본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%ED%98%91%EB%8F%99%EC%82%AC%EC%97%85
최신순
조회순
레이저 이용한 초고속 나노물질 생산 공정 개발
- 레이저를 원하는 위치에 쪼여 나노물질 성장 세계 최초 성공 -- “획기적 공정 단축을 통해 나노소자 상용화에 기여할 것” - 우리 학교 기계공학과 여준엽 박사와 고승환 교수 공동연구팀은 집광된 레이저를 이용해 나노물질을 원하는 위치에 초고속으로 만드는 기술을 개발했다. 연구결과는 신소재 응용분야 세계적 학술지 ‘어드밴스드 펑셔널 머티리얼스(Advanced Functional Materials)" 7월 9일자 표지논문(frontispiece)에 실렸다. 이번에 개발된 기술을 활용하면 기존에 수 시간에 걸쳐 만들었던 나노와이어를 단 5분 만에 성장시킬 수 있어 소요시간이 약 1/10로 단축됐다. 또 이미 발표된 수많은 나노물질 합성법과는 달리 공정이 매우 단순해 나노소자 대량생산과 상용화 가능성을 제시한 것으로 학계와 산업계는 평가하고 있다. 기존에 나노물질을 합성 및 성장시키기 위해서는 900~1000°C의 높은 온도에서 폭발성 혹은 독성이 있는 위험한 기체를 사용해왔다. 이를 전자 소자나 전자기기로 응용하기 위해서는 합성 후 분리, 집적, 패터닝 등 복잡한 공정을 거쳐야하는 단점이 있었다. 따라서 다단계의 공정과 고비용, 비환경적인 특성 때문에 나노소자의 대량생산과 상용화에 커다란 걸림돌이 되고 있었다. 연구팀은 기판위에 나노물질 전구체(어떤 물질이 되기 전단계의 물질)를 올려놓은 후 집광된 녹색파장 대역의 연속파형 레이저를 조명해 원하는 위치에 나노와이어를 합성하는데 세계 최초로 성공했다. 이 기술을 이용하면 나노물질의 집적 및 패터닝은 물론 단 한 번의 공정으로 기능성 나노소자 제작이 가능하다. 이와 함께 기판의 종류에 상관없이 공정이 가능해 유연한 플라스틱 기판에도 적용 가능하다. 또 3차원 구조물 위에서도 자유롭게 원하는 위치에 단순 레이저 조명만으로도 나노 물질을 합성, 패터닝 할 수 있다. 여준엽 박사는 이번 연구에 대해 “빛에너지를 이용해 나노물질을 합성, 집적, 패턴, 소자제작을 한 번에 가능케 하는 새로운 공정을 세계 최초로 개발했다”며 “향후 기능성 전자 소자 개발에 드는 시간을 기존의 10분의 1도 채 안되는 수준으로 단축할 수 있다”고 말했다. 여 박사는 향후 다양한 나노물질의 조합을 통해 다기능 전자 소자의 개발의 상용화와 대량생산 공정을 개발할 계획이다. 여준엽 박사와 고승환 교수팀이 주도한 이번 연구는 KAIST 기계공학과 성형진 교수, 홍석준 박사과정, 강현욱 박사과정, 미국 UC Berkeley 그리고로폴로스 교수, 이대호 박사가 참여했으며, 한국연구재단 중견도약사업과 지식경제부 협동사업, 글로벌프런티어사업, KAIST EEWS 연구단의 지원을 받았다. 붙임 : 그림설명 그림1. 레이저 조명을 쪼여 원하는 위치에 합성된 나노 물질 그림2. 개발된 공정을 이용해 3차원 구조물 위에 합성된 나노 물질 그림3. 합성된 나노 물질을 통해 제작된 기능성 전자 소자 그림4. 어드밴스트 펑셔널 머티리얼스 프런티스피스 표지 사진
2013.07.17
조회수 18258
고성능 플렉시블 디스플레이 기술 개발
- 금속 나노입자 펨토초레이저 소결공정을 이용한 극미세 금속패턴 제작 -- 세계적 학술지 ‘어드밴스드 머티리얼즈’ 7월호 게재 - 국내 연구진이 플렉시블 디스플레이 전자소자 제작을 위한 차세대 금속 나노패터닝 기술개발에 성공했다. 우리 학교 기계공학과 고승환·양동열 교수팀이 공동으로 연구한 이번 성과는 기존의 광식각 증착공정을 이용하지 않고 수백나노의 고정밀도 금속 패턴을 펨토초레이저 스캐닝공정을 이용해 단일 디지털 공정으로 제작하는 기술을 개발했다. 이 기술을 이용하면 다양한 기판에서 고정밀 패터닝이 가능해져 유기 전자소자 기술 등과 결합하게 되면 성능과 집적도가 우수하면서도 자유자재로 휘어질 수 있는 고성능 플렉시블 전자소자나 디스플레이 등이 실현될 수 있을 것으로 기대된다. 일반적으로 집적도가 높은 전자소자 제작을 위해서는 고비용의 노광 혹은 광식각 공정이나 고진공 전자빔 공정을 통한 금속 패턴의 제작이 필수적이다. 최근에는 잉크젯 및 롤투롤(Roll to Roll) 프린팅 기술을 이용해 직접 금속 패턴 제작이 시도되고 있다. 그러나 공정 특성상 1㎛(마이크로미터, 100만분의 1미터) 이하의 정밀도 달성에는 한계가 있어 고집적·소형화에 불리했다. 연구팀은 3~6nm(나노미터, 10억분의 1미터) 크기의 녹는점이 낮은 은 나노 입자와 열확산을 최소화할 수 있는 금속 나노입자 펨토초레이저 소결공정 (Femtosecond laser selective nanoparticle sintering, FLSNS)을 개발했다. 더불어 유리, 웨이퍼, 고분자 필름 등 다양한 기판위에 1㎛이하의 고정밀도 금속 패턴을 단일 공정으로 제작할 수 있는 기술도 개발해, 이 기술을 이용해 최소 정밀도 380nm 선폭의 극미세 금속패턴 제작에 성공했다. 연구팀은 개발된 금속 패터닝 기술을 KAIST 전기 및 전자공학과 유승협 교수팀과의 협력을 통해 유기 전계효과 트랜지스터 제작공정에 적용해, 차세대 플렉시블 전자소자 제작에 활용될 수 있는 가능성을 제시했다. 고승환 교수는 “고가의 진공 전자빔 공정을 통해서만 제작 가능했던 기존의 디지털 직접 나노패터닝 기술을 비진공, 저온 환경에서 구현함으로써 전자빔 공정을 대체할 수 있을 뿐만 아니라 향후 다양한 플렉시블 전자소자 제작으로 적용될 수 있을 것으로 기대된다”고 말했다. 이번 연구결과는 한국연구재단의 나노원천기술개발 및 신진연구 사업지원, 지식경제부의 협동사업지원을 받아 수행됐으며, 재료과학기술 분야의 세계적 권위의 학술지인 ‘어드밴스드 머티리얼즈(Advanced Materials)’ 7월호에 게재됐다. ※ 용어설명금속 나노패터닝 : 고밀도로 집적된 전기/전자회로 구현을 위해서는 1㎛이하의 선폭을 갖는 고정밀도 금속패턴 구현 기술이 필요하다. 이에 따라 기존의 방법이 아닌 새로운 패터닝 공정에 관한 다양한 연구가 수행 중에 있다. 광식각 증착공정 : 미세 패턴 제작으로 널리 사용되어지고 있는 공정으로 빛에 반응하는 재료에 대해 선택적으로 빛을 조사하여 미세 패턴을 제작하고 원하는 물질을 고온, 진공 조건하에서 증착하는 공정으로 기존의 디스플레이, 반도체 제작 공정으로 이용되고 있다. 유기 전계효과 트랜지스터 : 전자기기 구동회로의 핵심소자인 트랜지스터는 전류의 흐름을 선택적으로 조절하는 역할을 한다. 트랜지스터의 구성에는 전류가 흐르는 채널로서 반도체가 필수적인데, 통상적으로는 고온처리가 필요한 실리콘 (Si)이 쓰이고 있다. 유기 전계효과 트랜지스터는 채널 물질로 박막의 유기반도체가 쓰이는 것으로서, 상대적으로 낮은 온도에서 플라스틱과 같은 다양한 기판에 제작 가능하여 유연한 전자 소자 제작에 이상적이며, 궁극적으로 소자 제작이 인쇄 방법으로 구현 될 경우 저비용 전자소자 제작에도 활용 가능할 것으로 예상되고 있다. 펨토초 레이저(femtosecond laser) : 긴 시간 동안 일정한 출력으로 레이저를 방출하는 연속형 레이저와는 달리 짧은 시간 동안만 레이저를 방출하는 것을 펄스형 레이저라고 한다. 이러한 펄스형 레이저의 방출 시간을 천조분의 1초, 즉 10-15초 까지 낮춘 것이 펨토초 레이저이다. 이러한 매우 짧은 펄스폭은 레이저가 조사되는 재료 내부에 열이 확산하는 시간(10-12s, 피코초)보다 짧기 때문에 가공시 열영향부가 작아 정밀 가공에 응용할 수 있다. 그림1. 선택적 금속 나노입자 펨토초 레이저 소결 공정 그림2. 극미세 금속 패턴
2011.08.02
조회수 20129
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1