본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%B4%88%ED%8C%8C%EB%A6%AC
최신순
조회순
서성배 교수, 당뇨에 큰 영향 미치는 뇌 혈당조절 신경세포 발견
〈 오양균 박사, 서성배 교수 〉 우리 대학 생명과학과 서성배 교수와 뉴욕대학교(NYU) 오양균 박사 공동연구팀이 초파리 모델 시스템을 이용해 뇌 속에 체내 혈당에 직접적인 기능을 하는 포도당 감지 신경세포를 발견하고 그 구체적인 원리를 밝혔다. 이번 연구는 초파리 뇌 속의 포도당 감지 신경세포가 인슐린 생산 조직 활성화, 글루카곤 생산 조직 활동 억제 등을 통해 체내 혈당 조절에 어떻게 관여하는지를 처음으로 밝혀낸 중요한 단서로, 당뇨병의 진단 및 치료에 새로운 가능성을 열 것으로 기대된다. 생명과학과 출신의 오양균 박사가 1 저자로 참여하고 서성배 교수가 교신저자로 참여한 이번 연구 결과는 국제학술지 ‘네이처(Nature)’ 10월 23일 자 온라인판에 게재됐다. (논문명 :A glucose-sensing neuron pair regulates insulin and glucagon in Drosophila) 한국인의 당뇨병 유병률은 14%로 2018년 기준 환자 500만 명을 돌파했다. 당뇨병 증가속도 세계 1위, 잠재적 환자는 4명 중 1명꼴이지만 발병원인은 정확하게 규명되지 않았다. 유전적 요인과 환경적 요인이 존재하지만 대부분 췌장 인슐린 분비세포 기능이 저하되면서 병이 시작되는 것으로 알려져 있다. 최근에는 뇌가 당뇨병의 정도에 영향을 미칠 수 있다는 사실이 밝혀지기도 했다. 대부분 당뇨병 환자에게 스트레스가 당뇨병 증세에 영향을 미치고 혈당 조절을 어렵게 하는데 뇌 어딘가에 존재하는, 알려지지 않은 혈당 조절 능력 때문이라는 것이 학계 주장이다. 서성배 교수 연구팀은 오래전부터 초파리를 이용해 혀나 내장기관뿐 아니라 동물의 뇌 속에도 포도당을 감지하는 세포와 수용체가 존재한다는 사실을 연구해왔다. 인간 두뇌의 시상하부나 후뇌 등에 포도당을 감지하는 신경세포가 존재할 것이라는 점은 예측돼왔지만, 이런 세포들이 어떻게 포도당을 감지해 몸의 각 부위에 명령을 내리는지에 대한 연구는 지금까지 없었다. 연구팀은 초파리 전체 뇌 신경조직을 대상으로 한 광범위한 스크리닝을 통해 초파리가 포도당의 영양적 가치를 판단하는데 필수적인 한 쌍의 신경세포를 발견했다. 이 한 쌍의 신경세포가 체내 포도당 농도 증가에 반응해 활성화되는 특징을 가지고 있음을 파악했다. 연구팀은 약학적, 유전학적 방식을 사용해 이들 세포가 인간의 췌장 세포와 유사한 분자적 시스템을 통해 포도당을 인지한다는 사실을 확인했다. 이를 기반으로 연구팀은 포도당 감지 신경세포가 어떠한 신경세포 및 조직에 신호를 전달하는지에 대해 연구했다. 연구팀은 해당 신경세포가 초파리의 인슐린 생산을 담당하는 신경조직(insulin-producing cells, IPCs)과 글루카곤의 기능을 하는 단백질을 생산하는 조직(AKH-producing cells)에 각각 축삭돌기(Axon, 신경 세포체에서 뻗어 나온 돌기)를 이루고 있음을 확인했다. 이 결과는 한 쌍의 포도당 감지 신경세포가 체내 혈당 조절에 중요한 호르몬을 생산하는 조직들에 직접 체내 영양 정보를 전달할 수 있다는 가능성을 발견한 것이다. 이를 확인하기 위해서 연구팀은 포도당 감지 신경세포와 두 호르몬 분비 조직들 사이의 물리적, 기능적 상호작용들을 확인했다. 그 결과 한 쌍의 포도당 감지 신경세포가 활성화된 경우 인슐린 생산 조직 역시 활성화되며 반면에 글루카곤 생산 조직의 활동은 억제됨을 확인했다. 또한, 연구팀은 포도당 감지 신경세포를 억제할 경우 인슐린 생산 조직의 억제로 인해 혈중 인슐린 농도가 감소하며, 글루카곤 생산 조직에 대한 억제가 사라짐에 따라 혈중 글루카곤 농도가 증가 됨을 확인했다. 이들 호르몬의 변화로 인해 혈중 포도당 농도가 유의미하게 증가함을 최종적으로 확인했다. 뇌 속에 단 한 쌍의 포도당 감지 신경세포만의 활동을 조절함으로써 당뇨병의 증상을 가지는 초파리를 인위적으로 만들 수 있는 것이다. 한발 더 나아가 연구팀은 초파리에서 신경전달 기능을 하는 짧은 단백질의 한 종류인 sNPF(small Neuropeptide F)가 해당 포도당 감지 신경세포에서 발현됨을 파악하고 포도당에 노출됐을 때 이 신경전달물질이 분비됨을 확인했다. 또한, 연구팀은 인슐린 생산 조직과 글루카곤 생산 조직에서 sNPF 의 수용체가 포도당 감지 신경세포의 신호를 받는데 필수적인 역할을 함을 증명했다. 서성배 교수는 “이번 연구 결과는 초파리에서 의미 있는 발견을 했다는 사실을 넘어 당뇨병 원인 규명과 치료의 패러다임을 근본적으로 바꿀 수 있는 계기를 마련한 것이다”라며 “뇌에서 만들어지는 신호가 체내 혈당 조절에 근본적인 역할을 함이 구체적으로 규명되면 한 단계 진보된 당뇨병의 진단 및 치료뿐 아니라 비만, 대사질환 치료도 가능해질 것이다”라고 말했다. □ 그림 설명 그림1,2. 서성배 교수 연구성과 개념도. 혈당에 반응하는 CN neuron의 Axon이 두 갈래로 갈라지며 갈라진 axonal branch는 인슐린을 만드는 세포를 활성화시키고 다른 갈라진 axonal branch는 글루카곤을 만드는 세포를 억제시킴
2019.10.24
조회수 13073
최광욱 교수, 신체 세포조직의 성장 원리 규명
우리 대학 생명과학과 최광욱 교수 연구팀이 신호전달체계에 존재하는 ‘14-3-3’ 단백질이 신체 기관 발달 및 세포 조직 성장에 새롭게 관여함을 규명했다. 이번 연구는 네이처의 자매지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 6일자 온라인 판에 게재됐다. (논문명: 14-3-3 proteins regulate Tctp-Rheb interaction for organ growth in Drosophila) 우리 신체에는 토르 신호(Tor signaling)라고 불리는 신호전달체계가 존재한다. 이 신호전달체계는 단백질 합성을 늘려 세포 크기를 키우거나 세포 숫자를 늘리는 역할을 한다. 토르 신호가 너무 많으면 암을 유발하기도 하고, 반대로 너무 적으면 신체 기관이 제대로 성장을 할 수 없게 된다. 이와 같이 토르 신호는 세포 조직의 성장과 밀접한 관련이 있다. 이 토르 신호를 조절하는데 Tctp(Translationally controlled tumor protein)와 Rheb 단백질이중요한 역할을 한다. 최 교수 연구팀은 과거 연구에서 토르 신호전달체계에서 Tctp 단백질이 Rheb 단백질의 기능 조절에 영향을 끼친다는 것을 밝혔다. 하지만 Tctp와 Rheb이 어떤 방식으로 조절되는지, 중간에 어떤 매개체가 필요한지 등은 밝혀내지 못했다. 연구팀은 문제를 해결하기 위해 초파리를 이용한 유전적 상호작용 분석 실험을 수행했다. 그리고 14-3-3 단백질이 Tctp와 Rheb 사이의 다리 역할을 해 두 단백질이 상호작용할 수 있음을 밝혔다. 초파리 체내에는 두 개의 14-3-3 동종형 유전자가 존재한다. 따라서 두 개 중 하나가 없어도 현저한 성장 장애는 나타나지 않는다. 그러나 연구팀은 Tctp 또는 Rheb의 기능이 부분적으로 손상된 상태에서 14-3-3의 결핍이 발생하면 기관 성장에 심각한 문제가 생기는 것을 확인했다. 이러한 상승효과의 원리를 통해 14-3-3 단백질이 Tctp와 Rheb 단백질 사이의 결합을 직접적으로 조절해 성장에 관여함을 규명했다. 이번 연구에 기초해 향후 고등 동물에서도 유사한 조절 기작이 존재하는지 확인하기 위한 연구가 진행될 것으로 예상된다. 고등 동물에서의 연구도 성공적으로 이뤄진다면 향후 암 조직의 조절이나 기관 발달 촉진 등의 효과도 얻을 수 있을 것으로 기대된다. 연구팀은 14-3-3 유전자가 초파리 뿐 아니라 인체에도 존재하기 때문에 토르 신호전달체계의 문제로 인한 종양의 원인 규명 및 치료법 예방에 중요한 역할을 할 것으로 전망했다. 최 교수는 “인체에는 유전자 중복으로 인해 기능이 밝혀지지 않은 질병 관련 유전자들이 많다”며 “초파리 모델 동물이 질병 관련 유전자들의 생체 내 작용을 규명하는 데 기여할 것이다”고 말했다. 생명과학과 르 풍 타오 학생이 주도한 이번 연구는 교육부와 한국연구재단이 추진하는 중견연구자지원사업과 글로벌 연구실지원사업의 일환으로 수행됐다. □ 사진 설명 사진1. 14-3-3과 tctp 단백질 결핍으로 인해 초파리 눈이 소실된 사진 사진2. 14-3-3과 tctp 단백질 결핍으로 인해 초파리 날개가 소실된 그림 사진3. 14-3-3 결핍으로 인한 초파리의 두뇌부가 상실된 사진
2016.05.18
조회수 12758
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1