본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EB%B0%94%EC%9D%B4%EC%98%A4%EC%82%B0%EC%97%85
최신순
조회순
이해신 교수, 와인성분 통해 심장에 정맥주사로 약물 전달 기술 개발
〈 이 해 신 교수 〉 우리 대학 화학과 이해신 교수 연구팀이 와인의 떫은맛을 내는 성분인 탄닌산(tannic acid)을 이용해 간단한 정맥주사만으로도 약물을 심장 조직에 전달할 수 있는 기술을 개발했다. 연구팀은 탄닌산을 단백질, 펩타이드 등의 약물과 혼합시켜 입자화 하는 방법을 통해 심장조직을 표적할 수 있음을 규명했다. 연구팀의 심장 질환의 효율적 치료를 위한 표적화 약물전달 기술은 단백질 기반의 다양한 신약에 적용 가능할 것으로 기대된다. 안전성평가연구소의 예측모델 연구센터 김기석 박사 연구팀과 공동으로 수행된 이번 연구는 네이처 자매지 ‘네이처 바이오메디컬 엔지니어링(Nature Biomedical Engineering)’ 4월 30일자 온라인 판에 게재됐다. 심장은 인체 내 가장 중요한 기관으로 분당 60~100회의 박동을 하는 동안 약 5리터의 혈액을 뇌를 포함한 전신에 공급하는 역할을 한다. 심장은 심근이라는 근육을 이용해 끊임없이 박동하는 운동성이 높은 기관이다. 심장 및 관련 혈관 질병을 심혈관계-순환계 질환이라고 하는데 이는 우리나라 사망 원인 2위를 차지한다. 고혈압, 당뇨, 고지혈증, 흡연, 비만 등 현대인의 불규칙한 식습관 및 생활습관으로 인해 나타날 수 있다. 대표적으로 심장으로 가는 관상동맥이나 미세한 혈류들이 좁아져 산소 및 영양분 공급이 원활하지 못해 발생하는 심근경색이 있다. 많은 연구자들이 심혈관계 질환 극복을 위한 화학약물요법이나 치료용 단백질 등을 개발하고 있다. 그러나 여전히 직접적인 수술, 카테터 및 스텐트 삽입 등에 의존하고 있으며 일반 정맥주사로 개발된 약물을 심장에 효율적으로 전달하는 기술은 개발되지 않았다. 심장의 강한 운동성으로 인해 정맥으로 주사된 약물이 순환하는 동안 심장으로의 전달 효율이 급격하게 저하되기 때문이다. 문제 해결을 위해 연구팀은 과일 껍질, 견과류, 카카오, 와인 등에 다량으로 존재하는 탄닌산이라는 물질을 이용했다. 탄닌산은 와인의 떫은맛을 내는 폴리페놀 분자의 일종으로 혀에 존재하는 점막 단백질과 결합해 떫은맛을 낸다고 알려져 있다. 연구팀은 탄닌산과 단백질 사이의 강한 분자 간 결합력을 이용해 치료용 단백질, 유전자 전달체인 바이러스 또는 기능성 펩타이드 약물 등을 간단하게 섞어주는 방법으로 입자화에 성공했다. 그리고 이를 주사했을 때 심장을 표적화할 수 있다는 사실을 발견했다. 탄닌산을 이용한 단백질 입자화 기술의 원리는 일종의 ‘분자 수준에서의 코팅’ 기술이다. 입자화된 단백질 복합체 표면에 코팅된 탄닌산이 심장의 기능을 유지하기 위해 밀집돼 있는 엘라스틴 및 콜라겐 단백질과 부가적으로 강한 상호작용을 하며 심장 조직에 부착된 상태로 오랜 시간 머무는 심장 표적화 기술이다. 이러한 탄닌산-단백질 복합체는 단백질만을 주사했을 때와 비교하면 5일 이상 장기적으로 혈관 내에서 순환됨을 확인했다. 이 교수 연구팀은 예전부터 탄닌산을 비롯한 접착성, 코팅성을 갖는 다양한 폴리페놀 재료를 응용해 의료용 생체 재료를 개발해 왔다. 실제로 심근경색 동물 모델에 탄닌산과 섬유아세포 증식인자를 섞어서 만든 약품을 주입하고 4주가 지난 뒤 심근경색이 일어난 크기가 감소했을 뿐 아니라 좌심실 압력 및 심박출량 등이 정상에 가깝게 호전되는 것을 확인했다. 이해신 교수는 “지금까지 심장질환 관련한 많은 약물들이 개발됐음에도 불구하고 상대적으로 약물을 심장에 효율적으로 전달하는 방법은 개발되지 않았다”며 “이번 기술은 기존 약물들을 새롭게 공식화해 개량신약으로 만들 수 있는 원천기술이다”고 말했다. 이번 연구는 연구재단 중견연구자 도약연구, 보건복지부 암정복프로그램, 산업통상자원부의 바이오산업핵심기술개발사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 탄닌산으로 제조한 단백질 복합체가 심장 조직에 전달되는 모식도 그림2. 바이러스 유전자 발현 효율 및 치료기능성을 보여주는 연구결과
2018.05.16
조회수 16685
합성 조절 RNA를 이용한 세포공장 기술 개발
- 네이쳐 바이오테크놀로지 온라인판 게재.“화학 산업을 대체할 생물 산업 발전의 새로운 전략으로 기대” - 우리 학교 생명화학공학과 이상엽 특훈교수팀이 합성 조절 RNA 기술을 활용하여 세포공장*을 효율적이고 대규모로 구현하게 하는 새로운 기술을 개발했다. * 세포공장(Biofactory) : 세포의 유전자를 조작하여 원하는 화합물을 대량으로 생산하도록 만드는 미생물 기반의 생산 시스템 화석연료 고갈과 석유화학제품 사용에 의한 환경오염 등 인류가 직면한 문제를 해결하기 위해 친환경적이고 지속가능한 바이오산업이 대두되고 있으며 특히 바이오에너지, 의약품, 친환경 소재 등을 생산할 수 있는 세포공장 개발기술이 전 세계적으로 주목받고 있다. 우수한 세포공장 개발을 위해서는 원하는 화합물을 생산하는 유전자 선별과 높은 생산 효율의 미생물을 찾는 과정이 병행되어야 하나 기존의 연구방식은 미생물의 유전자를 하나씩 조작하여 복잡하고 많은 시간이 소요되는 문제가 있었다. 우리 학교 나도균 박사와 유승민 박사가 참여한 이상엽 특훈교수 연구팀은 위와 같은 기술적 한계를 극복하기 위해 합성 조절 RNA를 제작하고 이를 활용하는 새로운 기술을 개발하였다. 특히 합성 조절 RNA를 이용한 이 기술은 기존 방식과 달리 균주 특이성이 없어 수개월이 소요되던 실험을 수일로 단축시킬 수 있어 획기적이다. 연구팀은 합성 조절 RNA 기술을 활용하여 의약 화합물의 전구체로 사용되는 타이로신(tyrosine)*과 다양한 석유화학 제품에 활용되는 카다베린(cadaverine)** 생산에 도입하여 세계 최고의 수율로 생산(각 21.9g/L, 12.6g/L)하는 세포공장을 개발하는데 성공하였다. * 타이로신(tyrosine) : 스트레스를 다스리고 집중력 향상 효과가 있는 아미노산 ** 카다베린(cadaverine) : 폴리우레탄 등 다양한 석유화학 제품에 활용되는 기반물질 이상엽 교수는 “합성 조절 RNA기술로 다양한 물질을 생산하는 세포공장 개발이 활발해 질 것이며 석유에너지로 대표되는 화학 산업이 바이오 산업으로 변해 가는데 촉매제 역할을 할 것으로 기대된다”라고 연구 의의를 밝혔다.“ 이번 연구는 글로벌프론티어사업(지능형 바이오 시스템 설계 및 합성 연구단(단장 김선창))의 지원으로 수행되었으며 연구결과는 세계적 학술지인 네이처 바이오테크놀로지 온라인 판에 1월 20일 게재되었다.
2013.01.21
조회수 16411
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1