본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%B0%A8%EC%84%B8%EB%8C%80+%EB%94%94%EC%8A%A4%ED%94%8C%EB%A0%88%EC%9D%B4%EC%86%8C%EC%9E%90+%EB%B0%8F+%EB%82%98%EB%85%B8%EC%9C%B5%ED%95%A9+%EC%97%B0%EA%B5%AC%EC%8B%A4
최신순
조회순
섬유 유기 발광 디스플레이 제작 기술 개발
최 경 철 교수 우리 대학 전기 및 전자공학부 최경철 교수 연구팀이 웨어러블 디스플레이에 적용할 수 있는 섬유 기반의 유기 발광 디스플레이 원천기술을 개발했다. 이 기술은 섬유 자체에 유기 발광 디스플레이를 제작할 수 있는 원천 기술로, 성과를 인정받아 나노 전자기술 분야 국제학술지인 ‘어드밴스드 일렉트로닉 머터리얼스(Advanced electronic materials)’ 7월 14일자 온라인 판에 게재됐다. 기존 웨어러블 디스플레이는 심미적 디자인 구현을 위해 옷 위에 부착하는 방식이다. 이 방법은 딱딱하고 유연하지 않아 실생활 적용이 어렵고, 직물의 특성을 유지하기 어렵다는 한계가 있었다. 연구팀은 문제 해결을 위해 평평한 기판 위에 유기 발광 디스플레이를 제조하는 기존 방식을 탈피했다. 대신 직물을 구성하는 요소인 섬유에 주목해 섬유 자체에 유기 발광 디스플레이를 제작했다. 이를 통해 섬유의 특성을 그대로 유지하면서도 디스플레이 기능을 살릴 수 있는 섬유 디스플레이를 구현했다. 이 기술의 핵심은 딥 코팅 공정법으로 실과 같은 3차원 형상의 기판을 용액에 담궜다 빼내며 일정한 유기물 층을 형성하는 방법이다. 이를 통해 기존 열 증착방식을 통해 제작이 어려웠던 원기둥 형상과 같은 3차원 기판에도 손쉽게 유기물 층을 형성할 수 있다. 또한 인출속도 조절을 통해 수십-수백나노 단위의 두께 조절이 가능하다. 이 기술은 두루마리 가공 기술(Roll to Roll)을 통한 연속 생산으로 저비용, 대량 생산이 가능해 섬유 기반 웨어러블 디스플레이의 상용화를 앞당길 것으로 기대된다. 최 교수는 “직물 구성 요소인 섬유에 유기발광 디스플레이를 제조할 수 있는 원천기술이다.”며 “웨어러블 디스플레이의 진입 장벽을 크게 낮출 것이다”고 말했다. 제 1 저자인 권선일 박사과정 학생은 “이 기술을 활용해 옷처럼 편안하게 입을 수 있는 웨어러블 디스플레이 제조가 가능할 것이다”고 말했다. □ 그림 설명 그림 1. 섬유 기반의 유기 발광 다이오드를 적용한 미래 웨어러블 디스플레이 개념도 그림 2. 딥 코팅 법을 이용한 섬유 기반의 유기 발광 다이오드 공정 모식도 그림 3. 제작된 섬유 기반의 유기 발광 다이오드의 사진
2015.08.05
조회수 9609
보다 밝은 투명디스플레이 개발
- KAIST 이성민 박사과정 학생, 투명 LCD‧PDP‧LED 광 효율 개선에 적용 가능한 원천기술 - - 나노 표면 플라즈몬 현상 이용해 1.6배 이상 발광효율 향상돼 -- 나노기술 분야 세계적 학술지 "스몰(Small)" 3월호 게재 - 우리 학교 전기및전자공학과 이성민 박사과정 학생(지도교수 최경철)이 나노 표면 플라즈몬 현상을 이용해 투명 디스플레이의 효율을 획기적으로 향상시킬 수 있는 원천기술을 개발했다. 이 기술을 스마트 쇼윈도우, 스마트 미러, 투명 단말기, 투명 핸드폰 등과 같은 투명한 디스플레이에 적용하면 보다 선명하게 볼 수 있는 투명디스플레이가 나올 것으로 기대된다. 현재 개발되고 있는 투명디스플레이는 출력되는 영상이 선명하지 않아 미세한 구별이 어렵기 때문에 실질적으로 상용화하기에는 역부족이라는 게 관련업계의 평이다. 왜냐하면 빛을 내는 형광체의 발광세기가 충분히 높지 않기 때문이다. 또 형광체 재료로 사용되는 희토류 금속의 가격이 폭등하고 있는 것도 상용화를 위한 걸림돌로 지적돼왔다. 이번 연구는 전기 및 전자 공학과 최경철 석좌교수팀의 이성민(31) 박사과정 학생이 주도했으며, 연구결과는 나노기술 분야 세계적 권위지 ‘스몰(Small)’ 온라인 판 3월호에 게재됐다. 최 교수 연구팀은 이번 연구를 위해 금속은 불투명하고 빛을 반사하는 특성이 있는데, 금속을 나노입자 수준으로 아주 작게 만들면 빛이 금속입자를 통과해 투명하게 보이고, 금속입자들은 공명현상을 일으켜 발광세기를 증가시키는 ‘표면 플라즈몬’ 현상에 착안했다. 이 현상을 이용해 최 교수팀은 나노크기의 은(Ag)을 희토류 금속이온이 첨가된 투명 형광물질로부터 수십 나노미터 이내에 위치하게 하면 투명 형광물질의 발광세기가 최대 63.7% 향상시킬 수 있다는 사실을 밝혀냈다. 또 이 원리를 이용하면 전기·광학적 효율도 11%나 향상돼 저전력 투명디스플레이 소자를 구현할 수 있다는 점도 이번 연구를 통해 밝혀낸 또 다른 성과다. 이 기술은 최 교수 연구팀이 지난 2009년 나노 표면 플라즈몬을 이용해 OLED의 밝기를 증가시킨 것에 대한 후속 연구 성과로 나노 표면 플라즈몬의 차세대 디스플레이에 대한 활용 가능성을 높였다는 점에서 획기적인 연구 성과로 꼽힌다. 최경철 교수는 “표면 플라즈몬은 금속박막 또는 나노입자 표면에서 일어나는 표면 자유전자들의 집단적인 진동현상”이라며 “발광체 주변에서 표면 플라즈몬 공명 특성이 나타날 경우 발광체의 발광 재결합 속도가 증가해 발광체의 발광 특성이 향상될 수 있다”고 설명했다. 특히 “이번 연구 성과는 나노 표면 플라즈몬 기술을 사용하기 때문에 소자의 투명도를 유지하면서 발광체의 광 특성을 향상시켜 투명한 LCD, PDP, LED 등 미래 투명디스플레이 소자에 확대적용이 가능하다”고 강조했다. 최 교수는 또 “이번 기술은 디스플레이 형광체에 사용되는 희토류 금속 이온의 발광 특성을 원천적으로 향상시킬 수 있는 기술로서 희토류 금속 사용량을 적게 하면서도 높은 광 효율을 얻을 수 있다”며 “최근 들어 희토류 금속 가격이 3~6배 폭등하는 세계 시장 속에서 국가 경쟁력을 강화시킬 수 있는 핵심 원천기술이 될 것”이라고 덧붙였다.(끝). □ 용 어 해 설 - 투명 디스플레이 : 빛을 내는 형광물질과 광자발광, 전계발광, 음극선 발광 원리를 이용하여 구성된 디스플레이로서 투명 재료 기술을 접목하여 발광하지 않는 상태에서는 투명하다가, 발광을 하는 경우 이미지 및 동영상을 구현할 수 있는 형태의 차세대 디스플레이 소자. - 나노 플라즈몬 현상 : 나노 크기로 형성된 금속 나노 입자에 특정 광원이 입사되었을 때, 광원의 파장에 따라 금속 나노입자의 표면에 위치한 전자가 공진적으로 진공하는 유사입자를 지칭한다. 금속 나노 입자의 재질, 모양 및 주변의 굴절률에 따라 공진하는 파장이 결정되므로 특정 색상을 띠게 되고, 유도된 표면 플라즈몬은 금속 나노 입자주위로 한정되는 특징이 있다. - 진공 열증착법 : 10-4 Torr 이하 높은 진공상태에서 증착하고자 하는 물질에 열을 가하여 기화시킨 후, 기체상태의 물질이 목표 기판에 도달하여 박막으로 증착시키는 방법. - 광효율 : 소비되는 전기량(전력) 대비 빛의 밝기가 어는 정도 인지는 알려주는 물리적인 양. - 희토류 금속 : 첨단 산업에서 많이 사용되는 원소로서 란타넘 계열의 금속 원소 및 스칸듐과 이트륨을 합쳐 총 17종의 금속원소를 지칭하는데, 디스플레이 산업에서는 가시광선 영역의 빛을 발광하는 형광체를 제조하는 데 사용된다. 최근 디스플레이 산업의 원자재 가격 상승 문제와 관련하여 희토류 금속의 가격이 상승에 대한 관심이 증가하고 있다. 그림1. "나노 표면 플라즈몬‘ 이 발생하는 경우 전기적 필드가 집중되는 모습 그림2. "나노 표면 플라즈몬‘ 이용한 투명 디스플레이 그림 3 : 나노 플라즈몬 공명을 유도하기 위한 은 나노 입자의 형상
2012.03.21
조회수 26017
최경철 교수연구팀, 세계 최초의 저비용 상온 공정이 가능한 표면 플라즈몬 OLED 원천기술 개발
- 응용물리와 광학 분야 세계적 권위 학술지에 논문발표 및 네이쳐 포토닉스(Nature Photonics)의 8월의 연구 하이라이트로 소개 예정 전기 및 전자공학과 최경철 교수(차세대 플렉시블 디스플레이 융합센터 소장, 45세)연구팀이 OLED의 효율을 획기적으로 향상시키는 원천기술을 세계 최초로 개발해 주목을 끌고 있다. 최 교수팀은 나노 크기의 은(Ag)을 표면 플라즈몬(plasmon)을 일으키는 물질로 사용하여, OLED에서 발생하는 빛과 결합할 경우 발광 재결합 속도가 빨라짐으로써 OLED 밝기가 크게 증가할 수 있다는 사실을 밝혔다. 또한 진공 열증착법을 이용해 나노 크기의 은(Ag)을 OLED 내부의 활성층과 매우 가까운 곳에 삽입하는 기술을 개발함으로써 세계 최초로 표면 플라즈몬을 이용한 OLED의 저비용 상온 공정이 가능하도록 했으며 최대 75%이상의 OLED 발광효율을 향상시켰다. 이 연구는 차세대 디스플레이인 OLED에 저비용의 나노입자를 이용한 표면 플라즈몬 기술을 접목한 새로운 디스플레이 소자 연구로 주목받고 있다. 최 교수는 “표면 플라즈몬을 이용해 개발된 기술은 OLED의 광효율을 향상시킬 수 있는 새로운 기술로서, 원천기술 확보 및 국제경쟁력을 갖는 OLED 및 플렉시블 디스플레이 기술개발에 크게 기여할 수 있을 것”이라고 강조했다. 또한 “이번에 개발된 기술은 디스플레이뿐만 아니라 유기 태양광 전지에서도 적용 가능한 저온 저가의 공정으로 에너지 변환 효율의 향상을 기대할 수 있다.”고 밝혔다. 이 연구는 양기열(22세) 연구원이 주도했으며, 연구결과는 응용물리분야의 세계적 권위지인 ‘Applied Physics Letters’ 4월호, 광학분야 세계 최고의 저널인 ‘Optics Express’ 인터넷판 6월 25일자에 발표됐다. 특히, 이 연구 결과는 네이쳐 포토닉스(Nature Photonics)의 8월의 연구 하이라이트에도 소개될 예정이며, 그 밖에도 응용 물리학 분야의 우수 연구 결과만을 선정하여 발표하는 "울트라패스트 가상 저널(Virtual Journal of Ultrafast Science)" 에 소개됐다. 이 연구는 한국연구재단의 ‘선도연구센터 사업’ 및 ‘KAIST 고위험 고수익 사업’의 지원을 받아 나노종합팹센터와 공동 수행했다.
2009.07.09
조회수 19836
최경철 교수팀, 세계 최고 고효율 PDP 발광 핵심 원천기술 개발
- PDP 전력 소모 문제 해결할 수 있는 핵심 원천 기술 - 미국 정보 디스플레이 학회(5월) 초청 논문으로 발표 예정 PDP(Plasma Display Panel) 전력 소모를 대폭 개선할 수 있는 고효율 발광 핵심 원천기술이 국내 연구진에 의해 개발되었다. KAIST(총장 서남표) 전기및전자공학과 최경철(崔景喆, 43) 교수팀은 디지털 TV 대표격인 PDP의 새로운 셀 구조와 구동 방식을 개발했다. 이 기술은 PDP의 발광 효율을 현재보다 4배 이상 높일 수 있는 핵심 원천기술로 오는 5월 21일 미국 롱비치에서 개최되는 SID 2007(Society for Information Display 2007)에 초청논문으로 발표될 예정이다. SID는 세계 최대의 정보 디스플레이 학회다. 기존의 PDP의 발광 효율은 1.5 - 2 lm/W(루멘/와트; 풀 화이트 기준)이었지만, 崔 교수 팀이 개발한 원천 기술을 적용하면 PDP 발광 효율이 12 lm/W(그린 셀 기준; 풀 화이트로 환산하면 8.4 lm/W 이상)까지 얻을 수 있다. 崔 교수팀은 지난 2월 최대 발광 효율 8.7 lm/W(그린 셀 기준)를 달성한 논문을 IEEE 전자기기학회지(IEEE Transaction on Electron Devices)에 게재하여 주목을 받았다. 이후 새로운 구동 방식에 대한 지속적인 연구로 세계 최고인 12 lm/W의 발광 효율을 달성했다. PDP는 다른 디스플레이 소자에 비해 정격 소비 전력이 높은 디스플레이 소자로 인식되어 왔다. 그 이유는 PDP 셀 내의 에너지 효율이 떨어져 발광 효율이 낮기 때문이다. 발광 효율을 향상시키기 위해서는 PDP 셀 내의 마이크로 플라즈마를 효과적으로 제어하여 효율을 향상시켜야 한다. 국내 PDP 개발 업체들은 일본 후지쯔사가 개발한 3전극 셀 구조 및 구동 방식을 사용하고 있다. 崔 교수팀이 개발한 셀 구조는 4전극 형태로 된 새로운 구조다. PDP 셀 구조를 기존의 3전극 구조 대신 4전극 구조로(그림1 참조) 셀 내의 두 개의 유지 전극 사이에 보조 전극을 삽입했다. 이 보조 전극을 통해 PDP 셀 내의 마이크로 플라즈마 및 벽 전하를 제어함으로 효율을 향상시킬 수 있었다. 초고효율 셀 구조를 안정되게 구동, 디스플레이 할 수 있는 신구동 방식(그림2 참조)의 핵심 원천 기술도 함께 개발하였다. 崔 교수는 “이 핵심 원천 기술을 이용하면 국내 PDP 생산 기업들이 일본 및 미국의 PDP 원천 기술에 대한 사용료 없이 고효율의 디지털 PDP TV 생산이 가능하게 될 것이다. 풀(Full) HD 해상도를 갖는 PDP TV의 밝기가 감소하는 단점을 개선하면 타 디스플레이와의 상업적 경쟁력을 높일 수 있다.”고 말했다. 이 기술은 국내 특허 1건을 등록하고 국제 특허 1건과 국내 특허 2건을 출원중에 있다. 이 연구는 차세대정보디스플레이 기술 개발 사업 및 KAIST 기관고유 사업에 의해 이루어졌다.
2007.04.16
조회수 18564
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1