본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EB%B6%84%ED%95%B4%EB%8A%A5
최신순
조회순
정기훈 교수, 곤충 눈 구조 모방한 초박형 카메라 개발
〈 왼쪽부터 장경원 박사과정, 정기훈 교수, 황순홍 박사과정 〉 우리 대학 바이오및뇌공학과 정기훈 교수 연구팀이 독특한 눈 구조를 가진 곤충인 제노스 페키(Xenos peckii)를 모사한 초박형 디지털카메라를 개발했다. 제노스 페키를 모사해 개발한 초박형 디지털카메라는 기존 이미징 시스템보다 더 얇으면서 상대적으로 넓은 광시야각과 높은 분해능을 갖는다. 감시 및 정찰 장비, 의료용 영상기기, 모바일 등 다양한 소형 이미징 시스템에 적용 가능할 것으로 기대된다. 금동민, 장경원 박사과정이 주도한 이번 연구결과는 국제 학술지 ‘빛 : 과학과 응용(Light : Science & Applications)’ 10월 24일 자에 게재됐다. (논문명: 제노스 페키의 시각기관을 모사한 초박형 디지털카메라, Xenos peckii vision inspires an ultrathin digital camera) 정 교수 연구팀은 자연계에서 발견되는 광학 구조를 모방하는 연구를 꾸준히 진행해 왔다. 반딧불이의 배 마디 구조를 분석해 광효율을 높은 LED 렌즈를 개발한 바 있고, 생체모사를 통한 무반사 기판을 제작하는 등 해당 분야를 선도하고 있다. 최근 전자기기 및 광학기기의 소형화로 초박형 디지털카메라에 대한 수요가 증가하고 있다. 그러나 기존의 카메라 모듈은 광학적 수차를 줄이기 위해 광축을 따라 복수의 렌즈로 구성돼 있어 부피가 매우 크다는 단점이 있다. 이런 모듈을 단순히 크기만 줄여 소형기기에 적용하면 분해능과 감도가 떨어지게 된다. 연구팀은 문제 해결을 위해 곤충인 제노스 페키의 시각구조를 적용한 렌즈를 제작했고 이를 이미지 센서와 결합한 초박형 디지털카메라를 개발했다. 곤충의 겹눈구조는 수백, 수천 개의 오마티디아라 불리는 아주 작은 광학 구조로 이뤄져 있다. 일반적인 겹눈구조는 수백, 수천 개의 오마티디아에서 한 개의 영상을 얻지만, 제노스 페키는 다른 곤충과는 달리 각 오마티디아에서 개별의 영상을 획득할 수 있다. 또한 오마티디아 사이에 빛을 흡수할 수 있는 독특한 구조를 가져 각 영상 간 간섭을 막는다. 연구팀이 개발한 카메라는 2mm 이내의 매우 작은 크기로 제노스 페키의 겹눈구조를 모방해 수십 개의 마이크로프리즘 어레이와 마이크로렌즈 어레이로 구성된다. 마이크로프리즘과 마이크로렌즈가 한 쌍으로 채널을 이루고 있으며 각각의 채널 사이에는 빛을 흡수하는 중합체가 존재하며 각 채널 간 간섭을 막는다. 각각의 채널은 화면의 다른 부분들을 보고 있으며 각 채널에서 관측된 영상들은 영상처리를 통해 하나의 영상으로 복원돼 넓은 광시야각과 높은 분해능을 확보할 수 있다. 정기훈 교수는 “초박형 카메라를 제작하는 새로운 방법을 제시했다”며 “이 연구는 기존의 평면 CMOS 이미지 센서 어레이에 마이크로 카메라를 완전히 장착한 초박형 곤충 눈 카메라의 첫 번째 데모이며 다양한 광학 분야에 큰 영향을 미칠 것으로 확신한다.”라고 말했다. □ 그림 설명 그림1. (좌) 제노스 페키의 SEM 영상. (우) 형광 염색된 제노스 페키의 시각구조 그림2. (좌) MEMS 공정을 통해 제작된 마이크로프리즘 어레이의 SEM 영상. (우) 완성된 초박형 디지털 카메라의 광학 영상 그림3. (좌) Xenos peckii의 시각기관을 통해 얻은 영상. (우) 초박형 디지털 카메라를 통해 얻은 영상
2018.11.20
조회수 9116
김상규 교수, 화학반응 교차점에서 반응 메커니즘 규명
〈 우경철 박사과정, 김상규 교수, 강도형 박사과정 〉 우리 대학 화학과 김상규 교수 연구팀이 분자의 결합이 떨어지는 화학반응의 교차점에서 발생하는 두 가지 반응 경로를 실시간으로 관찰해 정확한 속도를 측정하는 데 성공했다. 김 교수는 지난 2010년 실험을 통해 두 반응의 위치에너지의 곡면이 만나는 화학반응의 핵심인 ‘원뿔형 교차점’의 존재와 분자구조를 규명한 바 있다. 이어서 이번 연구를 통해 화학반응의 교차점에서 발생하는 두 반응의 속도를 정확하게 측정함으로써 관련 연구의 이론적, 실험적 발전에 기여할 것으로 기대된다. 우경철, 강도형 박사과정이 1저자로 참여한 이번 연구는 ‘미국화학회지(JACS)’ 11월 7일자 온라인 판에 게재됐다. 빛을 받아 일어나는 화학반응은 전자적으로 들뜬 상태에서의 상호작용을 통해 발생한다. 일반적으로 전자상태 간의 상호작용은 한 개의 경로를 갖는 것이 보통이다. 하지만 양자상태에 따라 반응속도가 변하는 현상이 종종 발견되기도 한다. 이렇게 두 개 이상의 서로 다른 성격을 지닌 위치에너지곡면들이 교차하는 지점을 원뿔형 교차점(conical intersection)이라고 부른다. 이 구간은 화학반응에 대한 양자역학적 기술을 가능케 하는 ‘본-오펜하이머 가정(Born Oppenheimer approximation)’이 성립하지 않는 영역으로 알려져 있다. 김 교수는 2010년 분광학적 방법을 통해 이 원뿔형 교차점의 존재를 발견했고 이는 곧 에너지곡면 교차점의 양자상태 반응의 시작점임을 증명했다. 또한 여기서 출발한 반응은 매우 다른 반응속도를 가진 서로 다른 두 경로로 분리돼 진행된다는 것을 밝혔다. 그러나 일반적인 분광법을 통해서 교차점의 시작점은 알 수 있었지만 각 곡면이 갖는 속도를 측정하는 것은 불가능했다. 연구팀은 기존의 분광법이 아닌 피코초(10-12초) 시간분해능 분광법을 이용했다. 기존 기술은 나노초를(10-9초) 기반으로 한 실험을 이용한하기 때문에 에너지 부분에서는 정확하게 측정할 수 있지만 나노초로는 반응의 속도를 측정할 수 없다. 화학반응이 나노초 이내에서 이뤄지기 때문이다. 연구팀의 피코초 시간분해능 분광법은 에너지와 시간 모두 정확하게 측정할 수 있기 때문에 원하는 결과를 얻을 수 있었다. 연구팀은 본-오펜하이머 가정이 성립하는 단열 반응(adiabatic reaction)과 본-오펜하이머 가정이 성립하지 않는 비단열 반응(non-adiabatic reaction) 각각 두 개의 경로가 활성화되고 반응 속도 뿐 아니라 생성물의 에너지 분포 등이 큰 차이를 보임을 확인했다. 자유도의 수가 많은 복잡한 분자 반응에서 양자상태에 근거한 반응교차점에서의 비 단열성을 정량적으로 관찰하고 설명한 경우는 처음이다. 이를 통해 향후 있을 이론적, 실험적 연구의 촉진에 기여할 것으로 기대된다. 김 교수는 “기초과학 연구는 인류가 자연을 이해하고 지혜롭게 이용하는데 필수적이며 기초과학의 발전 없이 새로운 기술적 진보를 기대하기는 힘들다”며 “이번 연구를 통해 기초과학의 연구에 열정을 다할 수 있는 젊은 학문적 기대주들이 많이 성장할 수 있길 바란다”고 말했다. 이번 연구는 삼성미래기술육성재단의 지원을 받아 수행됐다. □ 그림 설명 그림1. 반응교차점에서 시작된 반응 그래프, 단열반응경로 (빨간색)와 비단열반응경로 (파란색)로 나눠짐 그림2. 반응교차점 입체도 그림3. 반응교차점 메커니즘 개념도
2017.11.30
조회수 15295
10nm대의 초미세 나노패터닝 新기술 개발
- 나노 레터스 誌 발표, 대면적 10nm대 나노패턴의 실용화 가능성 열어 - 복잡하고 다양한 10nm대의 고분해능 나노패턴을 대면적에 효율적으로 제작할 수 있는 기술이 국내연구진에 의해 개발되었다. KAIST 정희태 교수가 주도한 이번 연구결과는 나노분야 세계적인 학술지인 ‘나노 레터스(Nano Letters)’에 온라인으로 최근 (8. 17) 게재되었다. 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 박찬모)이 시행하는 ‘세계수준의 연구중심대학(WCU) 육성사업’과 ‘중견연구자지원사업 도약연구’의 지원을 받아 수행되었다. 정희태 교수 연구팀은 차세대 반도체, 디스플레이 및 나노전자 소자개발에 핵심기술인 10nm대의 고분해능 패턴을 원하는 모양과 크기로 쉽게 대면적에 제작할 수 있는 기술을 개발하였다. 연구팀은 전압차를 이용하여 아르곤(Ar) 입자를 가속시켜, 원하는 목적층에 물리적 충격을 줌으로써 목적층의 물질을 제거하는 이온충격(ion-bombardment) 공정 중에서 나타나는 2차 스퍼터링 (secondary sputtering)이라는 현상을 적용하였다. 이 현상은 이온충격(ion-bombardment)으로 물리적 식각을 할 때 목적층의 물질이 다양한 각분포로 이탈하여 마스크 패턴의 옆면에 흡착하는 현상을 이용한 것으로서, 선 모양, 컵 모양, 가운데가 비어있는 실린더(Hole-cylinder) 모양, 삼각 터널(triangle tunnel) 등 다양한 모양을 가지며, 최대 종횡비(high-aspect-ratio) 20까지 높이를 간단하게 제어할 수 있다. 이렇게 제작된 패턴은 웨이퍼, 유리기판, 쿼츠(Quartz), 금속판 뿐만 아니라 PET필름과 같은 플렉서블 기판에서도 공정이 가능하기 때문에 범용적으로 사용되어 질 수 있다. 연구팀은 투명한 쿼츠셀 위에 금 선 패턴을 제작하여 ITO기판을 대체할 수 있을 만큼 높은 성능을 갖는 투명전극을 제작하여 태양전지에 응용함으로써 다양한 광학/전기적 나노소자에 응용할 수 있음을 보였다. 동 연구는 기존의 리소그라피기술로 제작된 패턴의 해상도를 능가하는 10nm급 패턴을 제작할 수 있는 신기술로 거의 모든 금속(금, 은, 알루미륨, 크롬)과 무기물(ZnO, ITO, SiO2)에 적용가능하며, 기존의 패터닝 방법과 비교하여 낮은 공정비용과 간단한 실험공정으로 고해상도 패턴을 대면적에 균일하게 제작할 수 있다는 장점이 있다. 정희태 교수는 “10nm급의 고해상도 미세패턴 제작기술은 미래산업 전반에 걸쳐 매우 중요한 기술군으로, 그동안 나노분야에서 극복해야 할 핵심과제였습니다. 본 연구는 이러한 문제점을 비교적 간단한 방법으로 극복하고 향후 태양광 발전, 반도체 및 바이오소자의 효율증대에 적용가능한 기술”이라고 연구의의를 설명하였다.
2010.09.08
조회수 17175
김승우교수, 정밀거리측정기술 개발
- 네이처 포토닉스誌 발표, “미래우주핵심기술 개발을 통한 우주선진국 도약 가능성 열어”- 수 백 km의 거리에서 1nm*의 차이까지 정확히 측정할 수 있는 정밀거리 측정기술이 국내 연구진에 의해 개발되었다. * 1nm(나노미터) : 10억분의 1m 우리학교 기계공학과 김승우 교수가 주도한 이번 연구는 교육과학기술부(장관 안병만)와 한국연구재단(이사장 박찬모)이 추진하는 중견연구자지원사업 (도약연구)과 우주원천기초기술개발사업의 지원을 받아 수행되었고, 연구결과는 광학 분야 최고 권위지인 ‘네이처 포토닉스(Nature photonics)’ 온라인 속보(8월 8일자)에 게재되었다. 김 교수팀은 지금까지 장거리 측정의 한계점이던 1mm 분해능*을 1nm 분해능으로 측정할 수 있는 획기적인 정밀거리 측정기술 개발에 성공하였다. * 분해능(分解能, resolving) : 측정기가 검출할 수 있는 가장 작은 단위의 물리량을 의미하며, 1mm 분해능은 수백 km의 거리에서 1mm의 차이를 측정할 수 있음. 특히 이 기술은 일반적으로 장거리를 측정할 때 나타나는 모호성(ambiguity)도 극복하여, 이론적으로 100만km를 모호성 없이 측정할 수 있다. 김 교수팀은 실제 700m의 거리에서 150nm의 분해능 구현에 성공하였고, 우주와 같은 진공상태에서는 1nm의 분해능 구현도 가능하다는 사실을 실험을 통해 검증하였다. 이번 연구결과로 향후 지구와 유사한 행성을 찾기 위한 편대위성군 운용* 및 위성 또는 행성 간의 거리측정을 통한 상대성 이론 검증과 같은 미래우주기술개발에 한 발 다가서게 되었다. * 편대위성군운용(formation flying of multiple satellites) : 여러 대의 소형위성을 동시에 쏘아 올려 위성간의 거리를 측정함으로써, 지구와 유사한 행성을 찾거나 상대성이론 검증에 활용 위성 또는 행성 간의 정밀거리측정은 지구와 유사한 행성을 찾거나 상대성 이론을 검증하는 핵심기술로, 우주 선진국에서는 이 기술을 개발‧보유하기 위해 경쟁적으로 연구하고 있다. 김승우 교수는 “장거리를 1nm 분해능으로 측정할 수 있는 기술개발로, 우리나라도 편대위성군운용과 같은 미래우주핵심기술인 정밀거리측정 기술을 보유하게 되어, 명실 공히 우주 선진국으로 도약할 수 있는 기반을 마련하게 되었다”라고 연구의의를 밝혔다.
2010.08.17
조회수 16484
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1