본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EB%B0%9C%ED%9A%A8+%EA%B3%B5%EC%A0%95
최신순
조회순
이상엽 교수, 지방산∙바이오디젤 생산 가능한 미생물 개발
〈 이상엽 특훈교수 〉 우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 비식용 바이오매스 기반의 최고성능을 갖는 지방산과 지방산 유도체로 전환하는 미생물 균주 및 발효 공정을 개발했다. 김혜미, 채동언 연구원 등이 참여한 이번 연구결과는 국제학술지 ‘네이처 케미컬 바이올로지(Nature Chemical Biology)」 6월 17일 자 온라인판에 게재됐다. (논문명 : Engineering of an oleaginous bacterium for the production of fatty acids and fuels) 화석원료는 현대 산업의 기초 물질이자 우리 생활 전반에 광범위하게 이용되는 원료 및 에너지원으로 필수적인 물질이다. 그러나 원유 매장량 고갈에 대한 우려와 원유 산업으로 인한 온난화 등의 환경문제가 세계적으로 매우 심각한 상황이다. 특히 우리나라의 경우 석유를 전량 수입에 의존하기 때문에 국제 유가 변동에 매우 취약해 환경문제를 해결과 원유를 대체할 수 있는 지속 가능한 바이오 기반 재생에너지의 생산이 필수다. 따라서 재생 가능한 자원 기반의 바이오 연료 개발이 활발히 이뤄지고 있는데, 그중 경유를 대체할 수 있는 환경친화적 연료인 바이오 디젤이 있다. 바이오 디젤은 주로 식물성 기름이나 동물성 지방의 에스터교환(transesterification) 반응을 통해 만들어지고 있다. 이 특훈교수 연구팀은 바이오 디젤 생산을 위해 폐목재, 잡초 등 지구상에서 가장 풍부한 바이오매스 주성분인 포도당으로부터 지방산 및 바이오 디젤로 이용할 수 있는 지방산 유도체를 생산하는 균주를 개발했다. 연구팀은 자연적으로 세포 내 기름을 축적하는 것으로 알려진 미생물인 로도코커스(Rhodococcus)를 시스템 대사공학을 통해 대사 회로를 체계적으로 조작해 최고성능으로 지방산 및 바이오 디젤을 생산하는 균주를 개발했다. 먼저 로도코커스의 배양 조건을 최적화한 뒤 포도당을 섭취해 세포 내 과량의 기름(트리아실글리세롤, triacylglycerol)을 축적하게 했다. 이후 선별한 외부 효소를 도입해 효과적으로 기름을 지방산으로 전환해 최고 농도의 지방산 생산 균주를 개발했다. 또한, 지방산을 두 가지 형태의 바이오 디젤 연료 물질로 효율적으로 전환하는 추가적인 유전자 조작을 통해 바이오 디젤을 최고성능으로 생산하는 데 성공했다. 연구팀은 이전에 대장균을 이용해 바이오 연료인 휘발유를 생산하는 미생물 세계 최초로 개발한 바 있다. (Nature 표지논문 게재) 그러나 해당 기술은 생산성이 리터당 약 0.58g 정도로 매우 낮다는 한계가 있었다. 이를 극복하기 위해 로도코커스 균주를 이용해 포도당으로부터 리터당 50.2 g의 지방산 및 리터당 21.3 g의 바이오 디젤 생산에 성공했다. 이러한 성과를 통해 향후 식물성이나 동물성 기름에 의존하지 않고 비식용 바이오매스로부터 미생물 기반 바이오 연료의 대량 생산까지 가능하게 할 것으로 기대된다. 이상엽 특훈교수는 “이번에 개발한 고효율 미생물 기반 지방산과 바이오 디젤 생산 연구는 앞으로 환경문제 해결과 더불어 원유, 가스 등 화석연료에 의존해온 기존 석유 화학 산업에서 지속할 수 있고 환경친화적인 바이오 기반산업으로의 재편에 큰 역할을 할 것이다”라고 말했다. 이번 연구는 과기정통부가 지원하는 기후변화대응기술개발사업의 바이오리파이너리를 위한 시스템대사공학 원천기술개발 과제의 지원을 받아 수행됐다. □ 그림 설명 그림1. 미생물 내에 축적된 오일과 이를 기반으로 생산되는 지방산 및 바이오 디젤
2019.06.20
조회수 16441
대장균 이용한 페놀 생산 성공
- 세계 최초로 대장균 이용해 리터당 3.8g의 페놀을 24시간 내 생산 성공 - 우리 학교 이상엽 특훈교수팀은 대장균을 이용해 재생 가능한 바이오매스로부터 페놀(phenol)을 생산하는 원천기술을 개발해 바이오테크놀로지(Biotechnology) 11일자 온라인판에 게재됐다. 이 기술은 친환경적인 미생물 발효 공정을 통해 화학물질을 생산하는 대사공학·공정 기술을 기반으로 개발돼 국내·외 생명공학 및 산업기술 발전에 크게 기여할 것으로 기대된다. 페놀은 석유화학공정을 통해 연간 800만 톤 이상 생산돼 폴리카보네이트, 에폭시, 제초제 등 다양한 산업에 폭넓게 사용되는 화학물질이다. 페놀이 갖고 있는 미생물에 대한 독성으로 인해 미생물을 이용한 페놀의 생산에 대한 연구는 그동안 어려움이 많아 생산량이 리터당 1g 미만 수준으로 더 이상의 향상이 이루어지지 못하고 있는 실정이었다. 최근 다양한 대장균들의 유전적, 생리·대사적 차이점이 보고되고 있는데 이 교수 연구팀은 이에 주목해 18종의 다양한 대장균 균주에 대해 동시에 대사공학을 적용해 그 중 ‘BL21’ 이라는 대장균 균주가 페놀생산에 가장 적합하다는 것을 발견했다. 연구팀이 적용한 기술 중 ‘합성 조절 RNA 기술’은 기존의 유전자 결실 방법보다 월등히 빠른 시간에 대사흐름의 조절을 가능하게 하는 기술로써 이번 연구에서도 18종의 대장균에 대한 대사공학을 동시에 진행하는데 중요한 역할을 했다. 또 미생물을 이용한 페놀의 생산에 있어 가장 큰 걸림돌이 페놀의 독성인데 연구팀은 발효공정에서 페놀의 대장균에 대한 독성을 최소화 할 수 있는 이상발효 공정(biphasic fermentation)을 이용해 페놀의 생산량을 증가시킬 수 있었다. 이렇게 개발된 대장균 균주는 기존 균주에 비해 월등히 높은 생산량과 생산능력을 보였으며 이상 유가식 발효(biphasic fed-batch fermentation)에서 리터당 3.8g의 페놀을 24시간 내에 생산할 수 있었다. 즉, 대장균을 이용해 재생 가능한 바이오매스로부터 쉽게 얻어질 수 있는 포도당을 이용해 페놀을 생산할 수 있는 균주를 개발해 세계 최고의 페놀 생산능력을 보이는 균주를 개발했다. 김병진 박사는 “다양한 합성생물학 기술들을 기반으로 대장균을 개량해 페놀을 처음으로 생산했으며 가장 높은 농도와 생산성을 기록했다”며 “발효 공정의 개량을 통해 미생물에 독성을 지니는 화합물의 생산가능성을 보여줬다는데 커다란 의미가 있다”고 말했다. KAIST 생명화학공학과 이상엽 특훈교수 지도하에 김병진 박사, 박혜권 연구원이 공동 1저자로 참여한 이번 연구는 미래창조과학부와 한국연구재단의 글로벌 프론티어사업 지능형 바이오시스템설계 및 합성연구단의 지원을 받아 수행됐다.
2013.10.30
조회수 17269
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1