에서 발간하는 미세유체기술 및 마이크로타스(microTAS) 분야의 국제학술지인 랩온어칩(Lab on a Chip)지 2017년 6호의 표지논문으로 선정됐다. (논문명: Acoustothermal tweezer for droplet sorting in a disposable microfluidic chip) 극소량의 유체 샘플을 이용해 동전만한 크기의 미세유체칩 내에서 복잡한 실험을 수행하기 위해서는 정교한 미세유체 기술이 필요하다. 특히 서로 섞이지 않는 두 유체로 구성된 액적을 기반으로 하는 미세유체역학 분야에서 액적의 위치를 정교하게 제어할 수 있는 기술이 필수적이다. 하지만 기존의 액적위치 제어기술은 한 쪽 방향으로만 제어할 수 있거나 마이크로 크기 수준에서는 정교하게 제어하지 못했다. 연구팀은 독자적으로 개발한 음향열적가열법을 통해 마이크로 수준의 동적 온도구배를 형성했고 이를 통해 미세유체칩 내에서 액적의 위치를 마이크로 크기 수준에서 정교하게 제어했다. 궁극적으로는 원하는 배출 유로로 액적을 분리할 수 있음을 증명했다. 성형진 교수 연구팀은 그동안 광력과 음향력 기반의 미세유체역학, 난류, 고체-유체 상호작용 연구 분야에서 탁월한 연구 성과를 내 SCI급 국제 학술지에 300여 편의 논문을 게재한 바 있다. 이번 연구는 한국연구재단의 창의연구지원사업, 글로벌박사펠로우십과 KAIST-KUSTAR의 지원으로 수행됐다. 박진수 박사과정은 “본 연구에서 개발된 기술은 액적의 양쪽에서 서로 반대방향으로 작용해 균형을 이루는 열모세관 힘을 이용해 액적의 위치를 마이크로스케일에서 정교하게 제어할 수 있다”고 말했다. 성 교수는 “본 연구에서 개발된 기술이 액적 기반 미세유체칩 내 생화학반응, 제약, 물질 합성 등에 널리 활용될 수 있을 것으로 기대된다”고 말했다. □ 그림 설명 그림1. 랩온어칩 표지
2017.03.20
조회수 17096
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1