-
세계 최고 속도 입체적 조명 기술 개발
디스플레이(조명) 기술에서는 고속화가 아주 중요한 성능 중 하나로 꼽힌다. 최근 주요 스마트폰 제조사들은 화면 전환 속도가 기존의 초당 60회보다 크게 향상된 초당 120회의 고속 디스플레이를 선보였다. 이런 고속 디스플레이를 탑재한 모델의 이용자들 사이에 ‘한번 경험하면 예전으로 돌아갈 수 없다’는 말이 회자될 정도로, 고속화는 상업적인 가치도 크다고 볼 수 있다.
우리 대학 바이오및뇌공학과 장무석 교수 연구팀이 북해도대학 전자과학연구소의 시부카와 아츠시 부교수, 미카미 히데하루 교수, 오카야마대학 의·치·약과학과의 스도 유키 교수 연구팀과 공동연구를 통해 세계 최고속의 3차원 광 패턴 조명 기술*을 개발하는 데 성공했다고 15일 밝혔다.
*광 패턴 조명 기술: 빛을 특정 패턴이나 형태로 조절하여 원하는 조명 효과를 얻는 기술
광 패턴 조명 기술은 우리에게 친숙한 디스플레이나 빔프로젝터에서 찾아볼 수 있다. 디스플레이나 빔 프로젝터 내부에는 원하는 이미지나 모양 등을 화소 단위로 만들어낼 수 있는 광 패턴 조명 장치인 공간 광 변조기*가 사용되고 있다. 이외에도 광 패턴 조명 기술은 최근 주목받는 가상 현실 기술 분야의 핵심 요소 기술인 3차원 디스플레이 기술에도 사용되며, 산업 분야에서는 금속 가공, 연구 분야에서는 뇌 심부 이미징을 위한 레이저 스캐닝 현미경 등에 사용되고 있다.
*공간 광 변조기: 빛을 화소 단위로 조작하여 원하는 이미지나 모양을 만들어내는 장치로, 빔 프로젝터나 3차원 디스플레이 기술 등에 사용되는 장치
하지만 공간 광 변조기는 조명 패턴의 전환을 고속으로 수행하는 데 큰 한계를 겪고 있었다. 현재 시판되는 공간 광 변조기는 액정형 디스플레이 장치나 디지털 미러 장치가 있지만, 통상적인 전환 속도는 50마이크로초에서 10밀리초 수준으로 제한되며, 원리적으로 이보다 더 빠르게 만드는 데에는 기술적 어려움이 있었다.
연구팀은 공간 자유도-시간 자유도 사이의 치환 개념을 개발하고, 이를 독자 개발한 초고속 1차원 광 변조기와 산란 매질*을 결합하여 구현하는 방식으로, 시판되는 공간 광 변조기보다 약 1,500배 빠른 30나노초의 전환 속도를 갖는 세계 최고 속도의 3차원의 조명(디스플레이) 기술을 개발했다.
*산란 매질: 안개나 물방울 맺힌 유리창처럼 빛을 무질서하게 굴절시키는 물질
연구팀은 빛의 전파를 교란하는 산란 매질의 특성을 역이용해 1차원의 광 패턴을 사용자가 원하는 3차원의 패턴으로 변환하기 위해 복잡 광 파면 조작 기술을 핵심 기술로 활용했다.
연구팀이 개발한 세계 최고 속도의 광 패턴 조명 기술은 특정 각도에서만 볼 수 있는 기존의 2차원 유사 홀로그램과 달리 실제로 3차원 공간상에 광 정보를 재구성해 입체 영상을 만드는 기술로 활용될 수 있다. 그뿐만 아니라 광유전학 기술에 기반한 뇌 신경 조절 기술과 같은 생체 조절 기술의 고속화·대규모화나 금속 3D 프린터 등의 광 가공 생산 효율 향상 등, 다양한 분야에서 응용될 전망이다.
*광유전학 기술: 빛을 이용해 살아있는 생물 조직의 세포를 제어하는 기술
해당 연구 결과는 바이오및뇌공학과 송국호 박사과정이 공저자, 장무석 교수가 교신저자로 참여했으며 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications)' 2024년 4월 8일 온라인판에 게재되었다. (논문명 : Large-volume focus control at 10 MHz refresh rate via fast line-scanning amplitude-encoded scattering-assisted holography)
이번 연구는 과학기술정보통신부 한국연구재단이 주관하는 선도연구센터사업(컬러변조 초감각 인지기술 선도연구센터), 우수신진연구자 사업, 삼성미래기술육성사업, 국토교통부 국토교통과학기술진흥원이 주관하는 차세대 대인 보안검색 기술 개발 사업의 지원을 받아 수행됐다.
2024.04.15
조회수 3960
-
차세대 XR 초정밀 위치 인식기술 최초 개발
초정밀 위치 인식기술로 사물인터넷 기기와 로봇의 미세한 움직임을 조종하고, 나아가서는 초실감형 XR 및 초정밀 스마트 팩토리 등 가상 세계에서 현실과 연결을 시키게 하는 인식기술을 세계 최초로 개발해서 화제다.
우리 대학 전기및전자공학부 김성민 교수 연구팀이 무전원 태그를 통해 세계 최초로 160m 장거리에서 7mm(5m 단거리 0.35mm)의 정확도와 1,000개 이상의 위치를 동시 인식하는 초정밀·대규모 사물인터넷(IoT) 위치인식 시스템을 개발했다고 8일 밝혔다.
연구진이 최초 개발한 무선 태그는, 그 신호가 방해 신호와 주파수 영역에서 완전히 분리되어 신호의 질을 100만 배 이상 향상시킨다. 이를 이용하여 초정밀 위치 인식이 가능해지는 원리다. 해당 기술을 접목하면 XR에서 다량의 사물인터넷을 손가락의 미세한 움직임만으로 쉽게 제어할 수 있는 등, 몰입감을 크게 높일 수 있다. 또한 1,000개 이상의 태그를 0.5초 이하에 동시 인식할 수 있어, 수많은 기기를 실시간 조작할 수 있다.
이 기술은 현존하는 실내외 위치인식 기술 중 작동 범위, 정확도 및 규모에서 성능이 월등하여 그 의미가 깊다. 특히, 최신 실내 측위 기술인 차세대무선기술(UWB, Ultra Wide Band)에 비해 300배의 정확도, 10배의 탐지 거리, 100배의 확장성을 갖는다. 즉, 현재에 비해 훨씬 많은 기기를 정밀하게 다룰 수 있음을 의미한다. 또한, 실외 측위에 한정되는 GPS 위치 인식 기술과 달리 다양한 실내외 환경에서 활용될 수 있다.
본 기술의 태그는 스스로 무선 신호를 생성하는 대신, 주변의 신호를 반사하여 통신한다. 마치 거울과 같은 원리로, 신호 생성에 필요한 전력을 아낄 수 있어 초저전력으로 동작한다. 이에 태양전지 등 무전원으로 동작하거나 코인 전지 하나로 40년 이상 구동할 수 있어, 대량 운용에 적합하다.
전기및전자공학부 배강민 박사과정과 문한결 박사과정이 공동 주 저자로 참여한 이번 연구는 모바일 시스템 분야의 최고 권위 국제 학술대회인 `ACM 모비시스(ACM MobiSys)' 2023에 지난 6월 발표됐다. (논문명: Hawkeye: Hectometer-range Subcentimeter Localization for Large-scale mmWave Backscatter)
김성민 교수는 “이번 성과를 통해 스마트팩토리 등 산업체를 넘어, XR(확장현실) 등 민간에서도 포괄적으로 사용가능한 IoT(사물인터넷) 상호적용 기술로, 전방위적인 위치인식 기술의 보급을 가능하게 할 것으로 기대된다”고 말했다.
한편 이번 연구는 삼성미래기술육성사업과 정보통신기획평가원의 지원을 받아 수행됐다.
2023.08.08
조회수 3800
-
천 개~수천만 개 이상의 대규모 사물인터넷 동시 통신기술 최초 개발
우리 대학 전기및전자공학부 김성민 교수 연구팀이 세계 최초로 천 개에서 수천만 개에 이르는 대규모 사물인터넷(IoT) 동시 통신을 위한 `밀리미터파 후방산란 시스템'을 개발했다고 28일 밝혔다.
밀리미터파 후방산란 기술은 대규모 통신을 지원하기 위한 기술로 주목받고 있다. 밀리미터파 통신은 30~300기가헤르츠(GHz)의 반송파 주파수 대역을 활용하는 통신으로, 5G/6G 등 표준에서 도입을 준비 중인 차세대 통신 기술이다. 이는 넓은 주파수 대역폭(10GHz 이상)을 확보할 수 있어 높은 확장성을 제공한다.
또한, 후방산란 기술은 기기가 직접 무선 신호를 생성하지 않고 공중에 존재하는 무선 신호를 반사해 정보를 전달하는 방식으로, 무선 신호를 생성하는데 전력을 소모하지 않기 때문에 초저전력 통신을 가능하게 할 수 있는 기술이다. 이는 낮은 설치비용으로 대규모 사물인터넷 기기의 광범위한 인터넷 연결성을 제공할 수 있다.
김성민 교수 연구팀은 밀리미터파 후방산란을 이용해 수천만 개의 사물인터넷 기기들이 실내에 배치된 복잡한 통신 환경에서 모든 신호가 동시에 복조되도록 설계하는 데 성공했다.
전기및전자공학부 배강민 박사과정이 제1 저자로 참여한 이번 연구는 모바일 시스템 분야의 최고 권위 국제 학술대회인 `ACM 모비시스(ACM MobiSys)' 2022에 이번 6월 발표됐으며, 최우수논문상을 수상했다. (논문명: OmniScatter: extreme sensitivity mmWave backscattering using commodity FMCW radar). 이는 작년 우리 대학 전기및전자공학부에서 아시아 대학 최초로 ACM 모비시스 2021 최우수논문상을 받은 이후 연속된 수상으로 더욱 의미가 깊다.
5G/6G 네트워크의 핵심 구성 요소 중 하나인 사물인터넷은 기하급수적인 성장세를 보이고 있으며, 2035년까지 1조 개 이상의 기기가 생산될 전망이다. 대규모 사물인터넷 기기들의 인터넷 연결을 지원하기 위해서 5G, 6G 표준 각각 4G 대비 10배 및 100배의 네트워크 밀도를 지원하는 것을 목표로 하고 있다. 따라서, 대규모 통신을 위한 실용적인 시스템의 필요성이 대두되고 있다.
그러나 현재 밀리미터 후방산란 시스템은 밀리미터파의 높은 주파수에 따른 신호 감쇄와 후방산란 시스템의 반사 손실이 합쳐져 제한적인 환경에서만 통신이 가능하다. 즉, 다양한 장애물과 반사체가 설치된 복잡한 통신 환경에서 작동하지 않아 상대적으로 자유로운 설치가 필요한 대규모 사물인터넷 기기에 광범위한 인터넷 연결성을 제공하는 데 한계가 있다.
연구팀은 FMCW(주파수 변조 연속파) 레이더의 높은 코딩 이득에서 해답을 찾았다. 연구팀은 레이더의 코딩 이득을 그대로 유지하는 동시에, 후방산란 신호와 주변 잡음을 원천적으로 분리해내는 신호 처리 방법을 개발해 기존 FMCW 레이더 대비 십만 배 이상 개선된 수신감도를 달성했다. 이는 실용적인 환경에서의 통신을 지원한다. 더욱이, 연구팀은 태그의 물리적인 위치에 따라 복조된 신호의 주파수가 달라지는 레이더 특성을 활용해 위치에 따라 통신 채널을 자연적으로 할당 받는 후방산란 시스템을 설계했다. 이는 초저전력 후방산란 통신이 10GHz 이상의 밀리미터파 주파수 대역폭을 전부 활용할 수 있게 하여 수천만 사물인터넷 기기들의 동시 통신을 지원한다.
개발된 시스템은 상용 기성품 레이더를 게이트웨이로 활용할 수 있어 적용 용이성이 높다. 또한, 연구팀의 후방산란 기술은 10마이크로와트(μW) 이하의 초저전력으로 작동해 코인 전지 하나로 40년 이상 구동 가능해 설치 및 유지보수 비용을 크게 줄일 수 있다.
연구팀은 다양한 장애물과 반사체가 설치된 사무실 환경에 무작위로 설치된 밀리미터파 후방산란 기기들의 통신이 가능함을 확인했다. 나아가 연구팀은 실험을 통해 총 1,100개의 기기가 송신하는 정보를 동시에 수신하는 것이 가능함을 확인하여 대규모 사물인터넷 구동을 검증했다.
이번 성과는 5G/6G 등 차세대 통신에서 요구하는 네트워크 밀도를 훨씬 웃도는 연결성을 자랑한다. 이에, 이번 시스템은 향후 도래할 초연결 시대를 위한 디딤돌 역할을 할 수 있을 것으로 기대된다.
김성민 교수는 "밀리미터파 후방산란은 대규모로 사물인터넷 기기들을 구동할 수 있는 꿈의 기술이며 이는 기존 어떠한 기술보다도 더욱 대규모의 통신을 초저전력으로 구동할 수 있다ˮ라며 "이 기술이 앞으로 도래할 초연결 시대에 사물인터넷의 보급을 위해 적극적으로 활용되길 기대한다ˮ라고 말했다.
한편 이번 연구는 삼성미래기술육성사업과 정보통신기획평가원의 지원을 받아 수행됐다.
2022.07.28
조회수 5732
-
초소형·저전력·저잡음 브릴루앙 레이저 구현 성공
우리 대학 물리학과 이한석, 이용희 교수 공동연구팀(초세대협업연구실)이 경북대학교 최무한 교수, 호주국립대학교 최덕용 교수 연구팀과 공동연구를 통해 초소형·저전력·저잡음 *브릴루앙 레이저를 구현하는 데 성공했다고 23일 밝혔다. 주파수의 흔들림이 거의 없는 초소형·저전력·저잡음 광원은 차세대 초정밀 광센서 구성에 필요한 핵심 소자다.
☞ 브릴루앙 레이저(Brillouin laser): *브릴루앙 산란에 기반해 레이저 빛을 생성 증폭하며, 따라서 레이저의 매질이 브릴루앙 산란을 쉽게 일으킬수록 더 작은 에너지로도 작동할 수 있다. 출력 레이저 빛은 입력된 펌프 빛보다 주파수의 흔들림이 작고 매우 낮은 잡음을 갖는다.
☞ 브릴루앙 산란(Brillouin scattering): 빛이 매질과 상호작용을 통해 음파(acoustic phonon)를 생성하고 산란되는 현상. 산란된 빛은 음파의 에너지에 대응되는 주파수 감소를 겪으며, 유도 방출(stimulated emission) 즉 동일한 특성의 빛을 복제하는 것이 가능해 레이저 구성에 이용될 수 있다.
공동연구팀은 기존에 주로 사용돼온 물질보다 브릴루앙 산란 현상이 수백 배 잘 일어나는 칼코겐화합물 유리를 기반으로 브릴루앙 레이저를 개발함으로써 성능을 극대화했다. 칼코겐화합물 유리는 화학적 불안정성으로 인해 칩 상에서 식각을 통한 성형이 어렵다는 근본적인 약점이 있지만 연구팀은 증착 과정에서 자발적으로 광소자가 구성되는 새로운 제작 기법을 개발해 이런 문제를 해결했다.
연구팀이 개발한 제작 기법은 겨울철 지붕 위에 쌓인 눈의 형태가 지붕의 형태에 의해 정해지므로 눈을 직접 만지지 않고서도 지붕의 형태만을 조절해 원하는 눈의 형태를 얻는 것에 비유할 수 있다. 즉, 현재 반도체 공정 기술로 가공하기 쉬운 산화규소를 이용해 바닥구조를 적절히 형성하면, 그 위에 칼코겐화합물 유리를 증착하는 것만으로도 우수한 성능의 광소자가 자발적으로 형성되는 현상을 최초로 입증한 것이다.
공동연구팀은 자체 개발한 이 제작 기법을 활용해서 칼코겐화합물 유리 기반 고성능 브릴루앙 레이저를 반도체 칩 상에 초소형 광소자의 형태로 구현하는 데 성공했다. 또 기존 기록보다 100배 이상 낮은 펌프 에너지로도 레이저 구동이 가능함을 밝혔다.
공동연구팀 관계자는 "소형화 및 저전력 구동은 상용화를 위한 필수적인 요소ˮ라면서 "공동연구팀의 브릴루앙 레이저 광원 개발은 자율주행에 필요한 거리뿐만 아니라 회전관성 센서의 감도를 획기적으로 개선하는 등 차세대 광센서 개발에 널리 활용될 것으로 기대가 크다ˮ고 말했다.
그는 또 "연구 과정에서 개발한 신공정 기법은 지금껏 활용할 수 없었던 다양한 물질을 미세 광학소자 분야에 도입, 가능케 했다는 점에서 매우 의미가 클 뿐 아니라 향후 널리 활용될 가능성이 큰 원천기술이다ˮ라고 의미를 부여했다.
이번 연구를 주도한 교신저자 이한석 교수는 "칼코겐화합물 유리는 다양한 분자의 흡수선이 존재하는 중적외선 대역에도 적용 가능해 분자 분광에 기반한 환경감시 및 헬스케어 분야까지 그 응용범위를 넓힐 수 있을 것ˮ이라고 내다봤다. 또 다른 교신저자인 최덕용 교수는 "연구 과정에서 개발된 공정기법은 다양한 물질의 이종 결합(hybrid integration)을 가능하게 해 미래 양자 인터넷의 핵심 소자인 고효율 양자 광원 및 양자 메모리 분야에도 응용될 수 있다ˮ고 강조했다.
우리 대학 물리학과 김대곤 박사과정 학생과 한상윤 박사후연구원(現 대구경북과학기술원 교수)이 공동 제1 저자로 참여한 공동연구팀의 이번 논문은 국제학술지 `네이쳐 커뮤니케이션스(Nature Communications)' 11월 23일 字에 실렸다. (논문명: Universal light-guiding geometry for on-chip resonators having extremely high Q-factor)
한편 이번 연구는 2018년 삼성미래기술육성사업에 선정돼 지속적인 지원을 받아 수행됐다.
2020.12.23
조회수 51945
-
사물인터넷(IoT)을 위한 무전원 인터넷 연결 기술 개발
우리 대학 연구진이 초저전력, 저비용으로 우리 생활의 모든 사물을 연결하는 사물인터넷(IoT, Internet of Things) 서비스를 광범위하게 제공하는 핵심 기술을 개발해 초연결 사회 구현을 한층 앞당길 수 있을 것으로 기대된다. 사물인터넷이란 각종 사물이 센서와 통신기기를 통해 서로 연결돼 양방향으로 소통함으로써 개별 객체로는 제공하지 못했던 서비스를 제공하는 기술이다.
전기및전자공학부 김성민, 이융 교수와 정진환 박사과정, 한국뉴욕주립대 류지훈 교수(컴퓨터과학과)가 참여한 공동 연구팀은 후방산란(Backscattering) 기술을 이용한 무전원 사물인터넷 게이트웨이 개발에 성공했다고 13일 밝혔다.
후방산란 기술이란 기기의 무선 신호를 직접 만들어내지 않고, 공중에 존재하는 방사된 신호를 반사해 정보를 전달하는 방식의 기술이다. 무선 신호를 생성하는데 전력을 소모하지 않아 초저전력으로 통신을 가능케 하는 기술이다.
김성민 교수 연구팀은 이러한 초저전력 후방산란 기술을 이용해 사물인터넷 기기들이 방사하는 무선 사물인터넷 신호가 와이파이(WiFi) 신호로 공중에서 변조되도록 설계했다. 후방산란 기술 기반의 무전원 게이트웨이를 이용하면 사물인터넷 기기를 와이파이 네트워크에 쉽게 연결할 수 있기 때문에 인터넷 연결성의 범위가 크게 확장될 것으로 기대된다.
전기및전자공학부 정진환 박사과정이 제1 저자로 참여한 이번 연구는 지난 6월 캐나다 토론토에서 열린 모바일 컴퓨팅 분야의 최고 권위 학술대회 `ACM 모비시스(ACM MobiSys) 2020'에서 발표됐다. (논문명 : Gateway over the air: Towards Pervasive Internet Connectivity for Commodity IoT).
5G 네트워크의 핵심 구성요소 중 하나인 사물인터넷은 각종 사물인터넷 기기들이 인터넷에 연결돼야만 다양한 서비스를 제공할 수 있는 구조로 돼 있다. 사물인터넷 기기들을 인터넷에 연결하기 위해서는 사물인터넷 게이트웨이라는 다수의 무선 송수신 장치를 장착하고 있는 기기가 꼭 필요하다.
사물인터넷 게이트웨이는 다수의 무선 송수신 장치에서 발생하는 전력소모량이 크기 때문에 유선 전원공급장치가 필요하다. 따라서 자유로운 설치가 제한될 수밖에 없어 광범위한 인터넷 연결성을 제공하는데 많은 제약이 따른다.
연구팀은 문제 해결을 위해 후방산란 기술을 활용해 사물인터넷 기기들이 주로 사용하는 지그비(ZigBee, 저전력 무선망 기술) 또는 BLE(Bluetooth Low Energy, 저전력 블루투스 기술) 통신 규격을 따르는 무선 신호를 최적의 패턴으로 반사해 와이파이 신호로 변조시키는 기술을 개발했다. 이 기술을 이용해 사물인터넷 기기들을 사용자 주변에 흔히 볼 수 있는 와이파이 기기에 연결함으로써 인터넷 연결성을 제공하는 무전원 사물인터넷 게이트웨이를 제작했다.
연구팀이 개발한 무전원 사물인터넷 게이트웨이 기술은 후방산란 기술을 활용해 에너지 수확(Energy harvesting)을 통해 무전원으로 동작할 수 있어 설치비용과 유지·보수 비용을 크게 줄일 수 있다. 또 후방산란의 특성상 공중에 방사된 무선 신호를 반사하면서 물리적으로 변조하므로 동일한 통신 규격을 사용하는 모든 사물인터넷 기기에 보편적으로 적용할 수 있다는 장점이 있다.
연구팀은 저전력 통신 규격인 지그비와 BLE 신호를 무전원 사물인터넷 게이트웨이를 통해 와이파이 신호로 변조해 상용 노트북에서 수신됨을 확인했다. 이와 함께 다양한 제작사에서 판매하는 상용 스마트홈 기기(스마트 전구, 스마트 스피커 등)가 사물인터넷 게이트웨이를 통해 와이파이 기기에 상호 연결되는 현상을 실험을 통해 입증함으로써 통합형 사물인터넷 게이트웨이로서의 가능성도 확인했다.
제1 저자인 정진환 연구원은 "후방산란이라는 초저전력 통신 기술을 통해 상용 사물인터넷 기기들이 매우 적은 비용으로 와이파이를 통해 인터넷에 연결될 수 있다는 점을 확인했다ˮ면서 "값비싸고 전력소모량이 큰 기존의 사물인터넷 게이트웨이의 한계를 무전원 사물인터넷 게이트웨이로 극복할 수 있다는 점을 확인한 게 이번 연구의 성과ˮ라고 설명했다.
정 연구원은 이어 "향후 끊임없이 규모가 커질 사물인터넷에 대해 효율적으로 인터넷 연결성을 확대, 제공하는 방향으로 활용이 가능할 것으로 기대가 크다ˮ고 말했다.
한편 이번 연구는 한국연구재단과 정보통신기획평가원의 지원을 받아 수행됐다.
2020.07.13
조회수 20751
-
단백질 접힘 과정에서의 구조 변화 관측에 성공
우리 대학 화학과 이효철 교수(기초과학연구원 나노물질 및 화학반응 연구단 부연구단장 겸임) 연구팀이 풀려있는 단백질이 접히는 과정을 분자 수준에서 규명하는 데 성공, 단백질 구조기반의 신약 개발을 위한 토대를 마련했다. 획기적인 연구성과를 냈다고 평가받고 있는 이 교수 연구팀은 단백질 접힘 경로에서의 단백질 구조 변화를 실시간으로 관측하는 데 최초로 성공했다고 9일 밝혔다.
이 교수 연구팀에 따르면 풀린 단백질이 접히는 과정을 엑스선 펄스를 이용한 고속 연사 촬영기법을 통해 단백질의 구조 변화를 연속 스냅숏으로 추출했고 이를 통해 일련의 단백질 접힘 과정을 분자 수준에서 밝혀내는 쾌거를 달성했다.
KAIST 화학과 박사과정 졸업생 김태우 연구원이 제1 저자로, KAIST 화학과 이효철, 이영민 교수가 교신저자로 참여한 이번 연구결과는 국제 학술지 `미국 국립과학원회보(PNAS, Proceedings of the National Academy of Sciences of the United States of America)' 7월 1일 字에 게재됐다. (논문명 : Protein folding from heterogeneous unfolded state revealed by time-resolved X-ray solution scattering).
잘 접혀있는 단백질이 풀리는 과정은 비교적 쉽게 연구할 수 있어 많은 연구가 이뤄져 왔지만 풀려있는 단백질이 접히는 과정은 연구가 힘들었는데 이효철 교수팀의 이번 연구는 그 과정을 밝혀냈다는데 큰 의미가 있다. 단백질이 접히는 과정을 연구하기 힘든 이유는 풀려있는 단백질이 특정 구조를 가지지 않고 매우 다양한 구조를 갖기 때문이다. 하지만 이 교수 연구팀은 이번 연구에서 엑스선 산란 신호 분석법을 개발, 적용해서 이런 난제를 해결하는 데 성공했다.
단백질의 3차원 구조를 결정하는 고유의 접힘 과정은 가장 중요한 생체 반응이다. 때에 따라 발생하는 잘못 접히는 과정은 단백질의 정상적인 기능을 방해하며, 알츠하이머, 광우병, 파킨슨병 등이 바로 단백질 접힘이 올바르지 않아 발병되는 질병이다.
연구팀은 생체 내 전자전달에 관여하는 사이토크롬 단백질을 풀림 상태에서 접힘 상태로의 전이 과정을 발생시켜, 해당 접힘 과정을 시간 분해 엑스선 산란법을 이용해 연속적으로 움직이는 단백질의 구조 변화를 관측했다. 여기서 주목할만한 점은 이 교수 연구팀은 그간 단백질 접힘에 대한 이론적 모델로만 제시됐던 깔때기꼴 접힘 가설을 사이토크롬 단백질의 접힘 과정을 통해 실험적으로 입증했다는 사실이다.
이와 함께 이 교수팀은 단백질의 구조 변화뿐만 아니라 접히는 과정의 속도가 기존에 알려진 보통의 지수함수 형태가 아니라 늘어진 지수함수 형태임을 밝혀냈다. 이로써 풀린 단백질에서 접힌 상태로 가는 경로가 매우 다양하다는 것을 실험적으로 알아낸 것이다.
제1 저자인 김태우 연구원은 "단백질 접힘은 3차원 단백질 구조가 만들어지는 가장 중요한 생명현상인데, 접힘 과정에 대한 이해는 단백질 구조기반 신약 개발의 기초가 될 것ˮ이라고 기대했다. 공동 교신저자로 참여한 KAIST 화학과 이영민 교수도 "단백질 접힘 이론 모형에 대한 실험적 검증은 이론 생물리학 관점에서 더욱 정확한 계산 방법 개발에 중요한 자산이 될 것ˮ라고 강조했다.
한편 이번 연구는 기초과학연구원, 한국연구재단 등의 지원을 받아 수행됐다.
2020.07.09
조회수 22843
-
"60년 만에 증명했다" 왼손 방향 스핀파 세계최초 보고
우리 대학 물리학과 김갑진 교수, 김세권 교수, 김창수 박사, 이수길 박사 연구팀이 우리 대학 신소재공학과 박병국 교수, 육종민 교수 연구팀 및 한국표준과학연구원(KRISS, 원장 박현민) 양자기술연구소 양자스핀팀과 함께 협업 연구하여 1960년대 이론으로만 소개됐던 왼손 방향으로 회전하는 스핀파를 세계최초로 증명했다. 이로써 스핀을 이용한 차세대 소자개발에 새로운 지평선이 열릴 것으로 전망된다.
공동연구팀은 전이금속 코발트(Co)와 희토류 가돌리늄(Gd)이 일정 비율로 혼합된 CoGd 준강자성체*에서 왼손 방향의 세차운동**을 하는 스핀파를 측정하고 이에 기반한 물리 현상들을 새롭게 밝혀냈다.
*준강자성체(ferrimagnet): 서로 다른 크기의 반평행한 자화들로 이루어진 자성체
**세차운동(precession): 회전하는 천체나 물체의 회전축 자체가 도는 형태의 운동이나 그 현상
스핀(spin)과 일렉트로닉스(electronics)의 합성어인 스핀트로닉스 기술은 전자의 전하와 스핀을 동시에 제어하는 기술로, 기존 전자소자의 기술적 한계를 극복할 수 있을 것으로 전망되고 있다.
스핀들의 집단적 움직임을 나타내는 스핀파의 경우, 작동 주파수가 매우 높은 영역에 분포하고 전력의 소비가 매우 적으므로 초고속 저전력 소자에 적용할 수 있다.
스핀트로닉스를 실현하려면 전자의 스핀 방향을 자유롭게 제어하여 정보를 저장할 수 있어야 한다. 그러나 스핀을 결정하는 물리적 원인과 제어 방법, 스핀의 회전 방향 분석 등 복합적이고 난도 높은 연구가 필요하다.
주변에서 흔히 볼 수 있는 자석을 잘게 쪼개면, 전자스핀 하나에 해당하는 작은 자석까지 나눌 수 있다. 이 작은 자석은 자기장이 주어지게 되면 오른손 방향으로 세차운동을 하는 성질을 갖는다.
그러나 반평행하게 정렬된 코발트와 가돌리늄의 단위 자화는 회전 관성이 더 큰 가돌리늄의 자화 때문에 전체적으로 왼손 방향으로 회전하는 성질을 가질 수 있다. 1960년대에 준강자성체의 세차운동에 대한 이론들이 발표되면서 왼손 방향 운동이 예측됐지만, 현재까지 미시적인 수준에서의 실험으로는 관찰되지 못했던 현상이다.
공동 연구팀은 빛과 스핀파 사이의 충돌을 이용하는 기법인 브릴루앙 광산란법(Brillouin light scattering)을 사용해 이론을 실험으로 증명했다. CoGd 준강자성체에 빛을 쪼아 스핀파와 충돌시킨 후, 되돌아온 빛을 분석해 스핀파가 가진 에너지와 운동량을 알아낸 것이다.
이번 연구에서는 수십 피코초(ps, 1000억분의 1초) 영역에서 왼손 방향 운동을 처음으로 관찰했으며, 준강자성체의 자화보상온도에서 스핀파 에너지가 0 근처로 수렴하고 자기장의 증가에 따라 각운동량 보상온도가 같이 증가하는 현상 등도 새롭게 밝혀냈다.
KRISS 황찬용 책임연구원은 “지금까지는 오른쪽으로 도는 자화를 기반으로만 이론이 제시되고 실험이 진행됐다”라며, “스핀파의 왼손 방향 운동을 최초로 규명함으로써 차세대 스핀트로닉스 소자개발에 새로운 지평선이 열릴 것으로 기대된다”라고 밝혔다. 또한 우리 대학 김세권 교수는 "준강자성체의 보상점에서 나타나는 새로운 물리현상을 세계 최초로 관측했다는 점에서 큰 의미를 가진다"고 평했으며, 김갑진 교수는 "이번 연구는 국내 연구진들이 공동연구를 통해 시너지를 일으켜 이룩한 성과로서 그 가치가 있다"고 밝혔다.
국가과학기술연구회 창의형융합연구사업(CAP), 한국연구재단 미래반도체 사업, 미래소재 디스커버리 사업, KAIST 특이점(프렙) 연구의 지원을 받은 이번 연구결과는 물리학 분야의 세계적 학술지인 네이처 머티리얼즈(Nature Materials–IF: 38.887)에 6월 30일 온라인 게재됐다.
2020.06.30
조회수 19892
-
이효철 교수 연구팀, 분자가 탄생하는 모든 순간(35펨토 초) 포착
우리 대학 화학과 이효철 교수(기초과학연구원(IBS) 나노물질 및 화학반응 연구단 부연구단장) 연구팀은 원자가 결합하여 분자가 탄생하는 모든 과정을 실시간으로 관찰하는데 성공했고 이번 성과가 세계 최고 권위의 학술지 네이처(Nature, IF 43.070)誌 온라인 판에 6월 25일 0시(한국시간) 게재됐다고 밝혔다.
연구진은 펨토 초(1/1,000조 초)의 순간을 관측하기 위해 특수 광원인 포항 4세대 방사광가속기의 X-선자유전자레이저(펨토 초 엑스선 펄스*)를 이용하여 화학결합을 형성하는 분자 내 원자들의 실시간 위치와 운동을 관측하는데 성공했다.
* 펄스는 짧은 시간동안 만 빛이 방출되는 형태로, 펨토 초 엑스선 펄스는 X선이 펄스의 형태로 생성되고 그 시간 길이가 펨토 초 정도일 때를 말함
물질을 이루는 기본 단위인 원자들이 화학결합을 통해 분자를 구성한다. 하지만 원자는 수 펨토 초에 옹스트롬(1/1억 cm) 수준만 움직이기 때문에 그 움직임을 실시간으로 포착하기는 어려웠다.
연구진은 이전에 분자결합이 끊어지는 순간(Science, 2005)과 화학결합을 통해 분자가 탄생하는 순간(Nature, 2015) 분자의 구조를 원자 수준에서 관측한 바 있으며, 이번에 세계 최초로 화학반응의 시작부터 끝까지 전 과정의 원자의 움직임을 관찰하는데 성공했다.
화학반응의 시작인 반응물과 끝인 생성물은 상대적으로 오랫동안 구조를 유지하지만, 반응과정의 전이상태(transition state)의 경우 매우 짧은 시간 동안만 형성되기 때문에 관찰이 더 까다로웠다.
연구진은 기존보다 더 빠른 움직임을 볼 수 있도록 향상시킨 실험기법과 구조 변화 모델링 분석기법으로 금 삼합체(gold trimer)* 분자의 형성과정을 관찰했다. 그 결과, 세 개의 금 원자를 선형으로 잇는 두 개의 화학결합이 동시에 형성되는 것이 아니라, 한 결합이 35펨토 초 만에 먼저 빠르게 형성되고, 360펨토 초 뒤 나머지 결합이 순차적으로 형성됨을 규명했다.
* 세 개의 금 원자로 이뤄진 화합물(화학식 : [Au(CN)2-]3)로, 수용액 상에서 가까운 곳에 흩어져 있다가 빛(레이저)을 가하면 반응하여 화학결합을 시작하는 특징이 있다.
또한, 화학결합이 형성된 후 원자들이 같은 자리에 머물지 않고 원자들 간의 거리가 늘어났다가 줄어드는 진동 운동을 하고 있음도 관측했다.
연구진은 앞으로 단백질과 같은 거대분자에서 일어나는 반응뿐만 아니라 촉매분자의 반응 등 다양한 화학반응의 진행 과정을 원자 수준에서 규명해 나갈 계획이다.
제1 저자인 김종구 IBS 선임연구원(우리 대학 화학과 박사과정 졸업생)은 “장기적 관점에서 꾸준히 연구한 결과, 반응 중인 분자의 진동과 반응 경로를 직접 추적하는 ‘펨토초 엑스선 회절법’을 완성할 수 있었다”며 “앞으로 다양한 유‧무기 촉매 반응과 체내에서 일어나는 생화학적 반응들의 메커니즘을 밝혀내게 되면, 효율이 좋은 촉매와 단백질 반응과 관련된 신약 개발 등을 위한 기초정보를 제공할 수 있을 것”이라고 포부를 밝혔다.
2020.06.26
조회수 22928
-
초음파를 내비게이션으로 사용하는 광학현미경 개발
생체 내부를 꿰뚫어볼 수 있는 새로운 현미경이 나왔다. 바이오 및 뇌공학과 장무석 교수 연구팀이 기초과학연구원 분자 분광학 및 동력학 연구단 최원식 부연구단장 연구팀과의 공동 연구를 통해 초음파를 이용해 기존 현미경으로 볼 수 없었던 생체 내부의 미세구조를 관찰하는 기법을 개발했다.
연구결과는 국제학술지 네이처 커뮤니케이션즈(Nature Communications)2월 5일자 온라인 판에 게재됐다.
사람의 눈은 250㎜ 떨어진 거리에 70㎜의 간격을 두고 놓인 물체를 구분할 수 있다. 이보다 작은 미세구조를 관찰하기 위해서는 광학현미경이 필요하다. 광학현미경은 눈으로 볼 수 없는 작은 미세구조를 확대해서 보여준다. 하지만 생체조직을 관찰할 때는 이야기가 달라진다.
빛이 생체 조직을 투과할 때 직진광과 산란광이라는 두 종류의 빛이 생겨난다. 직진광은 말 그대로 생체 조직의 영향 없이 직진하는 빛이며, 산란광은 생체 조직 내 세포나 세포 내 구조의 영향에 의해 진행 방향이 무작위로 굴절된 빛이다. 광학 현미경으로 생체 조직 깊은 곳을 관찰하려면 직진광에 비해 산란광이 강해져 이미지 정보가 흐려진다는 치명적인 단점이 있다. 안개 속을 볼 수 없듯, 생체 조직의 수많은 세포와 구조들이 빛을 산란시켜 이미지를 흐리게 만들기 때문이다. 반면, 초음파 영상은 태아를 감별할 수 있을 정도로 생체 내부 깊은 곳까지 이미징할 수 있지만, 해상도가 낮아 미세한 구조를 볼 수 없다는 단점이 있다.
연구진은 광학 현미경과 초음파 영상의 장점을 결합하여, 생체 내부 깊은 곳을 높은 해상도로 관찰할 수 있는 초음파 결합 광학 현미경을 개발했다. 초음파 결합 현미경은 생체 조직 내부를 잘 침투하는 초음파를 집속시킨 후, 초음파의 초점을 지나는 빛만 측정하는 방식으로 산란광의 세기를 크게 감쇄시킬 수 있다. 초음파가 광학현미경에게 관찰 경로를 알려주는 일종의 내비게이션 역할을 하는 셈이다.
초음파는 생체 조직을 응축, 팽창시켜 굴절률을 변조하는 방식으로 빛의 진행에 영향을 준다. 연구진은 이런 초음파의 특성을 응용해 초음파의 초점을 통과하는 빛만을 선택적으로 측정하는 기술을 개발하고, 이 기술을 공간 게이팅(space-gating)이라 명명했다. 초음파는 생체 내부의 ‘빛 거름망’ 역할을 하며 무작위로 산란되던 빛을 차폐한다. 공간 게이팅 기술을 통해 연구진은 산란광을 100배 이상 감쇄시키며 생체 조직 내에서 광학 이미지가 흐려지는 문제를 극복할 수 있었다.
장무석 교수는 “촘촘한 거름망을 사용하면 더 고운 가루만 남는 것처럼 초음파의 초점을 작게 할수록 산란광을 더 많이 감쇄시킬 수 있다”며 “향후 산란광을 1000~1만 배 수준까지 감쇄시켜 더 선명한 이미지를 얻게 될 것으로 기대한다”고 말했다.
연구진은 개발한 현미경을 이용해 별도의 형광 표지 없이 부화한지 30일 된 성체 제브라피시의 척추 안쪽 근육 조직 이미지를 얻는데 성공했다. 기존 기술은 제브라피시의 장기, 척추 등 내부 구조에서 산란 현상이 일어나 절단을 통해서만 내부 근육 결을 관찰할 수 있었다. 이와 달리 개발된 현미경은 자연 상태 그대로 살아있는 제브라피쉬 내부 조직을 꿰뚫어볼 수 있다.
연구진은 인체 조직에도 사용할 수 있는 공간 게이팅 기술을 구현해나갈 계획이다. 향후 현미경을 소형화하고 이미징 속도를 증가시키면, 실시간 질병 진단에도 응용할 수 있을 것으로 기대된다. 이번 연구를 이끈 최원식 부연구단장은 “초음파 결합 광학 현미경은 기존 광학 현미경의 얕은 이미징 깊이 문제를 해결하는 획기적인 기술”이라며 “공간 게이팅 기술을 더욱 발전시켜 빛의 산란 현상을 이해하고, 의생명 광학 기술 분야 활용 범위를 넓혀나갈 것”이라고 말했다.
2020.02.21
조회수 12219
-
박용근, 조용훈 교수, 빛을 자유자재로 다룰 수 있는 광학기술 개발
우리 대학 물리학과 박용근, 조용훈 교수와 고려대학교 재료공학과 이헌 교수 공동 연구팀이 빛의 산란을 이용해 다기능 광학 기기를 제작할 수 있는 기술을 개발했다.
이번 연구 결과는 미국 화학회(American Chemical Society, ACS)가 발행하는 나노분야 학술지 ‘에이씨에스 나노(ACS Nano)’ 6월 29일자 온라인 판에 게재됐다.
빛이 안개나 페인트 등의 불규칙한 매질을 투과하면 매우 복잡한 형태의 수많은 반사와 굴절이 발생한다. 이를 빛의 다중 산란이라고 하는데, 다중 산란을 겪은 빛은 간섭이라는 물리 현상을 통해 복잡한 패턴을 나타낸다.
우리가 짙은 안개 속에서 앞을 볼 수 없고 맥주의 거품이 하얗게 보이는 것도 빛의 다중산란이 만든 현상이다. 일반적으로 다중 산란이 생기면 빛이 매우 불규칙한 형태로 지나가기 때문에 제어가 어렵다.
그러나 홀로그래피 기술을 이용해 입사하는 빛의 방향을 잘 제어해주면 다중 산란이 발생해도 원하는 형태로 빛을 제어할 수 있다. 연구팀은 이러한 다중 산란을 효과적으로 활용해 빛의 다양한 성질을 제어할 수 있는 새로운 개념의 광학기기를 개발했다.
이 광학기기는 빛의 반사나 굴절의 원리를 이용하던 기존 기술과 달리 빛의 산란을 이용했다는 특징을 갖는다.
연구팀의 광학기기는 복잡 매질과 광 고분자 필름으로 구성된다. 광 고분자 필름은 입사되는 빛을 홀로그래피 기술을 통해 원하는 모양으로 제어한다. 또한 제어된 빛을 기록하고 실제로 비추는 역할을 한다.
광 고분자 필름을 통해 들어온 빛은 복잡 매질을 지나 일정한 패턴으로 다중 산란돼 원하는 모양의 빛을 나타낸다. 이 두 가지 과정을 통해 독립적으로 활용 가능한 다기능 산란 광학기기의 구현이 가능해진다.
이 기술로 투과된 빛의 진폭, 파장, 편광 뿐 아니라 기존 광학계 기술로는 접근이 어려웠던 근접장 성분까지도 제어할 수 있다.
연구팀은 기존의 광학 부품들로는 구현이 매우 어려웠던 산란 제어를 복잡한 광학적 설계나 제조공정 없이 단일 광학 부품으로도 저렴하게 제작할 수 있다고 밝혔다.
이번 연구를 주도한 박종찬 학생은 “관련 기술은 광학 기기를 제작하는 원천 기술로 활용될 수 있다”며 “향후 리소그래피, 광통신, 바이오 이미징 기술 등 빛이 사용되는 다양한 분야에 응용 가능하다”고 말했다.
□ 사진 설명
사진1. 제작된 산란 광학 기기 실제 사진
사진2. 산란 광학기기를 이용한 빛의 다양한 성분 제어
사진3. 산란 광학기기 모식도
2016.07.12
조회수 11627
-
단백질 나노튜브의 자기조립 분자스위치 발견
- 한국, 미국, 이스라엘 국제 공동 연구 성과 -
- 암 치료와 뇌 질환 메커니즘 단서 -
우리 학교 바이오및뇌공학과 최명철 교수와 송채연 연구교수는 미국
산타바바라 캘리포니아대학교, 이스라엘 히브리대학교와 공동으로 세포분열과 세포간 물질수송에 열쇠가 되는 단백질 나노튜브의 자기조립
구조를 제어하는 분자스위치를 발견했다.
연구 결과는 세계적 학술지 ‘네이처 머티리얼즈(Nature Materials, IF=35.7)’ 19일자에 게재됐다.
마이크로튜불(microtubule, 미세소관)은 사람의 몸속에서 세포분열·세포골격·세포간 물질수송 도구로 사용되는 튜브 형태의 단백질로 굵기가 25나노미터(1나노미터는 머리카락 굵기의 10만분의 1)에 불과하다.
대부분의 암 치료 약물은 마이크로튜불의 형성을 교란해 암세포 분열을
억제하는 것으로 작용 메커니즘이 알려져 있다. 알츠하이머병은 세포간 물질수송을 담당하는 마이크로튜불의 구조적 안정성이 떨어지면서
신경세포에서의 신호전달이 제대로 이루어지지 않아 생기는 대표적 뇌질환이다.
연구팀은 싱크로트론 X선 산란장치(synchrotron x-ray
scattering: 전자를 빛의 속도에 가깝게 가속시켜 강력한 X선을 발생시키는 장치)와 투과전자현미경을 이용해 단백질
나노튜브의 자기조립 구조를 서브나노미터(1나노미터 미만)의 정확도로 측정했다.
연구팀은 이번 연구를 분자 레벨에서 레고 블록을 쌓아 올리는 것에 비유해
가로×세로×폭이 각각 4×5×8 나노미터인 단백질 블록을 쌓아 올려 25나노미터 굵기의 튜브를 형성하는 메커니즘을 추적했다. 이
과정에서 연구팀은 레고 블록의 형태를 제어하는 분자스위치를 발견했다. 또 지금까지 보고된 바 없는 전혀 새로운 크기와 형태의
단백질 튜브 구조를 만들어 내는데 성공했다.
최명철 교수는 “인간의 생명 시스템은 고도의 자기조립 구조체를 형성해 복잡한 생물학적 기능을 하고 있지만 한편으로는 극히 단순한 물리학적 원리에 의해 제어가 가능하다는 새로운 패러다임을 제시했다”고 이 연구의 의의를 밝혔다.
또 “이번 연구는 암 치료와 뇌질환 메커니즘을 규명하고자하는 작은 발걸음이며 앞으로 바이오 나노튜브를 이용한 공학적 응용이 무궁무진할 것으로 기대한다”고 말했다.
이번 연구는 한국연구재단의 국제협력사업, 신진연구자지원사업, 학문후속세대양성사업, KAIST 고위험 고수익 프로젝트(High Risk High Return Project)의 지원으로 수행됐다.
2014.01.21
조회수 21538
-
홀로그래피 이용한 빛 산란 제어기술 개발
- 산란 제어를 통해 감추어진 물체를 볼 수 있는 기술 -
- 네이처 사이언티픽 리포트 5월 29일자 온라인판 게재 -
최근 ‘투명테이프의 재발견’이라는 게시물이 인터넷을 뜨겁게 달궜다. 불투명한 유리창에 투명테이프를 부착하자 흐릿하게 보이던 유리가 투명해지는 현상이었다. 투명테이프로 불투명한 유리의 요철이 메워져 빛 산란이 줄여진 간단한 과학의 원리다.
이처럼 우리 실생활에서 쉽게 접할 수 있는 빛의 산란을 홀로그래피를 이용해 손쉽게 제어할 수 있는 기술이 KAIST와 MIT 공동연구팀에 의해 개발됐다.
KAIST(총장 강성모)는 물리학과 박용근 교수가 미국 MIT 분광학 연구소와 공동으로 홀로그래피를 활용해 빛 산란을 제어하는 기술에 개발에 성공했다고 29일 밝혔다.
연구 결과는 세계적인 과학저널 네이처(Nature)가 발행하는 ‘사이언티픽 리포트(Scientific Report)’ 5월 29일자 온라인판에 게재됐다.
이 기술을 이용하면 구름, 연기와 같은 장애물 때문에 보이지 않던 건너편의 물체를 또렷하게 볼 수 있다. 게다가 사람의 피부와 같이 산란이 심한 물체 뒤에 숨어있는 대상까지도 선명하게 관찰할 수 있다.
연구팀은 관찰하고자 하는 물체 중간에 위치한 장애물의 빛 산란을 제어하기 위해 빛의 방향과 세기를 모두 기록하는 홀로그래피 기술을 활용했다.
연구팀은 이를 통해 산란된 빛의 정보를 기록한 후 각각의 빛을 정확하게 반대편으로 다시 빛을 반사해 원래의 이미지를 얻어내는데 성공했다.
예를 들어, 복잡한 궤적으로 당구공이 당구대에서 굴러갈 때 공을 멈추고 반대 방향으로 공을 굴리면 다시 이전의 궤적으로 가는 것과 같은 원리다.
이러한 현상은 물리학에서 위상 공액(phase conjugation)으로 알려져 있는데, 박 교수팀은 세계 최초로 위상 공액과 디지털 홀로그래피 기술을 이용해 산란이 심한 벽 뒤에 있는 물체의 2차원 이미지를 관찰하는데 성공했다.
박용근 교수는 “빛의 산란을 제어해 불투명해 보이는 벽 뒤를 볼 수 있는 이 기술은 앞으로 물리학, 광학, 나노기술, 의학은 물론 군사적인 용도 등 다양한 분야에 응용될 수 있을 것”이라고 말했다.
또 “이번 기술은 일반적으로 알려진 투시카메라 또는 투명망토 기술과는 다르다”며 “현재로선 빛의 산란을 정밀하게 제어한 원천기술 개발에 의미를 두고 있다”며 개발된 기술에 대한 확대 해석을 경계했다.
그림1. 관찰영상
그림2. 빛 산란 제어의 원리
2013.05.29
조회수 11582