-
RNA 유전자 가위 정밀제어기술로 유전자 치료 성큼
최근 유전자 치료제 개발에 있어 중요한 역할을 하는 유전자 가위(CRISPR/Cas) 기술은 DNA 편집을 통해 영구적인 치료 효과를 보일 수 있으나, 비표적 효과에 의한 생체 내 부작용에 의한 돌연변이가 발생하였을 때, 대체할 방안이 불명확하다. DNA 편집의 잠재적인 위험성을 극복하여 특이적으로 인식하고 조절할 수 있는 RNA 대상으로 하는 유전자 가위 시스템이 주목받고 있다.
우리 대학 생명과학과 허원도 교수 연구팀이 세계 최초로 RNA 유전자 가위 기술 (CRISPR/Cas13)의 활성을 화학 유전학 및 광유전학으로 조절해 시간 및 공간적으로 표적 RNA의 염기 편집을 수행하는 기술을 개발했고, 동물 모델에서의 RNA 염기 편집 효과를 입증했다고 7일 밝혔다.
허원도 교수 연구팀은 구조가 알려지지 않은 단백질의 구조를 재구조화해, 화학적 및 광유전학적으로 조절 가능한 Cas13 단백질 조각을 예측하고 개발하는 데 성공했다. 이를 통해 개발된 에디터 기술로 RNA 분해 및 RNA 염기 편집을 실시간으로 유도할 수 있으며, RNA 염기 편집의 활성을 가역적으로 조절할 수 있음을 확인했다. 또한, 기존 연구자들이 실험에 이용하던 세포모델에서 더 나아가 세계 최초로 실험 쥐 모델에 해당 시스템을 적용해 광유전학적으로 RNA 염기 편집이 효과적으로 일어나는 것을 입증했다.
이번 연구는 유전자 가위 시스템을 활용한 유도 가능한 RNA 조절 시스템 개발로, 질병과 관련된 돌연변이를 표적으로 하는 RNA 기반 치료법의 발전 및 세포 내 RNA 기반 연구의 적용에 기여할 것으로 기대된다. 특히 생체 내 전달 목적으로 주로 사용되는데 연구팀은 RNA 대상 편집 시스템에서 단백질의 상대적으로 큰 크기를 유전체 전달에 있어서 임상적 적용에 한계점을 가지고 있다는 점을 감안하여 DNA 크기 제한을 분할 시스템으로 극복하고, 실험 쥐의 기관 내에서 다양한 모델 시스템 구축을 통해 생체 내 RNA 연구의 적용 범위를 확장할 수 있다.
연구를 주도한 허원도 교수는 “재결합이 가능한 분할 단백질 Cas13 조각을 개발해, 화학적 및 광유전학적으로 특정 시공간에서 정밀하게 조절되는 RNA를 실험적으로 확인했다. 이 기술은 그동안 실험적 한계로 인해 어려웠던 복잡한 RNA 연구를 촉진할 것으로 기대된다.라고 말했다.” 아울러 “유전자 가위 시스템을 활용한 유도 가능한 RNA 조절 시스템 개발로, 질병과 관련된 돌연변이를 표적으로 하는 RNA 기반 치료법의 발전 및 세포 내 RNA 기반 연구의 적용에 기여할 것으로 기대된다”라고 전했다.
우리 대학 생명과학과 유정혜 박사과정이 제1 저자로 수행한 이번 연구는 저명 국제 학술지 ‘네이처 커뮤니케이션즈 (Nature Communications)’ 2024년 1월 22일 字 온라인판에 게재됐다. (논문명: Programmable RNA base editing with photoactivatable CRISPR-Cas13). (Impact Factor: 17.694). (DOI: https://doi.org/10.1038/s41467-024-44867-2)
한편, 이번 연구는 삼성미래기술육성재단과 정부의 재원으로 한국연구재단 바이오·의료기술개발사업의 지원을 받아 수행됐다.
2024.02.07
조회수 4662
-
하운드(Hound) 로봇, 100m를 19.87초 주파, 기네스 기록
우리 대학 기계공학과의 박해원 교수 연구팀이 제작한 사족 로봇 하운드(Hound)의 사족 보행 로봇의 100m 달리기 기록이 기네스 세계 기록으로 인정받았다고 15일 밝혔다.
하운드(Hound)는 KAIST 동적 로봇 설계 및 제어 연구실(Dynamic Robot Control and Design Laboratory)에서 제작된 로봇으로, 지난 2023년 10월 26일에 측정된 실험을 통해 정지 상태에서 출발해 100미터 선을 19.87초 만에 통과한 후 완전히 멈추는 데 성공했다. 이 성과는 AI 방법론 중 하나인 강화학습을 이용해 시뮬레이션 가상환경에서 훈련된 단일 제어기를 통해 달성됐다.
연구팀은 하운드(Hound) 로봇이 고속으로 달릴 수 있도록, 액추에이터 출력의 한계를 최대한 이용하기 위해, 모터가 최대로 낼 수 있는 한계 토크와 속도 특성을 강화학습에 활용했다. 또한, 대칭적인 걸음새를 통해 모터의 출력을 고르게 분배하고, 로봇의 빠른 움직임을 위해 경량 발바닥을 설계했다. 이러한 종합적인 설계와 제어에 대한 접근방식을 통해 하운드(Hound)는 빠른 속도로 100미터를 주파할 수 있었다.
하운드(Hound)의 100미터 달리기 기록은 우리 대학 대운동장의 실외 육상 트랙에서 공식적으로 측정됐다.
하운드(Hound)는 실외뿐만 아니라 실내 러닝머신 위에서 6.5m/s (시속 23.4km)의 주행 속도를 기록했다. 이는 전기 모터 기반 사족 로봇의 최고속도이며, 기존 메사추세츠 공과대학교(MIT)의 치타 2(Cheetah 2)의 6.4m/s를 뛰어넘는 기록이다. 박해원 교수 연구팀은 이 성과 또한 기네스 기록 인증을 신청 중이다.
연구 책임자인 기계공학과 박해원 교수는 “KAIST의 기술로 직접 설계 제작된 사족 보행 로봇과 AI 학습 기반 제어기로 보행 로봇 세계 최고속도를 세움으로써 우리나라의 로봇 하드웨어 기술 및 로봇제어 AI 기술이 세계 최고 수준을 보여줬다는 데 의의가 있다”이라고 소감을 전했다.
한편 이번 연구는 2019년 국방과학연구소 미래도전국방기술 연구개발사업(912768601)의 지원을 받아 수행됐다.
기네스 기록 홈페이지 링크 : https://www.guinnessworldrecords.com/world-records/625586-fastest-100-m-by-a-quadrupedal-robot
기네스 Youtube 계정에 올라온 영상 : https://www.youtube.com/shorts/sdF1cn7iX0g
2023.12.15
조회수 4015
-
군집 제어로봇 연구 Top 5 논문 선정 및 사업화
우리 대학 산업및시스템공학과 장영재 교수 연구팀과 KAIST 연구소 창업기업인 ‘다임리서치’가 공동으로 개발한 연구가 반도체 운영 관련 국제적인 저널인 ‘IEEE Transactions on Semiconductor Manufacturing’(이하 IEEE TSM)에서 2022년 우수논문(Best Paper: Honorable Mention)에 선정됐다고 5일 밝혔다.
IEEE TSM은 반도체 운영 관련 국제 저널, 한 해 게재된 논문 중 편집장들의 추천을 통해 총 5편의 우수한 논문들을 선정해 이듬해 6월에 발표한다.
장영재 교수 연구팀(제1 저자: 홍상표 박사, 제2 저자: 황일회 박사, 제3 저자-교신저자: 장영재 교수)이 수행한 연구는 공장 내 1,000대 이상의 군집 로봇을 제어하는 기술로 “Practical Q-learning-based route-guidance and vehicle assignment for OHT systems in semiconductor fabs”라는 제목으로 IEEE TSM에 게재됐다.
반도체 공장이 점차 대형화되고 제조 공정이 복잡해짐에 따라 공장 내 운영하는 로봇의 대수도 함께 늘어나고 있는 상황이다. 장영재 교수 연구팀은 공장 운영의 효율성을 개선하기 위해 1,000대 이상의 물류반송 로봇을 인공지능과 디지털 트윈 기술을 활용해 제어하는 기술을 개발해 본 논문에 방법론을 공개했다.
연구팀은 본 연구를 통해 사람의 개입 없이도 로봇이 이상 상황을 스스로 판단해 자율적으로 작업할당 및 운영을 최적화하는 ‘자율 생산 시스템(Autonomous Manufacturing System)’ 개념을 정립하고 그 가능성을 입증했다.
논문의 저자로 주저자 및 제2 저자인 홍상표 박사와 황일회 박사는 장영재 교수 연구실 출신으로 장 교수와 함께 ‘다임리서치 (http://www.daimresearch.com/) ’라는 연구소기업을 창업하여 관련 연구를 사업화했다.
연구팀은 이번 연구를 기반으로 한 소프트웨어를 개발해 글로벌 반도체 업체에 관련 솔루션을 공급하고 있으며 최근에는 포스코 DX와 협업하여 해당 기술을 철강, 2차전지 소재 관련 공장 내 로봇 운영에도 확대 중이다.
반도체와 2차전지와 같은 국가 전략 산업에서 로봇의 역할이 점점 더 중요해지고 있는 시점에서 이번 연구는 학계의 연구가 직접 산업현장의 혁신으로 이어지는 대표 사례라 할 수 있다.
2023.07.05
조회수 3419
-
드림워커, 안 보고도 계단을 성큼성큼 걷다
연기가 자욱해 앞이 안보이는 재난 상황에서 별도의 시각이나 촉각 센서의 도움 없이 계단을 오르내리고 나무뿌리와 같은 울퉁불퉁한 환경 등에서 넘어지지 않고 움직이는 사족보행 로봇 기술이 국내 연구진에 의해 개발됐다.
우리 대학 전기및전자공학부 명현 교수 연구팀(미래도시 로봇연구실)이 다양한 비정형 환경에서도 강인한 `블라인드 보행(blind locomotion)'을 가능케 하는 보행 로봇 제어 기술을 개발했다고 29일 밝혔다.
연구팀은 사람이 수면 중 깨어서 깜깜한 상태에서 화장실을 갈 때 시각적인 도움이 거의 없이 보행이 가능한 것처럼, 블라인드 보행이 가능하다고 해서 붙여진 ‘드림워크(DreamWaQ)’기술을 개발하였고 이 기술이 적용된 로봇을 ‘드림워커(DreamWaQer)’라고 명명했다. 즉 이 기술을 탑재하면 다양한 형태의 사족보행 로봇 드림워커를 만들어낼 수 있게 되는 것이다.
기존 보행 로봇 제어기는 기구학 또는 동역학 모델을 기반으로 한다. 이를 모델 기반 제어 방식이라고 표현하는데, 특히 야지와 같은 비정형 환경에서 안정적인 보행을 하기 위해서는 모델의 특징 정보를 더욱 빠르게 얻을 수 있어야 한다. 그러나 이는 주변 환경의 인지 능력에 많이 의존하는 모습을 보여 왔다.
이에 비해, 명현 교수 연구팀이 개발한 인공지능 학습 방법 중 하나인 심층 강화학습 기반의 제어기는 시뮬레이터로부터 얻어진 다양한 환경의 데이터를 통해 보행 로봇의 각 모터에 적절한 제어 명령을 빠르게 계산해 줄 수 있다. 시뮬레이션에서 학습된 제어기가 실제 로봇에서 잘 작동하려면 별도의 튜닝 과정이 필요했다면, 연구팀이 개발한 제어기는 별도의 튜닝을 요구하지 않는다는 장점도 있어 다양한 보행 로봇에 쉽게 적용될 수 있을 것으로 기대된다.
연구팀이 개발한 제어기인 드림워크는 크게 지면과 로봇의 정보를 추정하는 상황(context) 추정 네트워크와 제어 명령을 산출하는 정책(policy) 네트워크로 구성된다. 상황추정 네트워크는 관성 정보와 관절 정보들을 통해 암시적으로 지면의 정보를, 명시적으로 로봇의 상태를 추정한다. 이 정보는 정책 네트워크에 입력돼 최적의 제어 명령을 산출하는 데 사용된다. 두 네트워크는 시뮬레이션에서 함께 학습된다.
상황추정 네트워크는 지도학습을 통해 학습되는 반면, 정책 네트워크는 심층 강화학습 방법론인 행동자-비평자(actor-critic) 방식을 통해 학습된다. 행동자 네트워크는 주변 지형 정보를 오직 암시적으로 추정할 수 있다. 시뮬레이션에서는 주변 지형 정보를 알 수 있는데, 지형 정보를 알고 있는 비평자 네트워크가 행동자 네트워크의 정책을 평가한다.
이 모든 학습 과정에는 단 1시간 정도만 소요되며, 실제 로봇에는 학습된 행동자 네트워크만 탑재된다. 주변 지형을 보지 않고도, 오직 로봇 내부의 관성 센서(IMU)와 관절 각도의 측정치를 활용해 시뮬레이션에서 학습한 다양한 환경 중 어느 환경과 유사한지 상상하는 과정을 거친다. 갑자기 계단과 같은 단차를 맞이하는 경우, 발이 단차에 닿기 전까지는 알 수 없지만 발이 닿는 순간 빠르게 지형 정보를 상상한다. 그리고 이렇게 추측된 지형 정보에 알맞은 제어 명령을 각 모터에 전달해 재빠른 적응 보행이 가능하다.
드림워커(DreamWaQer) 로봇은 실험실 환경뿐 아니라, 연석과 과속방지턱이 많은 대학 캠퍼스 환경, 나무뿌리와 자갈이 많은 야지 환경 등에서 보행 시 지면으로부터 몸체까지 높이의 3분의 2 (2/3) 정도의 계단 등을 극복함으로써 강인한 성능을 입증했다. 또한 환경과 무관하게, 0.3m/s의 느린 속도부터 1.0m/s의 다소 빠른 속도까지도 안정적인 보행이 가능함을 연구팀은 확인했다.
이번 연구 결과는 이 마데 아스윈 나렌드라(I Made Aswin Nahrendra) 박사과정이 제1 저자로, 유병호 박사과정이 공동 저자로 참여했으며, 오는 5월 말 영국 런던에서 개최되는 로보틱스 분야의 세계 최고 권위 학회인 ICRA(IEEE International Conference on Robotics and Automation)에 채택되어 발표될 예정이다. (논문명: DreamWaQ: Learning Robust Quadrupedal Locomotion With Implicit Terrain Imagination via Deep Reinforcement Learning)
개발된 드림워크를 탑재한 보행 로봇 드림워커의 구동 및 보행 영상은 아래 주소에서 확인할 수 있다.
메인 영상: https://youtu.be/JC1_bnTxPiQ
쿠키 영상: https://youtu.be/mhUUZVbeDA0
한편, 이번 연구는 산업통상자원부 로봇산업핵심기술개발 사업의 지원을 받아 수행되었다. (과제명: 동적, 비정형 환경에서의 보행 로봇의 자율이동을 위한 이동지능 SW 개발 및 실현장 적용)
2023.03.29
조회수 7548
-
양자컴퓨팅 한계를 극복하는 3차원 반도체 제어/해독 소자 집적 기술 개발
우리 대학 전기및전자공학부 김상현 교수 연구팀이 *모놀리식 3차원 집적의 장점을 활용해 기존 양자 컴퓨팅 시스템의 대규모 큐비트 구현의 한계를 극복하는 3차원 집적된 화합물 반도체 해독 소자 집적 기술을 개발했다고 24일 밝혔다. ‘모놀리식 3차원 집적 초고속 소자’ 연구 (2021년 VLSI 발표, 2021년 IEDM 발표, 2022년 ACS Nano 게재)를 활발하게 진행해 온 연구팀은 양자컴퓨터 판독/해독 소자를 3차원으로 집적할 수 있음을 처음으로 보였다.
☞ 모놀리식 3차원 집적: 반도체 하부 소자 공정 후, 상부의 박막층을 형성하고 상부 소자 공정을 순차적으로 진행함으로써 상하부 소자 간의 정렬도를 극대화할 수 있는 기술로 궁극적 3차원 반도체 집적 기술로 불린다.
우리 대학 전기및전자공학부 김상현 교수 연구팀의 정재용 박사과정이 제1 저자로 주도하고 한국나노기술원 김종민 박사, 한국기초과학지원연구원 박승영 박사 연구팀과의 협업으로 진행한 이번 연구는 반도체 올림픽이라 불리는 ‘VLSI 기술 심포지엄(Symposium on VLSI Technology)’에서 발표됐다. (논문명 : 3D stackable cryogenic InGaAs HEMTs for heterogeneous and monolithic 3D integrated highly scalable quantum computing system).
VLSI 기술 심포지엄은 국제전자소자학회(International Electron Device Meetings, IEDM)와 더불어 대학 논문의 채택 비율이 25%가 되지 않는 저명한 반도체 소자 분야 최고 권위 학회다.
양자컴퓨터는 큐비트 하나에 0과 1을 동시에 담아 여러 연산을 한 번에 처리할 수 있는 차세대 컴퓨터로, 최근에 IBM과 구글 등의 글로벌 기업이 양자 컴퓨터 제작에 성공하면서 양자 컴퓨터가 차세대 컴퓨터로 주목받고 있다.
기존 컴퓨터의 정보 단위인 `비트'의 경우 1 비트당 1개의 값만 가지는 것에 반해, 양자 컴퓨터의 정보 단위인 `큐비트'는 1 큐비트가 0과 1의 상태를 동시에 가진다. 따라서 비트에 비해 큐비트는 2배 빠른 계산이 가능하고, 2큐비트, 4큐비트, 8큐비트로 큐비트 수가 선형적으로 커질수록 처리 계산 속도는 4배, 8배, 16배로 지수적으로 증가한다. 따라서 많은 수의 큐비트를 활용한 대규모 양자컴퓨터 개발이 매우 중요하다. IBM에서는 큐비트 수를 127개로 늘린 `이글'을 작년에 발표했고, IBM 로드맵에 따르면 오는 2025년까지 4,000큐비트, 10년 이내에 10,000큐비트 이상을 탑재한 대규모 양자컴퓨터 개발을 목표로 하고 있다.
특히 큐비트의 수가 많은 대규모 양자컴퓨터 개발을 위해서는 큐비트를 제어/해독하는 소자에 대한 개발이 필수적이다. 기존 컴퓨터와 다르게 양자컴퓨터는 통상 –273 oC 내외의 극저온에서 동작하는 큐비트 하나당 최소 하나의 제어와 해독 연결이 필요하다. 현재는 큐비트 수가 많지 않아 극저온에서 동작하는 큐비트와 상온의 측정 장비를 긴 동축케이블로 연결해 제어/해독하는 방식을 사용하고 있다.
하지만 수천 혹은 수만 개 이상의 큐비트를 활용하는 대규모 양자 컴퓨팅에서 이러한 방식을 활용하면 양자 컴퓨터 크기가 매우 커지고 긴 연결 거리로 인해 신호 손실도 커 대규모 양자컴퓨터 구현이 매우 어려워진다. 따라서 큐비트를 제어/해독에 활용할 수 있는 저전력, 저잡음, 초고속 특성의 극저온 소자를 큐비트와 일대일로 연결할 수 있는 시스템 구성이 매우 중요하다.
연구팀은 이러한 문제 해결을 위해 큐비트 회로 위에 저전력, 저잡음 초고속 특성이 매우 뛰어난 *III-V 화합물 반도체 *고전자 이동 트랜지스터(HEMT)를 3차원으로 집적해 수천 혹은 수만 개의 큐비트에 아주 짧은 거리에서 일대일로 연결 가능한 구조를 제시했다.
☞ III-V 화합물 반도체: 주기율표 III족 원소와 V족 원소가 화합물을 이루고 있는 반도체로 전하 수송 특성 및 광 특성이 매우 우수한 소재.
☞ HEMT: High-Electron Mobility Transistor
연구팀은 250oC 이하에서 상부 제어/해독 소자를 집적하는 웨이퍼 본딩 등의 초저온 공정을 활용해 이후 하부 큐비트 회로의 성능 저하 없이 3차원 집적을 할 수 있도록 했다.
연구진은 이러한 3차원 집적 형태의 제어/해독 소자를 최초로 제시 및 구현했을 뿐만 아니라 소자의 성능 면에서도 극저온에서 세계 최고 수준의 차단주파수 특성을 달성했다.
김상현 교수는 "이번 기술은 향후 대규모 양자컴퓨터의 제어/판독 회로에 응용이 가능할 것으로 생각한다ˮ라며 "모놀리식 3차원 초고속 소자의 경우 양자컴퓨터뿐만이 아니라 6G 무선통신 등 다양한 분야에서 응용할 수 있어 그 확장성이 매우 큰 기술이며 앞으로도 다양한 분야에서 활용할 수 있도록 후속 연구에 힘쓰겠다ˮ라고 말했다.
한편 이번 연구는 한국연구재단 지능형반도체기술개발사업, 경기도 시스템반도체 국산화 연구지원 사업, 한국기초과학지원연구원 분석과학연구장비개발사업(BIG사업) 등의 지원을 받아 수행됐다.
2022.06.24
조회수 7562
-
유체 제어 기술로 차세대 재료의 대면적 다기능 나노박막 제작기술 개발
우리 대학 신소재공학과 스티브 박, 김일두 교수 공동연구팀이 세계 최초로 차세대 *전도성 금속유기골격체(이하 c-MOF) 재료 중 하나인인 니켈-헥사이미노트리페닐렌 (Ni3(HITP)2) 고품질 다공성 나노 박막을 유체 제어 기술로 제작하였다고 밝혔다. 연구팀은 공정 과정에서 *탈양성자화를 필요로 하는 재료들의 새로운 박막 합성 방법을 제시하였으며, 그동안 한계로 남아있던 대면적 박막 제작을 넘어서 높은 투명도와 유연성, 그리고 최고 수준의 민감도를 가지는 이산화황 가스 센서 제작을 성공하는 성과를 이뤘다.
☞ 전도성 금속유기골격체(Conductive Metal-Organic Framework, c-MOF): 금속유기골격체는 금속 이온과 유기 연결물질(리간드)가 연결되어 구조체를 이루는 다공성 고분자 재료이다. 이 중, 2D 구조를 가지며 전도성을 가지는 전도성 금속유기골격체는 최근 다양한 분야에 응용되고 있는 차세대 재료이다.
☞ 탈양성자화(Deprotonation): 산-염기 반응을 통해 양성자(H+)를 제거하는 반응을 말한다.
신소재공학과 이태훈 석사, 김진오 박사, 박충성 박사과정이 공동 제1 저자로 참여한 이번 연구 결과는 재료 분야 권위 학술지인 `어드밴스드 머티리얼스(Advanced Materials)'에 내지 삽화와 함께 3월 24일 字 게재됐다. (논문명: Large-area synthesis of ultrathin, flexible, and transparent conductive metal-organic framework thin films via a microfluidic-based solution shearing process)
c-MOF는 다공성, 전기적 특성 제어, 전기전도성 등의 재료적 특성을 기반으로 트랜지스터, 전극, 가스 센서 등의 분야에서 차세대 신소재로 각광받고 있다. 특히, Ni3(HITP)2는 c-MOF 중에서도 최고 수준의 전기전도도를 가지고 있어 지속적으로 연구가 진행되었으나, 합성의 어려움으로 고품질 박막 제조는 난제로 남아있었다.
공동연구팀은 미세 유체(Microfluidic) 시스템을 도입하여 Ni3(HITP)2 나노 박막 제작 신기술을 개발했다. 공정을 두 단계 과정으로 분리해 비정질(Amorphous) 박막을 우선적으로 제작한 후 추가 공정을 통해 결정화(Crystallization)를 진행하여 이전 연구들의 한계점을 극복했다. 이번 연구에서는 여기서 더 나아가 유연 소재로의 활용 가능성 및 높은 투명도(최대 약 88%)를 확인해 다기능 차세대 재료로의 가능성을 확인했다.
미세 유체 시스템을 활용한 이 공정은 연속적이고 일정한 용액의 공급을 기반으로 박막 제작 속도와 기판의 온도 등 다양한 변수(Parameter) 제어를 통하여 진행됐다. 특히, 미세 유체 반응기와 기판 사이에 수백 마이크로미터(㎛) 수준의 단차(Gap)를 주어 균일한 계면(Meniscus)을 형성해 일정한 용매 증발을 야기해 균일한 박막 제조가 가능하다. 이를 통해, 수십 나노미터 영역의 두께 제어가 가능함을 검증함과 동시에 박막 결정의 고배향성을 확인했다고 연구팀은 밝혔다. 결정의 배향성은 센서 성능과 투명 소재에 중요한 역할을 하여 박막의 성능을 향상시켜준다.
공동연구팀은 배향성을 가지는 해당 c-MOF 나노 박막을 사용해 날숨 내의 바이오마커(Biomarker)로 쓰이는 가스 중 하나인 이산화황 (H2S) 기체만을 선택적으로 검출할 수 있는 가스 센서를 개발하는 데 성공했으며, 기존에 보고된 본 재료 기반 최고 성능의 가스 센서 대비 약 30.2배의 성능을 확인했다. 뿐만 아니라, 가스 센서는 유연한 특성을 가지며 습한 환경에서도 높은 민감도를 보여 마스크에 적용이 가능한 점 등 그 파급효과가 클 것으로 예상된다.
공동 제1 저자인 이태훈 석사, 김진오 박사, 박충성 박사과정은 "이번 연구에서 후처리 공정의 도입으로 비정질 박막에서 전도성을 가지는 높은 결정성의 박막으로 빠르고 정교하게 결정화될 수 있다는 것을 보였다ˮ며, "이는 고품질 나노 박막 제작에 한계점을 가지고 있던 다양한 재료에 응용 가능함을 의미하며, 이를 토대로 개발된 가스 센서는 앞서 언급한 다양한 기능을 통해 관련 산업에도 기여할 것으로 기대한다ˮ라고 말했다.
2022.04.27
조회수 9397
-
무선 충전 가능한 부드러운 뇌 이식 장치 개발
우리 연구진이 무선 충전 가능한 뇌 이식 장치를 개발했다. 이 장치는 이식 후 생체 내에서 장기간에 걸쳐 배터리 교체 없이 스마트폰을 이용해 빛으로 뇌의 신경회로를 정교하게 조절할 수 있다.
우리 대학 전기및전자공학부 정재웅 교수 연구팀이 연세대 의대 김정훈 교수팀과 공동 연구를 통해 뇌 완전 이식형 무선 광유전학 기기를 개발했다고 26일 밝혔다.
이번 개발 기술은 장기간에 걸친 동물 실험이 필요한 뇌 기능 연구뿐 아니라 향후 인체에 적용돼 중독과 같은 정신질환 및 파킨슨병과 같은 퇴행성 뇌 질환 치료에도 적용될 수 있을 것으로 기대된다.
우리 대학 전기및전자공학부 김충연 박사과정, 연세대 의대 구민정 박사과정 연구원이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications)' 1월 22일 字에 게재됐다. (논문명 : Soft subdermal implant capable of wireless battery charging and programmable controls for applications in optogenetics)
광유전학은 빛을 이용해 목표로 하는 특정 신경세포만을 선택적으로 정교하게 제어할 수 있다는 점에서, 뇌 기능을 밝히고 각종 뇌 질환을 치료할 해결책으로 뇌과학 및 신경과학 분야에서 주목받고 있다.
기존의 광유전학은 외부기기와 연결된 광섬유를 통해 신경세포에 빛을 전달하는 방법을 사용하고 있는데, 이러한 유선 방식은 동물의 자유로운 움직임을 크게 제한한다는 점에서 복잡한 동물 실험을 구현하는데 제약이 있다. 반면 최근에 개발된 무선 임플란트 기기들은 동물의 행동을 제약하지는 않지만, 주기적인 배터리의 교체가 필요하거나 외부 장비로부터 무선으로 전력을 공급받아야 하므로 독립적이지 못하고 동작이 안정적이지 못하다는 한계가 있다.
연구팀은 배터리의 무선 충전과 디바이스의 무선 제어를 가능하게 만드는 무선 회로를 개발해 마이크로 LED 기반의 탐침과 결합했다. 이를 통해 동물이 자유롭게 움직이는 상태에서도 배터리의 무선 충전이 가능하고, 스마트폰 앱을 통해 광자극을 무선으로 제어할 수 있는 무게 1.4그램(g)의 뇌 완전이식형 기기를 구현했다. 나아가 생체 이식 후 기기에 의해 주변의 조직이 손상되는 것을 방지하고자, 기기를 매우 부드러운 생체적합성 소재로 감싸 생체조직과 같이 부드러운 형태가 되도록 개발했다.
이번 연구를 주도한 정재웅 교수는 "개발된 장치는 체내 이식 상태에서 무선 충전이 가능하므로 배터리 교체를 위한 추가적인 수술 필요 없이 장기간 사용이 가능하다ˮ며 "이 기술은 뇌 이식용 기기뿐 아니라 인공 심박동기, 위 자극기 등 다양한 생체 이식용 기기에 범용적으로 적용될 수 있을 것이다ˮ고 말했다.
연구팀은 이 기기를 LED 탐침이 쥐의 뇌에 삽입된 상태에서 두피 안으로 완전히 이식하고 쥐가 자유롭게 움직이는 상태에서 배터리가 자동으로 무선 충전될 수 있음을 확인했다. 또한 연구팀은 중독성 약물인 코카인에 반복적으로 노출된 쥐의 특정 뇌 부위에 무선으로 빛을 전달해 코카인으로 인한 행동 민감화 발현을 억제함으로써 광유전학이 코카인에 의한 중독 행동 제어에 적용될 수 있음을 보였다.
아울러 공동연구자 연세대 의대 김정훈 교수는 "자유롭게 움직이는 동물을 바라보며, 단지 스마트폰 앱을 구동해 뇌에 빛을 전달하고, 그로 인해 동물의 특정 행동을 제어할 수 있다는 사실이 매우 흥미롭고, 많은 상상력을 자극한다ˮ라고 말했다.
연구팀은 이 기술을 궁극적으로 인체에 적용할 수 있도록 기기를 더욱 소형화하고 MRI 친화적인 디자인으로 발전시키는 확장 연구를 계획하고 있다.
한편 이번 연구는 과학기술정보통신부와 한국연구재단이 추진하는 기초연구실 지원사업과 신진연구자지원사업, KAIST 글로벌 특이점 연구사업의 지원을 받아 수행됐다.
2021.01.26
조회수 75586
-
심현철 교수팀, 2020 인공지능 그랜드 챌린지 우승
우리 대학 전기및전자공학부 심현철 교수 연구팀이 25일 열린 2020 인공지능 그랜드 챌린지 3차 대회 제어지능 트랙에서 우승을 차지했다.
지난해 열린 대회에서도 우승을 차지한 심 교수팀은 대회 2연패라는 쾌거를 달성해 1차 대회를 통해 지원받은 11억 원을 포함해 총 24억 원가량의 연구비를 받게 된다.
이한섭(항공우주공학과), 김보성(전기및전자공학과) 박사과정 학생이 참여한 이번 대회는 복잡한 실내 환경에서 드론이 안전하게 비행해 조난자에게 물품을 전달하는 시나리오를 전제로 진행됐다.
벽, 창문, 그물 3개, 숲, 터널, 움직이는 블라인드가 있는 창문, 강풍 구간에서 정해진 위치에 물건 전달하기, 자동으로 정확한 착륙 지점에 하강하기 등 총 7개로 구성된 복잡한 장애물 환경을 극복할 수 있는 드론을 개발해 임무를 수행하는 방식이다.
주어진 코스의 규격이 사전에 공개되지 않기 때문에 출전팀은 장애물을 실측할 수 없는 상태로 대회를 준비해 임무를 완료해야 한다. 출전팀마다 총 3회의 기회가 부여되며 전체 임무를 순서대로 진행하는 과정에서 얼마나 많은 임무를 수행했는지에 따라 우승자가 가려진다. 만약, 성공한 임무의 숫자가 같을 경우 단시간에 임무를 종료한 팀이 우위에 오르게 된다.
심 교수 연구팀은 자체 개발한 실시간 정밀 측위시스템과 고속 비행제어 시스템, 복잡한 임무수행이 가능한 비행제어 시스템을 활용해 100% 자체 개발한 기술로 모든 임무를 완벽하게 수행했다.
총 5개의 출전팀 중 4개 팀이 다섯 번 째 임무 구간인 터널 입구에 도착하지 못한 채 대회를 종료했다. 심 교수 연구팀만이 유일하게 모든 임무를 완료했으며, 주어진 3차 시기를 진행하는 동안 계속해서 기록을 단축하는 압도적인 기량을 선보였다.
2020 인공지능 그랜드 챌린지는 심 교수팀이 출전한 제어 지능 트랙을 포함해 총 8개 종목으로 구성되어 있다. 우승팀은 앞으로 치뤄질 대회를 통해 모든 종목의 경기가 종료된 후 열리는 시상식에서 과학기술정보통신부 장관상을 받을 예정이다. 과기정통부가 주최하고 정보통신기획평가원(IITP)이 주관하는 이번 대회의 우승팀은 향후 인공지능 그랜드 챌린지의 다른 종목 우승팀들과 협업해 복잡한 환경에서 구조 임무를 수행하는 드론을 제작∙제공해 통합적인 임무 수행에 참여하게 된다.
우승을 이끈 심현철 교수는 “인공지능 관련 기술 개발의 중요성이 강조되고 있는 만큼 세계적으로 경쟁력 있는 기술을 개발하기 위해 매진할 계획”이라고 전했다. 이어, 심 교수는 “연구실에서 실내 비행 드론 외에도 민간 무인항공기, 자율주행차량, 배달 로봇, 캠퍼스 주행 트램 등을 개발하고 있으며 이들 자율이동체들에 요구되는 인공지능 기술을 개발 적용해서 관련 분야의 기술력 축적에 기여하고 싶다”고 강조했다.
2020.11.27
조회수 34585
-
성형진 교수 연구팀, 랩온어칩(Lab on a Chip)지 표지논문 게재
우리 대학 기계공학과 성형진 교수 연구팀(초세대협업연구실)이 고주파수 표면탄성파 기반 마이크로스케일 음향흐름유동을 이용해 나노리터급 액적 내 화학적 농도 제어 기술을 개발했다.
동전 크기의 초소형 미세유체칩 내에 서로 섞이지 않는 두 유체로 조성된 마이크로스케일 액적을 기반으로 하는 액적 기반 미세유체역학 분야에서 개별 액적 내 화학적 농도를 제어하기 위해 그동안 많은 노력이 기울여져 왔다. 하지만 지금까지 개발된 액적 내 화학적 농도 제어 기술은 복잡한 미세유로 혹은 별도의 외부 구동시스템이 필요하거나, 만들어진 액적의 병합 혹은 희석을 통해 액적 내 화학적 농도를 제어하기 때문에 동적 제어가 불가능하고 액적 간 화학적 농도 구배를 형성하기 어렵다는 한계를 지니고 있었다.
이번 연구에서 성형진 교수 연구팀은 고주파수 표면탄성파를 미세유체칩 내 유동에 집속하여 음향흐름유동을 발생시켜 농도 제어가 필요한 액상 화학 시료와 완충용액을 혼합한 후, 혼합된 액상 시료를 분산상으로 하는 나노리터급 액적을 생성함으로써 액적 내 화학적 농도의 정밀 제어할 수 있음을 보였다. 개발된 기술을 활용하여 미세유체칩 내 고속으로 생성되는 개별 액적의 화학적 농도를 동적으로 제어할 수 있으며, 더 나아가 액적라이브러리 내 액적 간 화학적 농도 구배를 자유롭게 형성할 수 있는 최초의 기술이라는 점에서 기존 기술보다 진일보한 기술이라는 평가를 받았다.
아울러 평면파 각스펙트럼 이론과 등가 구경 이론을 이용해 원형 빗살무늬전극에서 생성되는 집속 표면탄성파의 집속점 위치가 기하학적 중심이 아니라는 점을 밝혔다. 또한 MHz 대역의 초음파 대역의 압전기판 위 표면탄성파 및 유체 내 종파의 감쇄에 의해 생성되는 마이크로스케일 음향흐름유동 및 와류를 전산유체역학적으로 가시화하여 인가되는 표면탄성파의 진폭과 생성되는 음향흐름유동장 사이의 관계를 규명해 효율적인 마이크로스케일 유동 혼합을 위한 조건을 제시했다.
이번 연구는 영국왕립화학회(Royal Society of Chemistry)에서 발간하는 미세유체역학 및 마이크로타스(microTAS) 분야의 세계적 권위 국제학술지인 랩온어칩(Lab on a Chip)지 2020년 21호의 표지논문으로 선정됐다 (논문명: Acoustofluidic generation of droplets with tunable chemical concentrations). 이는 성형진 교수의 Lab on a Chip 학술지 2016년 4호, 17호, 2017년 6호, 2018년 3호, 19호에 이은 여섯 번째 표지논문으로 미세유체역학 분야의 선도적 연구 성과다.
성형진 교수 연구팀은 그동안 미세유체역학, 난류, 고체-유체 상호작용 연구 분야에서 탁월한 연구 성과를 내 SCI급 국제학술지에 380여편의 논문을 게재했으며, 이번 연구는 과학기술정보통신부의 재원으로 한국연구재단의 중견연구와 초세대협업연구실의 지원으로 수행됐다.
박진수 박사 (현 전남대 교수)와 성형진 교수는 “이번 연구에서 개발된 음향미세유체역학 기술을 통해 마이크로스케일 액적 내 화학적 농도를 칩 내에서 정밀·동적 제어하고 액적 간 농도 구배를 형성할 수 있는 최초의 기술로서, 개발된 기술이 약물스크리닝, 단일 세포 및 입자 기반 분석, 기능성 마이크로캡슐 합성 등 액적 기반 미세유체역학 시스템이 사용되는 다양한 분야에서 핵심 원천기술로 널리 활용될 수 있을 것으로 기대된다”라며 연구 의의를 밝혔다.
2020.11.10
조회수 31069
-
적외선 세기·위상 제어 가능한 메타표면 개발
우리 대학 전기및전자공학부 장민석 교수와 미국 위스콘신 대학 브라(Victor Brar) 교수 연구팀이 적외선의 세기와 위상을 독립적으로 제어하는 동시에 전기 신호로 광학적 특성을 조절할 수 있는 그래핀 기반 메타 표면을 이론적으로 제안했다.
이번 연구를 통해 기존 능동 메타 표면 분야의 난제였던 빛의 세기와 위상의 독립적 제어 문제를 해결해 중적외선 파면을 더 정확히 고해상도로 변조할 수 있을 것으로 기대된다.
한상준 석사과정과 위스콘신 대학교 김세윤 박사가 공동 1 저자로 참여한 이번 연구는 국제 학술지 ‘ACS 나노(ACS Nano)’ 1월 28일 자 전면 표지논문으로 게재됐다. (논문명 : Complete complex amplitude modulation with electronically tunable graphene plasmonic metamolecules)
광변조기술은 홀로그래피, 고해상도 이미징, 광통신 등 차세대 광학 소자 개발에 필수적인 기반 기술이다. 기존 광변조기술에는 액정을 이용한 방식과 미세전자기계시스템(MEMS)을 이용한 방식이 있다. 그러나 두 방식 모두 단위 픽셀의 크기가 회절 한계보다 크고, 구동 속도에 제한이 있다는 문제가 있었다.
메타표면은 이러한 문제들을 해결할 수 있기에 차세대 광변조기술의 강력한 후보이다. 메타표면은 자연계의 물질이 가질 수 없는 광학적 특성을 가지며, 회절 한계를 극복한 고해상도의 상을 맺는 등 전통적인 광학 시스템의 한계를 극복할 수 있다는 장점이 있다. 특히, 능동 메타표면은 전기 신호로 그 광학적 특성을 실시간 제어할 수 있어 적용 범위가 넓은 기술로 평가받고 있다.
그러나 기존에 연구되던 능동 메타표면은 빛의 세기 조절과 위상 조절 간의 불가피한 상관관계 문제가 있다. 기존 메타표면들은 개별 메타 원자가 하나의 공진 조건만을 가지도록 설계됐으나, 단일 공진 설계는 빛의 진폭과 위상을 독립적으로 제어하기에는 자유도가 부족하다는 한계점이 있다.
연구팀은 두 개의 독립적으로 제어 가능한 메타 원자를 조합해 단위체를 구성함으로써 기존 능동 메타표면의 제한적 변조 범위를 획기적으로 개선했다.
연구팀이 제안한 메타표면은 중적외선의 세기와 위상을 독립적으로 회절 한계 이하의 해상도로 조절할 수 있어 광 파면의 완전한 제어가 가능하다.
연구팀은 제안된 능동 메타표면의 성능과 이러한 설계 방식을 응용한 파면 제어의 가능성을 이론적으로 확인했다. 특히, 복잡한 전자기 시뮬레이션이 아닌 해석적 방법으로 메타표면의 광학적 특성을 예측할 수 있는 이론적 기법을 개발해 직관적, 포괄적으로 적용 가능한 메타표면의 설계 지침을 제시했다.
연구팀의 기술은 기존 파면 제어 기술 대비 월등히 높은 공간 해상도로 정확한 파면 제어가 가능할 것으로 기대된다. 이 기술을 기반으로 향후 적외선 홀로그래피, 라이다(LiDAR)에 적용 가능한 고속 빔 조향 장치, 초점 가변 적외선 렌즈 등의 능동 광학 시스템에 적용 가능할 것으로 보인다.
장민석 교수는 “이번 연구를 통해 기존 광변조기 기술의 난제인 빛의 세기와 위상의 독립제어가 가능함을 증명했다”라며 “앞으로 복소 파면 제어를 활용한 차세대 광학 소자 개발이 더욱 활발해질 것으로 예상된다”라고 말했다.
2020.02.18
조회수 13633
-
김희탁 김상욱 교수, 멤브레인 필요 없는 새로운 물 기반 전지 개발
우리 대학 생명화학공학과 김희탁 교수와 신소재공학과 김상욱 교수 공동 연구팀이 전기화학 소자의 핵심 부품인 멤브레인을 사용하지 않고도 에너지 효율 80% 이상을 유지하면서 1천 번 이상 구동되는 새로운 개념의 물 기반 아연-브롬 전지를 개발했다.
이번 연구를 통해 일본, 미국의 수입에 의존해 온 다공성 분리막이나 불소계 이온교환막을 사용하지 않는 기술로, 해당 기술에 대한 대외 의존도를 낮출 수 있을 것으로 기대된다.
이주혁 박사과정과 변예린 박사후연구원이 공동 1 저자로 참여한 이번 연구는 국제 학술지 ‘어드밴스드 머티리얼즈(Advanced materials)’12월 27일자 표지논문에 선정됐다.(논문명: High-Energy Efficiency Membraneless Flowless Zn-Br Battery: Utilizing the Electrochemical-Chemical growth of Polybromides)
최근 태양광, 풍력 등 신재생에너지의 불안정한 전력 공급을 해결하기 위해 전기 에너지를 미리 저장했다가 필요한 시간대에 사용할 수 있는 에너지저장장치(ESS)가 주목받고 있다.
현재는 리튬이온전지가 에너지저장장치용 이차전지로 사용되고 있으나 발화성 유기 전해액 및 리튬계 소재로 인한 발화의 위험성을 지니고 있다. 지난 2017년부터 올해 10월까지 총 21건의 에너지저장장치 화재사고가 발생했으며, 전체 에너지저장장치 시설 1천 490개 중 35%인 522개의 가동이 중단되기도 했다.
이러한 이유로 물을 전해질로 사용한 비 발화성 물 기반 이차전지 기술이 에너지저장장치용 차세대 이차전지로 주목받고 있다. 특히 다양한 물 기반 전지 기술 중 아연과 브롬을 활물질로 사용하는 아연-브롬 레독스 흐름 전지는 높은 구동 전압 및 높은 에너지 밀도를 가져 1970년대부터 지속해서 개발돼왔다.
그러나 아연-브롬 레독스 전지는 브롬이 아연과 반응해 전지 수명을 단축시키는 문제로 인해 상용화가 지연됐다. 이러한 반응을 억제하기 위해 펌프를 이용해 브롬이 함유된 전해질을 외부 탱크로 이송해 왔으나, 이는 펌프 구동을 위한 에너지 소모 및 브롬에 의한 외부 배관이 부식되는 문제를 동반한다.
브롬을 포획하는 전해질 첨가제 및 브롬의 이동을 차단할 수 있는 멤브레인에 대한 개발이 진행됐으나, 가격증가 및 출력 저하의 문제점이 발생했다.
김희탁 교수와 김상욱 교수 공동 연구팀은 일본, 미국에 의존하던 값비싼 멤브레인 소재와 어떠한 첨가제도 사용하지 않는 새로운 물 기반 아연-브롬 전지를 개발했다.
전해질 내의 이온과 외부 전기회로 사이의 전자를 주고받는 한정된 역할만 수행하던 전극의 기능에 멤브레인과 첨가제가 담당하던 브롬을 포획할 수 있는 기능을 추가했다.
질소가 삽입된 미세기공 구조를 전극 표면에 도입해 미세기공 내부에서 비극성 브롬을 극성 폴리브롬화물로 전환한 뒤, 질소 도핑 카본과 폴리브롬화물간 쌍극자-쌍극자 상호 작용을 통해 폴리브롬화물을 기공 내부에 고정했다.
이 기술은 멤브레인의 기능을 전극이 담당하므로 고가의 멤브레인이 필요 없으며, 브롬을 외부 탱크가 아닌 전극 내부에 저장함으로써 펌프 및 배관을 제거할 수 있어 가격 저감 및 에너지 효율을 증대했다.
연구팀이 개발한 다기능성 전극을 이용한 멤브레인을 사용하지 않는 물 기반의 아연-브롬 전지는 리튬-이온 전지보다 45배 저렴할 뿐 아니라, 에너지 효율 83% 이상을 보이며 1천 사이클 이상 운전이 가능하다.
김상욱 교수는 “차세대 물 기반 전지의 한계를 극복하기 위한 나노소재 기술을 이용한 새로운 해결책을 제시했다”라고 말했다.
김희탁 교수는 “이번 연구를 통해 기존보다 안전하고 경제적인 에너지저장장치의 개발이 가속화되기를 기대한다”라고 말했다.
이번 연구는 KAIST 나노융합연구소, 에너지클라우드 사업단, 과학기술정보통신부 리더연구자지원사업인 다차원 나노조립제어 창의연구단의 지원을 받아 수행됐다.
그림 1. 브롬 활물질을 전극내부에서 폴리브롬화물로 전환하여 저장하는 다기능성 전극의 메커니즘의 모식도와 멤브레인을 장착하지 않고 구동되는 전지의 실제 모습
그림 2. 질소가 도핑된 미세기공이 코팅된 다기능성 전극의 제조 과정
2020.01.08
조회수 17066
-
정재웅 교수, 스마트폰으로 뇌 신경회로 무선 제어 기술 개발
〈 김충연, 변상혁 박사과정, 정재웅 교수〉
우리 대학 전기및전자공학부 정재웅 교수와 미국 워싱턴대(University of Washington) 마이클 브루카스(Michael Bruchas) 교수 공동 연구팀이 스마트폰 앱 조작을 통해 약물과 빛을 뇌 특정 부위에 전달함으로써 신경회로를 정교하게 조절할 수 있는 뇌 이식용 무선 기기를 개발했다.
이번 기술 개발을 통해 장기간의 동물 실험이 필요한 신약 개발뿐 아니라 치매, 파킨슨병 등 뇌 질환 치료에도 적용할 수 있을 것으로 기대된다.
라자 콰지(Raza Qazi, 1저자), 김충연, 변상혁 연구원이 개발하고 워싱턴대 신경과학 연구원들이 공동으로 참여한 이번 연구는 의공학 분야 국제 학술지 ‘네이처 바이오메디컬 엔지니어링(Nature Biomedical Engineering)’ 8월 6일 자에 게재됐다. (논문명 : Wireless optofluidic brain probes for chronic neuropharmacology and photostimulation).
광유전학과 신경약물학은 주변 신경회로에 영향을 주지 않고 목표로 하는 뉴런이나 신경회로만을 빛 또는 약물, 혹은 그 둘의 조합을 이용해 정교하게 제어할 수 있다. 기존의 전기자극을 활용한 방법에 비해 훨씬 더 높은 시공간적 해상도를 가져 최근 뇌 연구 및 뇌 질병 치료 목적으로 주목받고 있다.
하지만 현재 뇌 연구에 일반적으로 쓰는 기기는 상대적으로 크기가 커 뇌 조직 손상, 정교한 선택적 신경회로 제어 불가, 하나의 다기능성 프로브(probe) 형태로 구현이 어렵다. 또한, 기존 기기는 실리카(silica)와 금속 등 고강성 재료로 제작돼 부드러운 뇌 조직과의 기계 특성적 간극이 있다. 이러한 특성으로 인해 염증반응을 악화시켜 장기간 이식용으로 적합하지 않다.
무엇보다 일반적으로 연구실에서 쓰이고 있는 광섬유, 약물주입관 등은 뇌 이식 후 외부기기에 선이 연결된 형태로 사용해야 해 자유로운 행동을 크게 제약하게 된다.
연구팀은 중합체(polymer) 미세유체관과 마이크로 LED를 결합해 머리카락 두께의 유연한 탐침을 만들고, 이를 소형 블루투스 기반 제어 회로와 교체 가능한 약물 카트리지와 결합했다. 이를 통해 스마트폰 앱을 통해 무선으로 마이크로 LED와 약물 전달을 제어할 수 있는 무게 2g의 뇌 이식용 기기를 구현했다.
특히 약물 카트리지는 레고의 원리를 모사해 탐침 부분과 쉽게 조립 및 분리할 수 있도록 제작해, 필요할 때마다 새로운 약물 카트리지를 결합함으로써 원하는 약물을 장기간에 걸쳐 뇌의 특정 부위에 반복 전달할 수 있도록 만들었다.
연구팀은 이 기기를 쥐의 뇌 보상회로에 이식한 후 도파민 활성 약물과 억제 약물이 든 카트리지를 기기와 결합했다. 그 후 간단한 스마트폰 앱 제어와 도파민 활성 약물을 이용해 원하는 타이밍에 자유롭게 움직이는 쥐의 행동을 증가, 억제하는 데 성공했다.
또한, 연구팀은 쥐의 뇌에서 장소 선호도를 유도할 수 있는 부위에 빛에 반응하는 단백질을 주입해 신경세포가 빛에 반응하도록 처리했다.
그 후 쥐가 특정 장소로 이동했을 때 마이크로 LED를 켜 빛 자극을 통해 쥐가 그 장소에 계속 머물고 싶게 만들었다. 반대로 약물 전달을 통해 뇌 신경회로를 제어함으로써 쥐의 특정 장소 선호도를 없애는 데도 성공했다.
정 교수는 “빛과 약물을 이용한 신경회로 제어는 기존의 전기자극 방법보다 훨씬 더 정교해 부작용 없는 뇌 제어가 가능하다”라며 “개발된 기기는 간단한 스마트폰 조작으로 뇌의 특정 회로를 빛과 약물을 이용해 반복적, 장기적으로 무선 제어가 가능해 뇌 기능을 밝혀내기 위한 연구나 향후 뇌 질환의 치료에도 유용하게 적용할 수 있을 것이다”라고 말했다.
연구팀은 이 기술을 인체에 적용하기 위해 두개골 내에 완전히 이식할 수 있고 반영구적 사용이 가능한 형태로 디자인을 발전시키는 확장 연구를 계획하고 있다.
이번 연구는 한국연구재단 신진연구자지원사업(완전 이식 가능한 무선 유연성 광유체 뉴럴 임플랜트 개발 및 뇌 연구를 위한 광유전학/광약물학에의 적용) 및 기초연구실 지원사업(유전자 및 신경회로 조절 기반 중독 행동 제어 기초연구실)의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 디바이스가 이식된 쥐의 사진
그림2. 스마트폰앱을 이용한 마이크로 LED 컨트롤
그림3. 개발된 뇌 이식용 무선 디바이스
2019.08.08
조회수 21086