-
가뭄현상이 DNA에 적용되면?
한미 공동연구진이 가뭄이 들면 논바닥이 쩍쩍 갈라지는 현상에 착안해서 물을 품고 있는 DNA 박막 위에 탈수 반응을 일으킬 수 있는 유기 용매를 뿌려 DNA 균열을 원하는 대로 만들어 낼 수 있는 기술을 개발했다. 이를 통해 만들어진 균열 구조 안에 친환경 온열소재, 적외선 발광체 등을 넣어 기능성 바이오 소재를 제작, 스마트 헬스케어 분야에 활용할 수 있을 것으로 보인다.
우리 대학 화학과 윤동기 교수, 기계공학과 유승화 교수, 미국 코넬대 화학공학과 박순모 박사 연구팀이 DNA 박막의 탈수 현상에 기반한 미세구조 균열을 제작했다고 29일 밝혔다.
본래 유전 정보를 저장하는 기능을 하는 DNA는 두 가닥이 서로 꼬여있는 이중나선 사슬 구조, 사슬과 사슬 사이는 2~4 나노미터*(1나노미터는 10억분의 1미터) 주기의 규칙적인 모양을 갖는 등 일반적인 합성 방법으로는 구현하기 힘든 정밀한 구조재료로 구성되어 있다. 이 구조를 변경하기 위해서 DNA를 빌딩블록으로 사용하여 정밀하게 합성하거나 오리가미(종이접기) 기술을 이용해 구현해 왔지만 매우 복잡한 설계과정이 필요하고, 특히 염기서열이 조절된 값비싼 DNA를 이용해야 하는 단점이 있었다.
*수분이 있으면 DNA 사슬 지름이 2 나노미터, 수분이 없으면 4 나노미터가 됨.
연구팀은 이를 극복하기 위해, 연어에서 추출한 DNA 물질을 이용해 기존보다 천 배 이상 저렴한 비용으로 화장용 붓을 이용해 마치 DNA를 수채화 물감과 같이 사용해 그림을 그리듯이 정렬시켰다. 그리고 3D 프린터를 이용해 지름이 2나노미터인 DNA 분자들을 원하는 방향으로 정렬시키면서 말려 얇은 막을 만들었다.
여기에 유기 용매(예: 테트라하이드로퓨란, THF) 방울을 떨어뜨리면 끓는점이 낮은 유기 용매가 DNA내의 수분을 빼앗아 가면서 크랙이 형성되는 현상을 연구팀은 관찰했다. 이때 DNA의 사슬 옆면이 사슬 끝부분에 비해, 물을 상대적으로 많이 포함하고 있어 더 많은 수축이 일어나 결국 DNA 사슬 방향으로 크랙이 형성됐고, DNA 사슬 방향을 원하는 방향으로 조절할 수 있기에 연구팀은 이 크랙도 원하는 방향으로 조절할 수 있는 결과를 얻었다.
연구팀이 개발한 DNA 기반 미세 균열(크랙) 구조 형성 및 제어 기술은 생체 친화적 소재인 DNA로 이루어진 수십-수백 나노미터의 박막에 DNA 사슬방향으로 생긴 크랙(균열)에 다양한 기능성 소재를 채워 넣는 공정이 가능하다. 예로, 온열 소재의 경우 겨울에 따뜻하게 하고 적외선 발광체를 넣으면 탈모나 피부케어 등에 응용되는 등, 생체친화적인 패턴을 바탕으로 기능성을 부여함으로써, 향후 다양한 기능성 바이오 소재 및 헬스케어 분야에 활용될 수 있을 것으로 기대된다.
윤동기 교수는 “DNA 미세 크랙 패터닝은 코끼리 피부가 갈라지는 현상이 체온을 유지하기 위한 한 방법이고, 극심한 가뭄에, 땅이 갈라지는 일은 비가 많이 올 때 더 많은 물을 흡수하기 위함이라는 자연의 현상을 그대로 따라 구현했다”며, “이번 연구는 반도체 패턴만큼이나 작은 DNA 빌딩블록 기반의 미세구조 패턴을 제조한 것으로 환경친화적인 면을 고려할 때 그 의의가 더 크다고 할 수 있다”라고 언급했다.
한편 유승화 교수는 “이번 연구를 통해 DNA 필름의 수축 과정에서 발생하는 균열과 DNA의 배열 패턴 사이의 관계를 고체역학 이론에 기반한 시뮬레이션으로 명확하게 분석하고 예측할 수 있었다”며, “DNA 필름에 국한되지 않은 다양한 이방성 소재에서의 균열 제어와 패터닝 기술 발전에 기여할 수 있는 토대를 마련했다고 생각한다”고 의견을 덧붙였다.
화학과 이소은 석사과정 학생이 제1 저자로 참여한 이번 연구는 국제 학술지 ‘어드밴스드 머터리얼즈 (Advanced Materials)’ 3월 15일 자 온라인 판에 게재됐다. (논문명 : On-demand Crack Formation on DNA Film via Organic Solvent-induced Dehydration)
한편 이번 연구는 과학기술정보통신부-한국연구재단의 멀티스케일 카이랄 구조체 연구센터, 중견연구 과제의 지원을 받아 수행됐다.
2024.03.29
조회수 3487
-
세계 최고 수준 리튬 금속배터리 용매 개발
휴대용 전자기기 및 전기차 등에 적용해 1회 충전에 많은 에너지를 저장하고 오래 사용할 수 있는 고 에너지밀도 이차전지 개발의 중요도가 커지고 있다. 한국 연구진이 리튬 이차전지의 에너지 밀도를 높이고 고전압 구동시 안정성을 높여줄 용매를 개발하여 화제다.
우리 대학 생명화학공학과 최남순 교수팀이 UNIST 화학과 홍성유 교수팀, 서울대 화학생물공학부 이규태 교수팀, 고려대 화공생명공학과 곽상규 교수팀, 경상국립대 나노·신소재공학부 고분자공학전공 이태경 교수와 공동연구를 통해 4.4V의 높은 충전 전압에서 리튬 금속전지의 효율과 에너지를 유지하는 세계 최고 수준의 전해액 조성 기술을 개발했다고 19일 밝혔다.
공동연구팀은 기존에 보고되지 않은 용매를 새롭게 디자인하고 합성해 전해액 주 용매로 사용했으며 전극-전해액 계면을 안정화하는 첨가제 기술과의 조합을 통해 리튬 금속전지의 고전압 수명 성능 및 고속 충전 특성을 획기적으로 높이는 데 성공했다.
리튬 금속전지를 오랜 시간 사용하기 위해서는 전해액의 이온 전달 성능뿐만 아니라 전극 표면을 보호하는 것이 필수적이다. 전자를 주는 성질이 강한 리튬금속 음극과 전자를 빼앗으려는 고전압 양극에 접촉하고 있는 전해액이 분해되지 않도록 전극과 전해액 사이에 보호층을 형성시켜야 한다.
최남순 교수 연구팀은 구동할 수 있는 상한 전압의 한계가 있는 용매들과는 달리 높은 충전 전압에서 안정적으로 사용할 수 있는 새로운 용매를 합성하는 데 성공했으며 이를 첨가제 기술과 접목해 현저하게 향상된 *가역 효율(상온 200회 99.9%)을 달성했다. 또한, 완전 충전-완전 방전 조건에서 첫 사이클 방전용량 대비 200사이클의 방전용량으로 용량 유지율을 측정하는데 개발된 전해액 기술은 리튬 대비 4.4V 높은 충전 전압 조건에서 다른 전해액보다 약 5% 정도 높은 75.0%의 높은 방전용량 유지율을 보였다.
☞ 가역 효율: 매 사이클마다 전지의 방전용량을 충전용량으로 나누어 백분율로 나타낸 값으로 배터리의 가역성을 의미함. 가역 효율이 높을수록 매 사이클마다 배터리 용량 손실이 적음을 의미함. 아무리 높은 용량을 구현하는 배터리라도 가역성이 높지 않다면 실용화가 어려움.
연구팀이 이번 연구에서 세계 최초로 합성 및 보고한 *환형 설폰아마이드 계열 용매인 TFSPP(1-(trifluoromethyl)sulfonyl)piperidine)는 기존에 사용되는 용매보다 우수한 고전압 안정성을 가져 전지 내부 가스 발생을 억제할 수 있음을 확인했다.
☞ 환형 설폰아마이드 용매: 질소원자 1개원 탄소원자 5개로 구성된 6원자 고리구조와 리튬염 구조를 모방한 작용기를 연결하여 제조되었으며 기존 에테르계 유기용매와 비교하여 3배 이상 높은 열안정성을 가짐. 또한, 상온에서 액체상태이며 리튬염을 녹일수 있는 용매임. 불에 잘 타는 일반적인 유기용매와는 달리 불에 타는 성질이 낮은 리튬염의 음이온 구조가 포함되어 있어 전해액의 발화 가능성을 낮출 것으로 기대됨.
또한, 연구팀은 두 가지 이온성 첨가제를 도입하여 리튬 금속 음극에 형성된 보호층이 부피 변화를 견디도록 설계했다. 이에 더해, 연구팀은 전자 방출 경향성이 높은 첨가제를 적용해 양극 표면에 보호층을 형성해 양극의 구조 안정성을 향상시켰다. 개발된 새로운 구조의 고전압 용매는 전극을 보호하는 첨가제와 함께 시너지 효과를 이끌어 고전압 리튬 금속전지 성능을 극대화했다는 점에서 그 의미가 크다.
이번 논문의 공동 제1 저자인 우리 대학 생명화학공학과 김세훈 박사과정은 “용매와 첨가제의 조합 기술을 통해 실용화가 가능한 리튬 금속전지용 용매 조성 프레임을 개발했으며 전지의 사용기간을 연장하는, 보다 안정적인 전극-전해액 계면층을 형성하는 새로운 전해액 조성 기술을 개발했다”라고 말했다.
최남순 교수는 “새로운 구조로 디자인된 TFSPP 용매는 기존 용매에 비해 열적 및 고전압 안정성이 매우 우수하고 전지 구동 중 전해액 분해를 최소화해 전지 내압 상승요인인 가스 발생을 억제하는 전해액 용매”임을 강조하며 “TFSPP를 주 용매로 사용해 전지의 고온 안정성을 개선했으며 본 연구팀 고유기술인 다중층 전극-전해액 보호층 형성을 통해 안정화함으로써 고전압 리튬 금속전지 실용화를 위한 전해액 설계에 있어서 새로운 이정표를 제시했다”라고 연구의 의미를 덧붙였다.
우리 대학 생명화학공학과 최남순 교수, 김세훈, 송채은, 이동현 연구원과 UNIST 화학과 홍성유 교수, 전지환 연구원, 서울대 화학생물공학부 이규태 교수, 박교빈, 송가원 연구원, 고려대 화공생명공학과 곽상규 교수, 권성현 연구원, 유승호 교수, 현재환 연구원, 그리고 경상국립대 나노·신소재공학부 고분자공학전공 이태경 교수가 진행한 이번 연구는 국제 학술지 ‘어드밴스드 머티리얼즈 (Advanced Materials)’에 3월 6일 字로 온라인 공개됐다. (논문명 : Electrolyte Design for High-Voltage Lithium-Metal Batteries with Synthetic Sulfonamide-Based Solvent and Electrochemically Active Additives)
한편 이번 연구는 한국연구재단의 단계도약형 탄소중립 기술개발사업과 한국산업기술평가관리원의 산업기술 혁신사업의 지원을 받아 수행됐다.
2024.03.19
조회수 5228
-
유기용매 정제용 분리막 원천기술 개발
기후변화 대응을 위한 친환경 공정 기술 개발의 필요성이 확대됨에 따라 화학 및 제약 산업에서의 저에너지 분리 공정은 지속가능한 개발에 있어 중추적 역할을 담당하고 있다. 특히, 제약 산업의 경우 고품질의 의약품 제조를 위해 고순도의 유기용매 사용이 필수적이며, 이에 따라 유기용매의 고효율 분리 공정에 대한 요구가 꾸준히 증가하고 있는 실정이다.
우리 대학 생명화학공학과 최민기 교수 연구팀이 2차원 다공성 탄소 기반의 유기용매 정제용 초고성능 나노여과막을 개발했다고 3일 밝혔다.
기존의 유기용매 분리 공정은 혼합물을 이루는 물질 간의 끓는점 차이를 이용하여 분리하는 증류법이 사용되어 대용량의 혼합물을 끓여야 하는 만큼 막대한 에너지가 소모되는 단점이 있었다.
반면, 분리막 기술은 단순히 압력을 가하는 것만으로 유기용매의 선택적 투과가 가능하고 유기용매보다 크기가 큰 입자들을 효과적으로 제거할 수 있다. 특히, 열이 가해지지 않으므로 공정에서 요구되는 에너지 및 비용을 절감할 수 있고 가열 과정 중 고부가가치 생성물의 화학적 변성 위험성을 배제할 수 있다는 장점이 있다.
연구팀은 고성능 분리막의 개발을 위해 2차원 마이크로 다공성 탄소 물질을 합성하고 이를 분리막으로 제조하는 기술을 개발했다. 대표적인 2차원 탄소 물질 그래핀은 얇고 안정적이며 기계적 강성이 높아 이상적인 분리막 재료이지만, 촘촘히 배열된 탄소 원자들로 인해 어떠한 물질도 투과시키지 못한다. 이에 추가적인 구멍을 뚫어 분리막으로 활용하려는 시도들이 있었으나, 균일한 크기의 마이크로 기공을 고밀도로 뚫는 데는 여전히 기술적 어려움이 존재하는 실정이다.
이에 최민기 교수 연구팀은 2 나노미터(nm) 이하의 작은 마이크로 기공을 갖는 결정성 알루미노실리케이트 물질인 제올라이트를 주형으로 활용해 분리막에 사용할 2차원 마이크로 다공성 탄소 물질을 합성했다. 대부분의 제올라이트는 3차원적으로 연결된 마이크로 기공 구조를 지니지만 일부는 2차원적 기공 연결구조를 지니며 특히 연속적인 탄소 골격이 자랄 수 있는 충분한 공간을 제공할 수 있다는 점을 활용했다.
연구팀은 이러한 2차원적 기공 연결구조를 지니는 제올라이트 내부에 탄소를 채워 넣은 후, 제올라이트만을 선택적으로 녹여냄으로써 판 형태의 2차원 탄소 물질을 합성하는 데 성공했다. 합성된 탄소는 기존 제올라이트의 마이크로 기공 구조를 그대로 본뜬 골격 구조를 지니며, 극도로 균일한 크기의 마이크로 기공들이 벌집 구조로 빽빽하게 배열돼 있다. 해당 기공 밀도는 기존에 보고되어온 다공성 그래핀과 비교해 수십 배 이상 높은 수치다.
연구팀은 합성된 2차원 탄소 시트들을 적층시켜 얇은 두께의 분리막을 제조했다. 해당 분리막을 유기용매 나노여과에 적용한 결과, 탄소 시트의 기공 크기보다 큰 유기 용질은 효과적으로 걸러내며, 작은 유기용매는 자유롭게 투과시킴으로써 고순도의 유기용매를 얻을 수 있었다. 특히, 해당 분리막은 높은 기공 밀도 덕분에 기존의 분리막들과 비교해 비약적으로 높은 유기용매 투과도를 보이므로 유기용매의 대량 정제에 매우 적합하다.
연구를 주도한 최민기 교수는 "극도로 균일한 크기의 마이크로 기공이 초고밀도로 존재하는 2차원 다공성 탄소의 합성 방법은 세계적으로 보고된 바가 없던 새로운 개념이다ˮ라며, "이번 연구에서 개발한 탄소 물질은 분리막뿐만 아니라, 배터리나 축전지와 같은 전기화학적 에너지 저장 장치 및 화학적 센서 등 다양한 분야에서 활용이 가능할 것으로 기대된다ˮ라고 말했다.
우리 대학 응용과학연구소 김채훈 박사가 제1 저자로 참여한 이번 연구 결과는 세계적 권위지인 `사이언스 어드밴시스(Science Advances)'에 지난 2월 10일 게재됐다. (논문명: Bottom-up synthesis of two-dimensional carbon with vertically aligned ordered micropores for ultrafast nanofiltration)
한편 이번 연구는 삼성전자 미래기술육성센터의 지원을 받아 수행됐다.
2023.04.03
조회수 5420
-
에너지 비용 낮춘 상온 액상 분리막 개발
우리 대학 생명화학공학과 고동연 교수 연구팀이 상온에서 크기 차이 0.1 나노미터(nm) 이하의 액상 유기물질을 직접 분리할 수 있는 유기용매 정삼투 시스템을 개발했다고 12일 밝혔다.
액체 혼합물의 대규모 분리 공정은 주로 물질의 끓는점 차이를 이용하는 증류법을 이용하는데, 이때 전 세계적으로 막대한 양의 에너지가 소비된다. 특히, 석유화학 산업의 기초가 되는 액상 탄화수소들은 섬유, 플라스틱 등 일상생활과 밀접한 소재 개발에 필수적이기 때문에 이들을 저에너지, 저탄소 공정을 통해 분리하는 새로운 미래지향적인 패러다임이 필요하다.
연구진이 개발한 초미세 다공성 탄소 분리막은 위와 같은 에너지 문제를 해결할 수 있는 기술로, 액상 탄화수소를 크기와 모양에 따라 상온에서 연속적으로 분리할 수 있는 기술이다.
생명화학공학과 서혁준 석박사통합과정 학생이 제1 저자로 참여한 이번 연구는 국제 학술지 `어드밴스드 사이언스(Advanced Science)' 에 온라인 게재됐으며, 연구의 파급력을 인정받아 뒷표지 논문으로 선정됐다. (논문명 : Shape-Selective Ultramicroporous Carbon Membranes for Sub-0.1nm Organic Liquid Separation)
연구팀이 이번에 개발한 유기용매 정삼투법은 정밀하게 디자인된 기공 크기 및 구조를 갖는 탄소 분리막을 이용한다. 이는 외부 동력원 없이 자연스러운 농도 기울기 및 화학적 포텐셜을 기반으로 크기 및 모양 차이에 따라 탄화수소 화학종들의 분리가 진행되는 에너지 효율적 기법으로, 기존의 증류법보다 약 10배 정도 낮은 에너지 소모량을 요구한다. 이와 같은 유기용매 정삼투법은 분리막 재료의 기공 크기 디자인에 따라 석유화학, 정유, 제약 및 반도체 공정 등 다양한 분야에 활용 가능하기 때문에 산업 전반의 에너지 효율성을 극대화하며 동시에 탄소 배출량을 줄일 수 있는 획기적인 기술이다.
특히 연구팀은 상온에서 서로 다른 크기와 모양을 갖는 헥산 이성질체의 혼합물들을 모양 차이에 따라 손쉽게 분리할 수 있음을 증명했다. 탄소 분리막은 0.7 나노미터(nm) 이하의 단단한 슬릿 형태(slit-like structure)를 갖는 초미세 기공을 가지며, 이처럼 작은 나노 공간에서 분자들의 확산을 조절하여 크기 차이가 0.1 나노미터(nm) 이하인 분자들까지 정밀하게 걸러낼 수 있다.
특히, 이번 연구에 이용된 탄소 분리막은 속이 비어있는 실과 같은 기다란 형태(할로우 파이버, Hollow Fiber)를 가지고 있어, 이의 산업적 적용성과 파급 효과는 상당할 것으로 기대된다. 할로우 파이버 분리막은 적은 비용으로 대량생산이 매우 쉬우며, 기존의 평면적인 분리막 대비 수십 배 높은 표면적을 가지고 있어 차세대 분리막 형태로 주목받는 소재다.
연구팀은 그동안 불가능했던 분리막을 이용한 0.1 나노미터(nm) 이하 크기의 액체 분자들의 크기 및 모양에 따른 분리에 성공해 저에너지, 저탄소 분리 공정의 새로운 막을 열게 됐다. 수많은 소재의 원재료가 되는 탄화수소 분자들을 적은 비용 및 저탄소 배출공정으로 분리 정제할 수 있는 새로운 방식은 화학산업의 초미의 관심사다.
고동연 교수는 "우리나라는 원유를 수입하고, 이를 분리 및 정제해 다양한 고부가가치 제품을 창출하는데 여러 집약된 기술에 의존하고 있어 이에 대한 파격적 비용 절감은 석유화학 산업계의 글로벌 경쟁력 강화와 직결된다ˮ며, "특히 용매 사용량이 많은 제약 분야 및 반도체 화학 공정에도 널리 사용될 수 있을 것으로 기대된다ˮ고 연구의 의의를 설명했다.
한편, 이번 연구는 한국연구재단 우수신진연구사업의 지원을 받아 수행됐다.
2021.08.13
조회수 10909
-
전해액 사용량을 4배 줄인 리튬-황 전지 개발
우리 연구진이 리튬-황 전지를 경제적으로 설계하되 성능은 획기적으로 개선한 기술개발에 성공해 차세대 배터리 기술개발에 한 발 더 다가섰다.
우리 대학 생명화학공학과 김희탁 교수팀이 기존 대비 전해액의 함량을 4배 이상 줄인 리튬-황 전지를 개발했다고 25일 밝혔다. 리튬-황 전지는 차세대 배터리 기술 중 연구개발이 가장 활발하게 이뤄지는 기술이다. 리튬-황 전지는 휴대용 전자기기와 전기자동차에 사용되는 리튬이온전지에 비해 에너지 밀도가 2~3배 높아서 이를 사용하면 전기동력 기체 무게를 크게 줄일 수 있기 때문이다.
리튬-황 전지는 가벼운 황과 리튬금속을 활물질(화학적으로 반응하여 전기에너지를 생산하는 물질)로 이용하기 때문에 중금속 기반인 리튬이온전지에 비해 경량화가 가능하다. 특히 지구에 풍부하게 존재하는 황을 활용해 저가의 전지를 구현할 수 있다는 점 때문에 산업계와 학계로부터 그동안 많은 주목을 받아왔다. 다만 리튬-황 전지는 리튬이온전지와 달리 매우 높은 전해액 함량을 갖고 있다. 전지 무게의 40%에 달하는 과량의 전해질 사용은 전지 무게 증가로 인해 그동안 리튬-황 전지의 고에너지밀도 구현에 큰 걸림돌이 돼왔다. 리튬-황 전지는 황이 방전되고 난 후의 산물인 `리튬 폴리 설파이드(Lithium poly sulfide)'가 전해액에 용해된 상태에서 빠른 충 ‧ 방전 특성을 갖는다.
이 전해액 양을 낮추면 리튬 폴리 설파이드의 용해량이 감소해 용량 및 출력이 저하되는 문제가 발생한다. 또 리튬금속 음극이 전해액을 분해해 전해액이 고갈되는 문제는 낮은 전해 액체량에서 더욱 심해져 결국 전지 수명을 떨어뜨린다.
김희탁 교수 연구팀은 이번 연구를 통해 리튬 나이트레이트 염과 같이 높은 전자공여(다른 화합물에 전자를 주는 성질) 능력이 있는 염을 전해질에 주입하면 폴리 설파이드의 용해도를 증가시킴과 동시에 리튬금속에서 전해질 분해를 억제할 수 있음을 규명했다. 리튬이온과 결합력이 강한 나이트레이트 음이온이 리튬이온의 `용매화 껍질(Solvation Shell)' 역할을 수행함으로써 리튬 폴리 설파이드의 해리도를 증가시켜 결과적으로 용해도가 향상된다는 사실도 증명했다. 아울러 용매화 껍질 구조변화가 전해액 용매 분자와 리튬금속과의 접촉을 낮춰 분해반응을 억제하는 현상도 확인했다.
김희탁 교수팀은 이번 연구를 통해 전해액 성분 중 리튬 염 물질 하나만을 교체하는 간단한 방법으로 에너지 밀도를 높이면서 고가의 전해액 사용량을 4배 이상 줄여 가격을 대폭 절감하는 성과를 거뒀다. 김희탁 교수는 "이번 연구는 황 양극과 리튬금속 음극의 성능을 동시에 높일 수 있는 전해액 설계원리를 제시했다는 점에서 의미가 크다ˮ면서 "차세대 전지 전해액 설계산업 전반에 걸쳐 넓게 응용되기를 기대한다ˮ고 말했다.
KAIST 생명화학공학과 석사졸업생인 추현원 학생(現 MIT 박사과정 재학 중)과 정진관 박사과정이 공동 제1 저자로 참여한 이번 연구결과는 국제 학술지 `어드밴스드 에너지 머티리얼즈(Advanced energy materials)' 6월 2일 字 표지논문으로 실렸다. (논문명: Unraveling the Dual Functionality of High-Donor-Number Anion in Lean-Electrolyte Lithium-Sulfur Batteries)
한편, 이번 연구는 LG화학, KAIST 나노융합연구소, 과학기술정보통신부 기후변화대응과제의 지원을 받아 수행됐다.
2020.06.25
조회수 21103
-
홍원희교수팀, 다양한 나노구조유도 기술개발
생명화학공학과 홍원희교수팀, 이온성액체를 이용한 다양한 나노구조 유도 기술 개발
-무기산화물, 탄소나노튜브, 그래펜, 유무기 하이브리드 등 다양한 재료의 나노구조를 유도--상용 산화철보다 10배 이상의 흡착 및 광촉매 효율 높여-
공과대학 생명화학공학과 홍원희 교수팀(62)은 이온성액체를 이용한 자기조립기술을 이용해 탄소나노튜브, 그래펜, 무기산화물, 유무기 복합체에 이르기까지 다양한 재료의 나노구조를 유도할 수 있는 기술을 최근 개발했다.
이 연구결과는 ‘광촉매 응용을 위한 이온성액체를 이용한 무기산화물 하이브리드의 에너지 전달(Energy Transfer in Ionic-Liquid-Functionalized Inorganic Nanorods for Highly Efficient Photocatalytic Applications)’이라는 제목으로 나노분야의 저명 학술지인 스몰(Small)지에 지난 11월 게재됐다.
이 기술은 이온성 액체의 구조 유도와 용매 기능을 이용한 무기산화물 하이브리드 나노재료를 제조할 수 있는 ‘청정 한 반응기 이온열 합성법(Green One-Pot Ionothermal Synthesis)’이다. 대기압하의 열린반응기내에서 제조된 무기산화물 나노재료는 쉽게 물이나 다양한 유기 용매에서 분산된다.
홍교수팀은 이 합성법을 산화철 계열의 무기산화물 나노재료에까지 적용해 0차원에서 1차원에 이르기까지 구조를 제어했고, 계면에서의 에너지 전이현상을 통해 상용 산화철보다 10배 이상의 흡착 및 광촉매 효율을 높였다.
이 기술을 바탕으로 제조된 나노재료는 유기물 산화 및 분해기능이 뛰어나 태양광만으로 폐수처리가 가능하다. 이로써 페수처리 과정에서 에너지 소비와 이산화탄소의 배출량을 줄일 수 있고, 광촉매가 가지는 우수한 항균 및 탈취기능은 건축재료 분야에 응용될 것으로 기대된다. 또한, 태양광을 이용한 물의 광분해로 수소 에너지원 생산도 가능하다.
홍교수는 “이번 연구는 이온성 액체의 청정용매로써의 기능을 이용해 나노기술이 가지는 인간과 환경에 대한 악영향을 감소시키고, 동시에 디자인된 나노재료에 새로운 기능을 부여해 기존 기술의 한계를 극복할 수 있는 새로운 대안을 마련했다”는데 의미가 있다고 말했다.
현재 홍교수팀은 친환경 합성법으로 제조된 무기산화물, 탄소나노튜브, 그래펜, 유.무기 하이브리등의 나노재료를 환경 및 에너지 분야에 적용하는 연구를 진행하고 있다.
※ 보충자료나노 스케일에서의 재료나 현상을 연구하고 구조나 구성 요소를 제어해서 새로운 소재‧소자‧시스템을 개발하는 나노 기술 역시, 환경 유해성이나 인체 독성에 대한 연구 결과가 발표되면서 친환경 기술에 대한 관심이 급증하고 있다.
이온성 액체는 소금과 같이 양이온과 음이온의 이온결합으로 이루어진 이온성 염 화합물로써 상온에서부터 넓은 온도에 걸쳐 액체로 존재할 수 있는 ‘청정용매(Green Solvent)’라고 불리면서 각광을 받고 있다. 특히, 이론적으로 1018가지 정도의 조합에 의해서 비휘발성, 비가연성, 열적 안정성, 높은 이온전도도, 전기화학적 안정성, 높은 끓는점 등의 물리화학적 특성을 쉽게 변화시킬 수 있어서 다기능성(multifunctional) ‘디자이너용매(Designer Solvent)’로 사용가능하다.
세계적으로 아직 초기단계이긴 하지만, 미국 국방관련 연구소 (US Air Force, US Naval Research Laboratory) 및 국가 연구소 (Argonne 연구소, Oak Ridge 연구소, Brookhaven 연구소), 독일의 Max Planck 연구소, 스위스 EPFL의 Gratzel 그룹, 일본의 도쿄대, G24i & BASF 등이 최근 이온성 액체를 이용한 나노기술 응용 분야에 주목하면서 집중 투자와 연구를 진행하고 있는 반면, 국내에서는 아직 시작 단계에 불과할 정도로 뒤쳐져 있다.
홍 교수 팀의 연구결과는 기존 산업뿐만 아니라, 전 세계적으로 주목 받고 있는 ‘녹색 성장기술’과 21세기를 선도할 ‘첨단 나노기술’을 융합한 ‘청정 나노기술(Green Nanotechnolgy)’의 원천기술로써 활용될 수 있으며 이 분야의 국제경쟁에서 우위를 확보할 수 있을 것으로 전망된다.
현재까지 이온성액체는 유기합성, 전기화학, 화학공학, 생물공학 및 분리공정 등을 포함하는 여러 분야에서 유기 용매를 대체하기 위한 ‘지속가능기술(sustainable technology)’로써 향후 산업 전 분야에 걸쳐서 엄청난 파급효과가 있을 것으로 기대되고 있다.
※ 용어설명 ○ 열린반응기 : 고압,저압의 용기가 아닌 대기압하의 일반용기 즉, 비이커 등.
<그림1> 대표적인 이미다졸륨계 이온성액체의 분자 구조
<그림2> Green One-Pot Ionothermal Synthesis에 의한 물에 분산되는 산화철 나노 막대기의 합성 과정 모식도.
2009.12.14
조회수 25498