본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
MOLECULAR+STRUCTURAL+DYNAMICS+LAB
최신순
조회순
단백질 접힘 과정에서의 구조 변화 관측에 성공
우리 대학 화학과 이효철 교수(기초과학연구원 나노물질 및 화학반응 연구단 부연구단장 겸임) 연구팀이 풀려있는 단백질이 접히는 과정을 분자 수준에서 규명하는 데 성공, 단백질 구조기반의 신약 개발을 위한 토대를 마련했다. 획기적인 연구성과를 냈다고 평가받고 있는 이 교수 연구팀은 단백질 접힘 경로에서의 단백질 구조 변화를 실시간으로 관측하는 데 최초로 성공했다고 9일 밝혔다. 이 교수 연구팀에 따르면 풀린 단백질이 접히는 과정을 엑스선 펄스를 이용한 고속 연사 촬영기법을 통해 단백질의 구조 변화를 연속 스냅숏으로 추출했고 이를 통해 일련의 단백질 접힘 과정을 분자 수준에서 밝혀내는 쾌거를 달성했다. KAIST 화학과 박사과정 졸업생 김태우 연구원이 제1 저자로, KAIST 화학과 이효철, 이영민 교수가 교신저자로 참여한 이번 연구결과는 국제 학술지 `미국 국립과학원회보(PNAS, Proceedings of the National Academy of Sciences of the United States of America)' 7월 1일 字에 게재됐다. (논문명 : Protein folding from heterogeneous unfolded state revealed by time-resolved X-ray solution scattering). 잘 접혀있는 단백질이 풀리는 과정은 비교적 쉽게 연구할 수 있어 많은 연구가 이뤄져 왔지만 풀려있는 단백질이 접히는 과정은 연구가 힘들었는데 이효철 교수팀의 이번 연구는 그 과정을 밝혀냈다는데 큰 의미가 있다. 단백질이 접히는 과정을 연구하기 힘든 이유는 풀려있는 단백질이 특정 구조를 가지지 않고 매우 다양한 구조를 갖기 때문이다. 하지만 이 교수 연구팀은 이번 연구에서 엑스선 산란 신호 분석법을 개발, 적용해서 이런 난제를 해결하는 데 성공했다. 단백질의 3차원 구조를 결정하는 고유의 접힘 과정은 가장 중요한 생체 반응이다. 때에 따라 발생하는 잘못 접히는 과정은 단백질의 정상적인 기능을 방해하며, 알츠하이머, 광우병, 파킨슨병 등이 바로 단백질 접힘이 올바르지 않아 발병되는 질병이다. 연구팀은 생체 내 전자전달에 관여하는 사이토크롬 단백질을 풀림 상태에서 접힘 상태로의 전이 과정을 발생시켜, 해당 접힘 과정을 시간 분해 엑스선 산란법을 이용해 연속적으로 움직이는 단백질의 구조 변화를 관측했다. 여기서 주목할만한 점은 이 교수 연구팀은 그간 단백질 접힘에 대한 이론적 모델로만 제시됐던 깔때기꼴 접힘 가설을 사이토크롬 단백질의 접힘 과정을 통해 실험적으로 입증했다는 사실이다. 이와 함께 이 교수팀은 단백질의 구조 변화뿐만 아니라 접히는 과정의 속도가 기존에 알려진 보통의 지수함수 형태가 아니라 늘어진 지수함수 형태임을 밝혀냈다. 이로써 풀린 단백질에서 접힌 상태로 가는 경로가 매우 다양하다는 것을 실험적으로 알아낸 것이다. 제1 저자인 김태우 연구원은 "단백질 접힘은 3차원 단백질 구조가 만들어지는 가장 중요한 생명현상인데, 접힘 과정에 대한 이해는 단백질 구조기반 신약 개발의 기초가 될 것ˮ이라고 기대했다. 공동 교신저자로 참여한 KAIST 화학과 이영민 교수도 "단백질 접힘 이론 모형에 대한 실험적 검증은 이론 생물리학 관점에서 더욱 정확한 계산 방법 개발에 중요한 자산이 될 것ˮ라고 강조했다. 한편 이번 연구는 기초과학연구원, 한국연구재단 등의 지원을 받아 수행됐다.
2020.07.09
조회수 22889
이효철 교수, 분자 결합 과정 실시간 관측 성공
이효철 교수 연구팀 (좌 : 김경환 박사, 중 : 이효철 교수, 우 : 김종구 박사과정 학생) 우리 대학 화학과 이효철 교수 연구팀이 세계 최초로 원자가 결합해 분자를 이루는 순간을 실시간으로 관측하는 데 성공했다. 2005년 분자결합이 끊어지는 과정을 밝혀 사이언스지에 논문을 게재했던 이효철 교수는, 10년 만에 분자의 결합과정까지 관측함으로써 화학반응의 시작과 끝을 밝혀냈다. 이번 연구 결과는 세계 최고권위 저널 네이처지 2월 18일자에 게재됐다. 연구진은 화학결합의 순간포착을 위해 평소에는 가까운 곳에 흩어져 있다가 레이저를 쏘면 반응해 화학적으로 결합하는 성질의 금 삼합체를 실험모델로 삼았다. 화학결합이 이뤄지는 1조분의 1초의 찰나를 관측하기 위해 펨토초(1천조 분의 1초) 엑스선 펄스라는 특수 광원을 이용했다. 이를 통해 광반응에 따른 금 삼합체 원자의 구조 변화를 엑스선 회절 이미지로 구현해 냈다. 연구진은 모든 화학반응의 근본이 되는 원자 간 결합을 관측하기 위해 특수한 광원과 화합물을 이용했다. 원자의 지름은 1옹스트롬(1억 분의 1센티미터)이고 화학결합의 순간은 1조 분의 1초 정도여서 원자를 감지하려면 빛의 파장이 원자 수준으로 짧아야 한다. 또 빛의 시간 길이는 원자간 결합의 순간보다 짧아야 하는 데 이를 만족하는 광원이 엑스선 자유전자 레이저에서 얻어지는 펨토초 엑스선 펄스이다. 레이저 기술과 엑스선 회절법 기술을 결합한 펨토초 엑스선 회절법을 이용하면 빠른 분자의 움직임을 정확한 위치 정보와 함께 측정할 수 있고, 이 방법을 이용해 금 삼합체 내부의 금 원자들 사이에서 화학결합이 형성되는 순간을 실시간으로 관측할 수 있었다. 연구진은 펨토초 엑스선 회절법을 통해 단백질의 탄생 순간과 단계별 구조 변화를 밝힐 계획이다. 향후 단백질 반응의 제어, 질병 치료, 신약 개발 등에 필요한 기초정보 제공이 가능할 것으로 기대된다. 이효철 교수는 “펨토초 엑스선 회절법을 통해 이번 연구 결과 외에도 분자의 진동, 회전 등을 관측할 수 있을 것”이라며, “축적한 기술과 경험을 토대로 국내 연구진이 세계 과학계의 흐름을 주도하길 바란다”고 말했다.
2015.02.23
조회수 14369
이효철 교수팀, 물에 녹은단백질 모양 변화 실시간 관찰 성공
- 관련 논문, 9월 22일(일)자 네이처 메서드(Nature Methods)誌 게재- 단백질의 작동메커니즘 규명에 중요한 도구 역할 및 신약개발에도 큰 도움 줄 것으로 기대 KAIST(총장 서남표) 화학과 이효철(李效澈, 36) 교수팀이 ‘물에서 변하는 단백질 분자구조를 실시간으로 규명’ 하는데 성공했다. 관련 논문은 네이처 자매지인 네이처 메서드(Nature Methods)誌 9월 22일자 온라인 판에 게재됐고 10월호에 출판될 예정이다. 논문의 제목은 “시간분해 엑스선 산란을 이용한 용액상의 단백질의 구조동역학 추적(Tracking the structural dynamics of proteins in solution using time-resolved wide-angle X-ray scattering)”으로 온라인에 게재되는 논문들 중에서도 특히 주목받는 하이라이트 논문으로 소개될 예정이다. 李 교수는 이 논문의 교신저자다. 이번 연구결과는 李 교수팀의 집념의 산물이라 할 수 있다. 李 교수팀은 지난 2005년 5월, 소금처럼 딱딱하게 고체상으로 굳어 있는 상태에서의 단백질의 안정적인 구조만을 볼 수 있는 기존의 방법을 시간분해 엑스선 결정법으로 발전시켜, 정지되어 있는 단백질의 구조뿐 만 아니라 움직이는 단백질의 동영상을 촬영하는데 성공했다. 관련 논문은 미국 국립과학원회보(PNAS, Proceedings of National Academy of Science)에 발표되었으며, 학계의 큰 주목을 받았다. 그러나 이 방법으로도 해결할 수 없는 치명적인 문제는 우리 몸에서 작용하는 일반적인 단백질은 고체상으로 있지 않고 물에 녹아있는 용액상태라는 점이다. 마치 고체 소금이 물에 녹아 소금물이 되는 것과 같은 원리다. 물은 인간의 몸의 약 70% 이상을 차지하고 있고 생명 유지에 필수적인 단백질들은 물에 녹아 있는 상태로 존재한다고 볼 수 있다. 따라서 단백질이 어떻게 기능을 발휘하는 지를 실시간으로 관측하기 위해서는 물에 녹아 있는 단백질 분자의 모양 변화를 실시간으로 추적할 수 있는 기술이 필요하다. 이러한 목표를 향한 첫 열매로 물에 녹아 있는 간단한 유기분자의 구조변화를 실시간 측정하는 데 성공하였으며, 관련 연구논문이 2005년 7월 사이언스(Science)誌에 발표된 바 있다. 당시 이 연구결과는 용액상에서 분자의 움직임을 실시간 추적할 수 있다는 점 때문에 많은 관심을 불러 일으켰는데, 李 교수는 그 기술을 더욱 발전시키면 단백질에도 응용 가능할 것으로 전망했다. 그러나 일반적으로 단백질은 그 당시 성공한 유기분자보다 적어도 1,000배 정도 크고 구조가 훨씬 더 복잡할 뿐 아니라 훨씬 적은 양으로 존재하기 때문에 물에 녹아 있는 단백질에서도 성공할 수 있다는 것에는 많은 과학자들이 회의적으로 생각했다. 이번 네이처 메서드誌에 발표한 연구결과는 그러한 부정적인 생각을 깨고 기존에 성공한 유기분자보다 ‘1,000배 더 큰 단백질 분자가 물에 녹아 있을 때에 이들의 3차원 구조변화를 실시간으로 관측하는데 성공’한 획기적인 연구성과다. 논문에서는 3가지 종류의 단백질에 대한 연구결과를 발표했는데, 우리 몸에서 산소를 이동하는데 중요한 헤모글로빈 단백질과, 근육에서의 산소공급에 관여하는 미오글로빈 단백질 등이다. 이 외에도 단백질은 주로 접혀있어 특정한 구조를 형성하는데 환경이 바뀌면 이 구조가 풀리게 된다. 풀려 있는 단백질은 일반적으로 제 역할을 할 수 없어 이러한 단백질의 접힘-풀림 현상을 이해하는 것은 매우 중요한데 씨토크롬씨라는 단백질이 풀린 상태에서 접히는 과정도 실시간으로 추적하는데 성공하였다. 이 새로운 기술을 사용하면 물에서 움직이는 단백질의 동영상을 촬영할 수도 있어 단백질의 작동메커니즘을 밝히는 데에 중요한 도구가 될 것이며, 앞으로 신약개발을 하는 데에도 큰 도움을 줄 것으로 기대된다. 또한 이 기술은 단백질은 물론이고 나노물질에도 응용이 가능하므로 BT뿐만 아니라 NT분야에도 기여할 수 있을 것으로 전망된다. 이 연구는 교육과학기술부의 창의적연구진흥사업의 연구비 지원으로 진행되었다. 연구결과는 유럽연합방사광가속기센터에서 측정되었으며, 李 교수의 주도하에 이뤄진 국제적인 공동연구의 성과다. 李 교수는 “현재 포항에 있는 제3세대 가속기에 이어 한국에서도 차세대 광원으로 건설이 논의되고 있는 제4세대 방사광가속기(XFEL)가 성공적으로 가동되면, 현재 발표된 데이터보다 적어도 1,000배정도 더 좋은 데이터를 얻을 수 있을 것으로 예상된다.”고 밝혔다. <이효철 교수 프로필> ■ 학 력 1990 경남과학고 2년 수료, KAIST 화학과 학사과정 입학 1994 KAIST 화학과 학사과정 졸업 1994 Caltech(California Institute of Technology) 박사과정 입학 2001 Caltech 졸업(박사) 2001 시카고 대학 박사 후 연구원(Post Doc.) 2003.8.1-2007.2.28 KAIST 화학과 조교수 2007.3.1-현재 KAIST 화학과 부교수 ■ 수상경력 2006 젊은 과학자상(과학기술부/한국과학기술한림원) 2006 과학기술우수논문상(한국과학기술단체총연합회) 2006 KAIST 학술상 2001-2003 美國 대먼 러년 암재단(Damon Runyon Cancer Research Foundation)펠로우쉽 (설명) 시간분해 엑스선 산란의 개념을 예술적으로 표현한 그림
2008.09.22
조회수 24592
움직이는 단백질 구조 실시간 규명
단백질 동영상 촬영, 신약 개발에 큰 도움이효철 교수, 미국 국립과학원 회보(PNAS) 2일자 발표 KAIST 화학과 이효철(李效澈, 33) 교수가 움직이는 단백질의 구조를 실시간으로 규명하는데 성공했고 관련 논문이 세계적인 저널인 미국 국립과학원회보(PNAS, Proceedings of National Academy of Science) 5월 2일자로 게재되고, 그 우수성을 입증받아 ‘이 주의 논문’으로도 채택됐다. 일반적으로 단백질의 삼차원 구조는 엑스선 결정법 (X-ray Crystallography)을 사용해서 밝혀내게 되는데 이 방법으로는 정지되어 있는 단백질의 안정적인 구조만을 볼 수 있다. 李 교수팀은 엑스선 결정법을 더욱 발전시킨 방식인 시간분해 엑스선 회절법이란 방식을 이용했다. 이는 정지되어 있는 단백질의 구조뿐 만 아니라 작동하고 있는 단백질의 동적인 구조까지도 밝혀낼 수 있는 획기적인 방식이다. 이 새로운 기술을 사용하면 움직이는 단백질의 동영상을 촬영할 수도 있어 단백질의 작동기작을 밝히는 데에 중요한 도구가 될 것이며 앞으로 신약개발을 하는 데에도 큰 도움을 줄 것으로 보인다. 또한 이 기술은 단백질뿐 아니라 나노물질에도 응용 가능하므로 BT뿐만 아니라 NT분야에도 기여할 수 있을 것으로 보인다. 이 연구결과는 미국의 아르곤 국립연구소의 APS 가속기와 유럽연합방사광가속기 (ESRF) 센터에서 측정되었으며 李 교수의 주도하에 이루어진 국제적인 공동연구의 결과라 할 수 있다.
2005.05.04
조회수 20127
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1