본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%ED%95%98%EC%9D%B4%EB%93%9C%EB%A1%9C%EA%B2%94
최신순
조회순
염증없이 체내·외 측정 가능한 전자 신소재 개발
생체전자 의료기기는 체내에서 발생하는 신호를 읽어 생물학적 활동을 감지하거나, 조직을 자극해 질병 등을 치료하는 데 사용된다. 하지만 의료기기에 사용되는 전극 물질은 딱딱한 물성을 가지고 있어 체내에 염증반응을 일으키고 조직에 다량의 손상으로 이어질 수 있다. 따라서 조직과 같이 부드러운 성질을 가지면서도 전도성을 띠는 하이드로겔과 같은 연성 물질에 생체적합성이 높은 전도성 고분자를 체내 전극으로 사용하는 연구들이 활발하게 진행되고 있다. 우리 대학 신소재공학과 강지형 교수와 바이오및뇌공학과 박성준 교수 공동연구팀이 기존에 없었던 고전도성, 유사 조직 접착성 하이드로겔이란 신소재를 개발해 고성능 생체전자 기기를 구현했다고 4일 밝혔다. 대부분 전기 전도도가 높을수록 전도성 도메인들의 결정성이 높아지는 원리에 의해, 전도성이 높은 하이드로겔은 딱딱해지고, 부드러운 하이드로겔은 전도성이 낮을 수밖에 없다는 한계를 가진다. 이에 따라 전도성 고분자를 사용하는 하이드로겔 중, 전기 전도도가 높으면서도(10 S/cm 이상) 부드러운 물성(100 kPa 이하)을 가진 하이드로겔은 지금까지 보고된 바 없었다. 강지형 교수 연구팀은 기존에 없었던 고전도성, 유사 조직 물성 하이드로겔을 개발했다. 이 하이드로겔은 보고된 전도성 고분자 하이드로겔 중 가장 높은 전기 전도도(247 S/cm)를 띄며, 조직과 비슷한 물성(탄성율 = 60 kPa, 파괴변형률 = 410%)을 갖는다. 또한, 본 재료는 지속적인 움직임과 팽창, 수축이 있는 심장, 위와 같은 조직에서 안정적으로 기기가 작동하기 위해 필수조건인 조직에 쉽게 접착되는 장점을 가지고 있다. 공동연구팀은 원하는 생체 조직에 맞게 조정하고 그 형태에 맞추는 주형의 그물 구조에 따라 높은 질서도를 가지는 고분자 주형 네트워크를 도입했다. 따라서 주형에 맞추어 형성된 그물 네트워크는 기존 네트워크 대비 100배 이상 높은 전기 전도도를 보이며, 동시에 주형 고분자의 부드러운 특성 때문에 조직과 비슷한 물성을 지니게 된다. 변형에도 저항이 바뀌지 않아 생체전극으로서 최적의 성능을 갖는다. 또한 연구팀은 개발한 하이드로겔을 전극을 기반으로 한 높은 전기 전도도를 가진 다양한 고성능 생체전자 기기를 제작, 그 기능성을 검증했다. 높은 전기 전도도를 가진 특성으로 좌골신경 자극을 대상으로 하는 디바이스의 경우, 매우 낮은 전압(40 mV)에서 다리 근육의 움직임을 성공적으로 유도할 수 있었다. 또한 심전도 측정(ECG)을 위한 디바이스의 경우에도 매우 높은 신호 대 잡음 비(61 dB)로 신호를 측정하는 데 성공함으로써, 초고품질 생체 신호 측정을 위한 연성 기기 개발 가능성을 입증하였다. 이번 연구를 주도한 강지형 교수는 "이번 연구는 고전도성을 갖고 생체조직과 유사한 기계적 물성을 갖는 하이드로겔 개발을 위한 합성 방향을 새롭게 제시했다는 점에서 의미가 있다고 하면서, "이번에 개발된 전도성 하이드로겔은 급속도로 성장하고 있는 전자약 시장에 게임 체인저가 될 것으로 기대된다고 말했다. 우리 대학 신소재공학과 정주은 박사과정과 바이오및뇌공학과 성창훈 박사과정이 공동 제1 저자로 참여한 이번 연구 결과는 국제 학술지 ‘네이처 커뮤니케이션스 (Nature Communications)’에 4월 18일 게재됐다. (논문명: Highly conductive tissue-like hydrogel interface through template-directed assembly) 한편 이번 연구는 한국연구재단의 나노소재기술개발 미래기술연구실 사업을 받아 수행됐다.
2023.05.04
조회수 6333
신경 네트워크의 연결을 실시간으로 조절 가능한 신경 칩 플랫폼 개발
우리 대학 바이오및뇌공학과 남윤기 교수 연구팀이 나노입자 기술을 기반으로 시험관 조건에서 배양한 신경 네트워크의 연결을 실시간으로 조절할 수 있는 신경칩 플랫폼을 개발했다고 7일 밝혔다. 이번 연구는 신경 네트워크의 구조를 조절하기 위한 기존의 많은 세포 형태화 기술이 세포 배양 이전 단계에만 적용 가능한 데 반해, 네트워크의 발달 및 성숙 단계에서도 도입할 수 있다는 점에서 큰 의미가 있다. 바이오및뇌공학과 홍나리 박사과정(지도교수:남윤기)이 주도한 이번 연구 결과는 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications)' 12월 9일 字에 게재됐다. (논문명: Thermoplasmonic neural chip platform for in situ manipulation of neuronal connections in vitro) 우리 뇌의 복잡한 구조를 모방하는 신경 네트워크 모델을 체외 조건에서 구현하기 위해서는 신경세포의 위치와 연결을 원하는 구조에 맞춰 정렬하는 기술이 필요하며, 이를 위해 다양한 방식의 미세공정 기법을 통한 신경세포 형태화 기술이 개발돼왔다. 그러나 이러한 기술들은 세포를 배양하기 전에 배양기판의 표면을 개질하는 방법을 기반으로 하고 있어 배양 초기 단계에서 원하는 네트워크의 구조를 통제하는 것은 가능하나, 이후 수일 또는 수 주에 걸친 세포 간 네트워크 형성 과정 중에 네트워크 연결을 조절하는 것이 매우 어렵다는 단점이 있었다. 연구진은 세포 배양 중에도 신경 네트워크의 구조와 기능을 실시간으로 조절할 수 있는 기술을 개발하기 위해, `아가로즈 하이드로겔 (agarose hydrogel), 금 나노막대, 미세 전극 칩' 기반의 신경 칩 플랫폼을 제작했다. 해초로부터 추출한 물질로 조직공학 분야에서 활용되고 있는 아가로즈 하이드로겔은 신경세포의 흡착을 방해하는 세포 반발성을 가지고 있어, 배양기판 상에 다양한 형태의 패턴을 제작해 이 물질이 없는 영역에만 한정적으로 신경 네트워크를 형성시킬 수 있다. 또한 아가로즈 하이드로겔은 열에 의해 녹는 특성이 있어, 국소적인 열을 통해 특정한 위치의 하이드로겔을 제거할 수 있다. 연구진은 원하는 영역에만 국소적 열을 발생시키기 위한 매개체로 금 나노막대를 사용했다. 금 나노막대는 근적외선을 선택적으로 흡수해 열을 발생시킬 수 있는 광열 특성이 있다. 마지막으로 미세 전극 칩은 신경세포의 전기적 신호를 비침습적으로 장기간 측정한다. 연구진은 배양기판인 미세 전극 칩 위에 금 나노막대 층을 형성하고, 그 위에 미세 패턴을 지닌 아가로즈 하이드로겔 층을 제작함으로써, 각 미세 패턴 안에 독립된 신경 네트워크들을 구축했다. 다음으로 개발된 플랫폼을 통해 세 가지의 다른 조작 방식으로 신경 네트워크의 구조와 기능을 조절할 수 있음을 실험적으로 확인했다. 첫 번째로는, 금 나노막대 층에서 발생하는 열을 통해 네트워크 사이에 하이드로겔을 국소적으로 제거했으며, 제거된 영역을 따라 신경돌기(축삭)가 생장해 새로운 신경 연결이 생성됨을 확인했다. 두 번째로는, 네트워크를 연결하고 있는 신경돌기에 직접 열을 가함으로써 원하는 신경 연결을 선택적으로 제거할 수 있음을 관찰했다. 이러한 신경 연결의 생성과 제거 기술을 미세 전극 칩 상에서 실행함으로써, 연구팀은 네트워크의 구조적 변화에 의한 기능적 연결성을 분석할 수 있었다. 세 번째로는, 광열 자극을 이용한 신경 활성 억제 현상을 이용해 개별 네트워크의 활성 변화를 조절하면서 서로 연결된 네트워크 간의 기능적 연결성을 대응시킬 수 있음을 확인했다. 이번 연구의 교신저자인 남윤기 교수는 "이번 연구에서 개발된 신경 세포 칩 플랫폼은 신경회로의 구조와 기능을 세포 발달과정 중에 조절할 수 있다ˮ며, "앞으로 뇌신경과학 연구를 위한 다양하고 복잡한 형태의 체외 신경 모델을 구현하는 데 활용될 것으로 기대된다ˮ고 말했다. 한편 이번 연구는 과학기술정보통신부 중견연구자지원사업(도약연구)와 글로벌박사양성사업 지원을 받아 수행됐다.
2021.01.06
조회수 55796
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1