본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%95%84%EC%84%B8%ED%86%A0%EC%A0%A0
최신순
조회순
탄소중립 인공 광합성 기술 개발
우리 대학 생명과학과 조병관 교수 연구팀이 기후변화의 주된 요인인 C1 가스(이산화탄소, 일산화탄소 등 탄소 1개로 구성된 가스)를 고부가가치 바이오 화학물질로 전환하는 기술을 개발했다고 9일 밝혔다. 조 교수 연구팀은 광 나노입자가 빛을 받으면 내놓는 전자를 미생물이 에너지원으로 이용할 수 있도록 고효율 광 나노입자가 표면에 부착된 미생물-광 나노입자 인공광합성 시스템을 개발했다. 이 기술은 빛을 유일한 에너지원으로 활용해 미생물이 C1 가스를 다양한 바이오 화학물질로 전환하는 친환경 C1 가스 리파이너리 기술로 정부가 선언한 2050 탄소중립 실현을 위한 다양한 응용 가능성을 제시한다. 생명과학과 진상락 석박사통합과정 학생이 제1 저자로 참여한 이번 연구는 국제 학술지 `미국국립과학원회보(Proceedings of National Academy of Science, PNAS)'에 2월 23일 字 온라인판에 게재됐다.(논문명: Acetogenic bacteria utilize light-driven electrons as an energy source for autotrophic growth) 아세토젠 미생물은 우드-융달 대사회로를 통해 C1 가스를 아세트산으로 전환할 수 있다. 이에 C1 가스로부터 바이오 화학물질 생산을 위한 바이오 촉매로 활용 가능성이 커 탄소 포집 및 활용 기술로 많은 주목을 받고 있다. 아세토젠 미생물은 C1 가스 대사를 위한 환원 에너지를 당이나 수소를 분해해 얻는다. 당이나 수소를 대체하기 위해 나노입자 크기의 개별 광전극 역할을 하는 광 나노입자를 미생물 표면에 부착시켜 빛에너지를 미생물로 전달시키면 당이나 수소 없이도 C1 가스를 활용할 수 있다. 기존기술은 광 나노입자를 생합성해 세포 표면에 부착시키는 방법으로 광 나노입자의 구조와 크기를 조절하기 어려워 C1 가스 대사 효율을 높이는 데 한계가 있었다. 이는 구조와 크기에 따라 광전도효과의 성능에 차이가 생기는 광 나노입자의 독특한 특성 때문이다. 이와 같은 한계를 극복하기 위해 연구팀은 구조와 크기가 균일하고 우수한 광전도효과를 나타내는 고효율 광 나노입자를 화학적 방법으로 합성하고, 산업적으로 활용 가능한 아세토젠 미생물 중 하나인 `클로스트리디움 오토에타노게놈(Clostridium autoethanogenum)'의 표면에 부착시켰다. 연구팀은 광 나노입자를 부착한 미생물이 C1 가스로부터 아세트산을 생산할 수 있음을 입증해 빛을 이용한 친환경 인공광합성 시스템을 구축하고 구축된 인공광합성 시스템 미생물의 전사체 분석(세포 내 모든 RNA를 분석해 유전자 발현 유무를 규명하는 기술)을 통해 광 나노입자로부터 생성된 전자가 미생물 내로 전달되기 위한 전자수용체를 규명했다. 연구를 주도한 조병관 교수는 "C1 가스 고정과정에서 사용되는 당 또는 수소를 친환경 빛에너지로 대체할 수 있고, 미생물 기반의 생합성 광 나노입자를 활용한 기존 인공광합성 시스템의 한계를 극복했다ˮ며 "고효율 광 나노입자를 사용해 인공광합성 효율을 증대시킬 수 있고, 광 나노입자로부터 생성된 전자를 효율적으로 수용할 수 있는 인공미생물 개발연구에 실마리를 제공했다ˮ 고 의의를 설명했다. 한편 이번 연구는 과학기술정보통신부와 한국연구재단이 추진하는 C1 가스 리파이너리 사업단 및 지능형바이오시스템 설계 및 합성연구단(글로벌프론티어사업)의 지원을 받아 수행됐다.
2021.03.09
조회수 97215
미생물의 새로운 C1 가스 흡수 대사회로 규명
생명과학과 조병관 교수 연구팀이 미생물이 C1 가스(이산화탄소, 일산화탄소 등 단일 탄소로 이뤄진 가스)를 활용하는 새로운 대사 회로 메커니즘을 규명했다. 연구팀이 규명한 새 대사회로는 현재까지 알려진 관련 대사회로 중 가장 우수한 효율을 갖고 있어 향후 C1 가스를 고부가가치 생화학물질로 전환하는 산업적 응용에 활용 가능할 것으로 기대된다. 조병관 교수와 UNIST 김동혁 교수 공동 연구팀이 수행하고 KAIST 송요셉 박사가 1 저자로 참여한 이번 연구결과는 국제 학술지 미국국립과학원회보(PNAS) 3월 13일 자 온라인판에 게재됐다.(논문명 : Functional cooperation of the glycine synthase-reductase and Wood-Ljungdahl pathways for autotrophic growth of Clostridium drakei) 현재까지 자연계에 알려진 C1 가스를 유기물로 전환하는 대사회로는 총 6개이며, 대표적인 예로 식물의 광합성을 들 수 있다. 그중 미생물인 아세토젠 내에서 발견되는 우드-융달 대사회로는 C1 가스의 흡수 대사회로 중 가장 효율적인 회로로 알려져 있다. 특히 아세토젠은 다양한 환경에서 서식할 수 있어 1년에 1천억kg의 아세틸산(아세토젠의 생산물)을 생산하며 지구 탄소 순환에 큰 영향을 끼친다. 그러나 아세토젠 미생물은 대장균과 같은 산업 미생물과 비교했을 때 생장 속도가 10배 이상 느리다. 이는 C1 가스를 유용한 생화학물질로 변환하기 위한 산업적 미생물로 이용되기에 한계점으로 작용한다. 이에 C1 가스 고정을 더욱 효율적으로 할 수 있는 새로운 대사경로 연구가 활발히 이뤄지고 있다. 연구팀은 문제 해결을 위해 아세토젠 미생물 중 하나인 클로스트리디움 드라케이(Clostridium drakei)가 이산화탄소 흡수 시 다른 미생물에 비해 빠른 성장 속도를 나타내는 점에 주목해, C1 가스 전환효율을 높일 실마리를 찾아낼 수 있을 것으로 예측했다. 연구팀은 차세대시퀀싱 기술을 이용한 게놈서열 및 유전자 분석을 통해 디지털 가상 세포를 구축하고 C1 가스의 흡수 대사경로 효율을 예측했다. 이 결과 현재까지 보고되지 않은 새로운 7번째 대사회로의 존재를 발견했다. 우드-융달 대사 회로와 글리신 생합성 대사회로가 결합돼 C1 가스 고정과 동시에 세포 생장에 필요한 에너지를 획득하는 새로운 형태의 대사회로의 존재를 규명했다. 연구팀은 대사 회로를 구성하는 유전자의 발현량, 동위원소를 이용한 대사경로 흐름 추적, 유전자가위 기술 등을 통해 클로스트리디움 드라케이 미생물이 실제로 새로운 대사 회로를 사용해 C1 가스를 흡수하는 것을 증명했다. 더불어 관련 유전자들을 세포 생장 속도가 느린 다른 아세토젠 미생물에 도입한 결과 빠른 속도로 C1 가스를 사용하여 생장함을 확인했다. 조 교수는 “연구팀이 발굴한 신규 C1 가스 고정 대사 회로를 이용해 아세토젠 미생물의 느린 생장 속도로 인한 고부가가치 생화학물질 생합성 한계를 극복할 수 있기를 기대한다”라고 말했다. 이번 연구결과는 과학기술정보통신부와 한국연구재단이 추진하는 C1 가스 리파이너리 사업 및 지능형바이오시스템 설계 및 합성 연구단(글로벌프론티어사업)의 지원과 KAIST 초세대 협력연구실 사업(바이오디자인 연구실)의 지원을 받아 수행됐다.
2020.03.26
조회수 16163
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1