본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%95%88%EC%9E%AC%EC%9A%B1
최신순
조회순
양자 컴퓨터로 새로운 물성 연구 성공
양자 물질을 연구하거나 설계할 때 기존의 폰노이만식 전자컴퓨터를 이용한 계산은 근본적인 한계를 가진다. 양자계의 경우 양자 얽힘 등의 효과로 인해 계산량이 기하급수적으로 증가하기 때문이다. 따라서 양자물질 설계를 위해 물질의 특성을 알아내고자 할 때, 양자컴퓨터를 이용하는 양자 시뮬레이션이 필요하다. 우리 대학 물리학과 안재욱 교수 연구팀이 코펜하겐 대학 클라우스 뭴머(Klaus MØlmer) 교수 연구팀과 함께 양자 시뮬레이션을 수행하는 양자 컴퓨터 플랫폼으로 최근 가장 주목을 받는 리드버그 원자 양자 컴퓨터를 이용해 양자 자성체의 극단적 특성을 구현하는데 성공했다고 11일 밝혔다. 자성체 물질은 하드 디스크와 같은 전자제품을 비롯해 전력 발전 등에도 사용되는 등 현대 기술의 핵심 요소다. 최근에는 상온 자성체를 넘어서 양자적 특성이 두드러지는 초저온에서 양자 자성체 특성에 관한 연구가 활발히 이뤄지고 있다. 초저온에서 수행되는 물성 분석 및 계측 연구는 MRI 등의 의학 기기 등에 응용될 뿐만 아니라, 차세대 초정밀 제어계측공학을 촉발할 것으로 기대된다. 유명 물리학자 리처드 파인만은 1983년 양자계의 특성을 인공적인 양자계로 모방해 연구하는 양자 시뮬레이션을 제안하였다. 인공적으로 모방한 양자계의 특성을 연구하면 기존 양자계의 특성을 알아낼 수 있다. 양자 시뮬레이션을 이용한 양자 자성체의 연구는 지난 10년간 세계 유수의 대학과 연구소에서 이뤄지고 있으며 이전까지 알려지지 않은 양자 물질의 특성들을 실험적으로 확인하는 성과를 보였다. 현재 양자 물질을 시뮬레이션하는 데 있어 중요한 이슈 중 하나는 극단적인 상황 속 양자 물질의 현상을 관찰하는 것이다. 한편 이와 같은 양자 시뮬레이션을 수행하는 양자 컴퓨터 플랫폼으로 최근 가장 주목을 받는 것은 리드버그 원자다. 리드버그 원자는 최외각 전자가 이온화되어 떨어지기 직전의 매우 높은 에너지를 머금고 있는 원자로, 일반 원자의 만 배 정도의 지름을 가지며 (10의 24제곱)배 정도 더 큰 상호작용을 한다. 우리 대학 물리학과 안재욱 교수 연구팀은 최근 리드버그 원자를 이용해 최대 156큐비트급의 양자 컴퓨터 계산을 선보인 바 있다. 이번 연구에서 글로벌 공동연구팀은 리드버그 원자를 이용한 양자 컴퓨터를 이용해 양자 자성체를 설명하는 모형 중 하나인 하이젠베르크 모형*을 양자 컴퓨터로 모방해 구현했다. 특히 이전의 하이젠베르크 모형의 구현과 다르게, 이번 연구에서는 리드버그 원자의 강한 상호작용을 이용한 극단적 이방성 (3차원 중 특정 방향이 다른 방향 대비 1000배 이상 강하게 상호작용하는 특성으로 새로운 연구영역이 확보됨)을 구현하는 데 성공했다. *하이젠베르크 모형: 하이젠베르크 자성체 모형은 자성체 스핀 간의 모든 방향 (x, y, z 방향) 상호작용을 가정한 모형으로 양자 자성체의 대표적 모델 중 하나임. 연구를 주도한 안 교수는 “이번 연구는 리드버그 양자컴퓨터를 이용해 새로운 양자 물성을 연구할 수 있음을 보였다”라고 밝히고 “양자컴퓨터를 이용하는 물성 연구가 활발해질 것”이라고 기대했다. 우리 대학 물리학과 김강흔 대학원생 연구원과 덴마크 오르후스 대학의 팬 양(Fan Yang) 박사후 연구원이 참여한 이번 연구는 국제 학술지 `피지컬 리뷰 X (Physical Review X)' 2월 14권에 출판됐다. (논문명 : Realization of an Extremely Anisotropic Heisenberg Magnet in Rydberg Atom Arrays). 한편 이번 연구는 삼성미래기술재단과 한국연구재단의 지원으로 수행됐다.
2024.03.11
조회수 3787
100큐비트급 양자컴퓨터 계산데이터 전격 공개
양자컴퓨터는 양자역학의 원리를 활용해 기존의 컴퓨터로는 풀기 어려운 계산을 할 수 있는 컴퓨터다. 양자컴퓨터는 암호 해독, 배터리 소재 개발, 신약 개발 등 다양한 분야에서 그동안 풀지 못한 난제들을 해결할 미래 기술로 주목받고 있다. 우리 대학 물리학과 안재욱 교수 연구팀이 100큐비트급 양자컴퓨터로 조합 최적화 문제를 계산해 계산 결과 데이터베이스와 계산 프로그램을 공개했다고 13일 밝혔다. 조합 최적화 문제 중 하나인 최대 독립집합 문제(Maximum independent set problem)는 SNS상에서 가장 영향력 있는 인물을 찾는 문제, 전력망을 가장 효율적으로 분배하는 법을 찾는 문제 등 다양한 응용이 가능한 문제다. 지난 2023년 KAIST 연구진은 20큐비트급 리드버그 양자컴퓨터를 이용해 최대 독립집합 문제의 풀이를 시연한 바 있다. 일반적으로 100큐비트급 양자컴퓨터의 데이터를 얻기 위해서는 직접 양자컴퓨터를 제작하거나 클라우드 서비스 업체를 이용할 수밖에 없다. 이번에 KAIST 연구진이 공개한 데이터는 관련 분야 연구자뿐 아니라 양자 컴퓨터에 관심 있는 모든 사람이 무료로 데이터에 접근할 수 있게 되었다는 점에서 중요하다고 할 수 있다. 최대 141큐비트를 활용해 70만 종류 이상의 그래프 최적화를 계산했고, 양자컴퓨터의 계산 결과와 데이터분석 프로그램 일체를 공개했다. 연구를 주도한 안재욱 교수는 “이번 연구를 통해 100큐비트급 양자컴퓨터를 활용한 난제 계산 결과 및 계산 프로그램을 모두 공개하여 그동안 양자컴퓨터에 접근이 어려웠던 연구자를 비롯한 많은 사람이 양자 컴퓨팅 연구에 참여할 수 있을 것으로 기대된다. 아울러, 고성능 양자컴퓨터 개발에 필요한 잡음 분석에도 연구팀이 계산한 데이터베이스가 활용될 수 있을 것이라 생각한다”고 말했다. 우리 대학 물리학과 김강흔, 박주영, 변우정 석박사통합과정, 김민혁 박사(現 고려대 물리학과 교수)가 참여한 해당 연구 결과는 국제 학술지 네이처(Nature) 자매지인 ‘사이언티픽 데이터(Scientific data)’1월 11권에 게재됐다. (논문명: Quantum computing dataset of maximum independent set problem on king lattice of over hundred Rydberg atoms). 한편 이번 연구는 삼성미래기술재단과 한국연구재단의 지원으로 수행됐다.
2024.02.13
조회수 3611
양자컴퓨팅 원자를 던지고 받는 기술 개발
양자컴퓨터의 기본 구성요소인 원자를 이동하여 배치하는 기술은 리드버그 양자컴퓨팅 연구에 매우 중요하다. 하지만 원자를 원하는 위치에 배치하려면, 일반적으로 광 집게라고 불리는 매우 집속된 레이저 빔을 사용해, 원자를 하나씩 잡아서 운반해야 하는데 이렇게 운반하는 동안 원자의 양자 정보가 변화할 가능성이 크다. 우리 대학 물리학과 안재욱 교수 연구팀이 레이저 빔을 이용하여 루비듐 원자를 하나씩 던지고 받는 기술을 개발했다고 27일 밝혔다. 연구팀은 광 집게가 원자와 접촉하는 시간을 최소화하여 양자 정보가 변하지 않도록 원자를 던지고 받는 방법을 개발했다. 연구팀은 원자의 온도가 매우 낮아 절대 영도 이하 4천만분의 일의 온도의 차가운 루비듐 원자가 광 집게의 초점을 따라서 빛이 가하는 전자기력에 매우 민감하게 움직인다는 특성을 이용했다. 연구팀은 광 집게의 레이저를 가속해서 원자에 광학적 킥을 줘서 원자를 목표지점으로 보낸 다음, 다른 광 집게로 날아오는 원자를 잡아서 멈추게 했다. 원자의 비행 속도는 65cm/s이고, 이동 거리는 최대 4.2 마이크로미터다. 기존의 광 집게로 원자를 잡아서 이동하는 기술과 대비해 원자를 던지고 받는 기술은 원자 이동을 위한 광 집게 이동 경로 계산이 필요 없어지고, 원자 배열에 생기는 결함을 쉽게 고칠 수 있다. 결과적으로 많은 개수의 원자 배열을 생성하고 유지하는 데 효과적이며, 양자 정보를 지닌 원자(flying atom qubit)를 추가로 던지고 받는 때에 양자 배열의 구조변화를 전제하는 새롭고 더욱 강력한 양자컴퓨팅 방법을 연구할 수 있다. 안재욱 교수는 “이 기술이 더 크고 강력한 리드버그 양자 컴퓨터를 개발하는 데 사용될 것”이라 말한다. “리드버그 양자 컴퓨터에서 원자는 양자 정보를 저장하고, 전자기력을 통해 인접한 원자들과 상호작용해 양자컴퓨팅을 수행할 수 있도록 배치된다. 만약 오류가 발생해 원자를 교체하거나 이동해야 할 경우, 원자를 던져서 빠르게 재구성하는 방법이 효과적일 수 있다”고 말한다. 우리 대학 물리학과 황한섭, 변우정 박사과정 연구원과 일본 국가자연과학연구소의 실바앙 드 레젤러크 연구원이 참여한 이번 연구는 국제 학술지 `옵티카(Optica)' 3월 10권 3호에 출판됐다. (논문명 : Optical tweezers throw and catch single atoms). 이번 연구는 삼성미래기술재단의 지원으로 수행됐다.
2023.03.27
조회수 6340
신기루 현상 착안해 테라헤르츠파 광학렌즈 개발
무더운 여름, 아스팔트 도로에 물웅덩이가 보이다가 가까이 다가가면 사라지고 좀 가다보면 또 물웅덩이가 나타난다. ‘신기루’라고 불리는 이 현상은 지표면 가까운 공기층의 큰 온도차로 인한 공기밀도 변화로 빛이 굴절되기 때문이다. 우리 학교 바이오및뇌공학과 정기훈 교수는 물리학과 안재욱 교수와 신기루 현상에서 착안한 물리적 효과를 이용해 테라헤르츠파 굴절률 분포형 렌즈를 세계 최초로 개발했다. 실리콘 소재를 곡면으로 가공해 만드는 카메라렌즈에 사용되는 기존방식과는 달리 이번에 개발된 렌즈는 평평한 실리콘 웨이퍼를 소재로 반도체 양산공정으로 제작해 비용을 최대 1/100 수준으로 낮출 수 있으며 제작시간도 훨씬 단축시킬 수 있다. 광원 추출효율은 4배 이상 향상시켰다. 테라헤르츠파는 0.1THz~30THz(테라헤르츠, 1조헤르츠) 대역의 전자기파로 가시광선이나 적외선보다 파장이 길어 X선처럼 물체의 내부를 높은 해상도로 정확히 식별할 수 있어 보안검색, 의료영상기술 등 비파괴 검사 도구나 의료용 진단기구의 성능을 획기적으로 향상시킬 수 있을 것으로 전망된다. 그러나 넓은 대역의 주파수 특성으로 인해 손실되는 전자기파의 비율이 높아 테라헤르츠파를 높은 효율로 집중시킬 수 있는 광학소자 개발이 요구됐다. 정 교수 연구팀은 평평한 실리콘에 테라헤르츠파 파장(약 300㎛) 보다 작은 80~120㎛ 크기의 구멍을 반도체 양산방법인 광식각공정으로 만들었다. 렌즈 가장자리로 갈수록 홀 사이즈는 크게 만들었다. 테라헤르츠파를 쪼이자 공기와 실리콘 중 공기 비율이 높은 가장자리는 굴절률이 낮았으며, 상대적으로 공기의 비율이 낮은 가운데는 굴절률이 높았다. 평평한 소재를 광학특성을 공학적으로 설계해 빛을 모으는 볼록렌즈와 같은 기능을 한 것으로 신기루 현상과 같은 물리적 효과와 같다. 이번 연구를 주도한 정기훈 교수는 “자연현상에서 착안해 자연계에 존재하지 않는 다양한 광학특성을 띄는 메타물질을 인공적으로 만든 것”이라며 “물질적 제약으로 인해 다양한 광학소자개발이 더딘 테라헤르츠파 기술 진보에 상당한 도움이 될 것”이라고 연구의의를 밝혔다. 미래창조과학부가 지원하는 한국연구재단의 도약연구자지원사업, 그린나노기술개발사업, 글로벌프론티어사업의 일환으로 수행된 이번 연구는 미국물리협회에서 발간하는 귄위 있는 국제학술지인 ‘어플라이드 피직스 레터(Applied Physics Letter)’에 9월자 특집논문 및 표지논문(제1저자 박상길 박사과정)으로 게재됐다. 그림1. 유전체 메타물질을 이용한 실리콘 굴절률 분포형 렌즈. 머리카락 굵기(80~120µm) 수준의 구멍이 실리콘 기판에 서로 다른 크기로 형성돼 있다. 그림2. 굴절률 분포형 렌즈 원리 그림3. 신기루 현상신기루는 아스팔트 도로 위에서 흔하게 나타나는 대기 굴절 현상이다. 이 현상은 도로면이 물체를 반사하는 것처럼 보이게 하는데 이 때문에 도로면에 물웅덩이가 있는 것처럼 착각하게 된다. 아래 사진에는 멀리서 다가오는 차의 상이 도로면을 통해 보인다. <사진 : 경기북과학고등학교 조영우 선생님 제공> 그림4. 논문표지
2014.09.24
조회수 20139
‘테라헤르츠파’를 아시나요?
정기훈 교수 - 광학나노안테나 접목해 테라헤르츠파 출력 최대 3배 향상시켜 -- 내시경 등 초소형 바이오 진단시스템 등 다양한 분야 응용 기대 - 광학계의 블루오션이라 불리는 ‘테라헤르츠파’의 출력이 KAIST 연구진에 의해 크게 향상됐다. 앞으로 휴대용 투시카메라나 소형 바이오 진단시스템 등 다양한 분야에 응용될 수 있을 것으로 전망된다. 우리 학교 바이오및뇌공학과 정기훈 교수 연구팀이 광학나노안테나 기술을 접목해 테라헤르츠파의 출력을 기존보다 최대 3배 증폭시키는 데 성공했다. 테라헤르츠파는 100GHz에서 30THz 범위의 주파수를 갖는 전자기파로, 가시광선이나 적외선보다 파장이 길어 X선처럼 투과력이 강할 뿐 아니라 X선보다 에너지가 낮아 인체에 해를 입히지 않는다. 이러한 특성으로 X-ray처럼 물체의 내부를 투과해 볼 수 있으며, 주파수 내에서 특정 영역을 흡수하기 때문에 X선으로는 탐지하지 못하는 우편물 등에 숨겨진 폭발물이나 마약을 찾아낼 수 있다. 심지어 가짜약도 판별해낼 수 있다. 또한, 분광정보를 통해 물질의 고유한 성질을 특별한 화학적 처리 없이 분석할 수 있어 인체에 손상이나 고통을 주지 않고도 상피암 등 피부 표면에 발생하는 질병을 효과적으로 즉시 확인할 수 있다. 테라헤르츠파는 펨토초(10-15초) 펄스레이저를 광전도 안테나가 형성된 반도체기판에 쪼여주면 피코초(10-12초) 펄스 광전류가 흐르면서 발생된다. 그러나 출력이 부족해 바이오센서 등 다양한 분야의 상용화에 어려움이 있어 그동안 과학자들이 출력을 증폭시키기 위한 많은 노력들이 이어졌다. 정 교수 연구팀은 광전도안테나 사이에 금 나노막대로 구성된 광학나노안테나를 추가하고 구조를 최적화했다. 그 결과 광전도기판에 나노플라즈모닉 공명현상이 발생되면서 광전류 펄스가 집적도가 높아져 출력이 최대 3배까지 증폭됐다. 이에 따라 물체의 내부를 더욱 선명하게 볼 수 있을 뿐만 아니라 생검을 하지 않고도 좋은 영상과 함께 성분 분석이 가능해졌다. 정기훈 교수는 “이번에 개발한 원천기술을 테라헤르츠파 소자 소형화 기술과 결합해 내시경에 응용하면 상피암을 조기에 감지할 수 있다”며 “앞으로 이 같은 바이오센서 시스템을 구축해 상용화하는 데 주력할 것”이라고 말했다. 바이오 및 뇌 공학과 박상길 박사과정, 진경환 박사과정, 예종철 교수, 이민우 박사과정, 물리학과 안재욱 교수가 공동으로 수행한 이번 연구는 나노분야 세계적 학술지 ‘ACS Nano" 3월호(27일자)에 실렸다. 한편, 이번 연구는 지식경제부 및 한국산업기술평가원의 산업융합기술/산업원천기술개발사업 및 교육과학기술부가 지원하는 한국연구재단의 도약연구자지원사업 등의 일환으로 수행됐다. 그림1. 나노안테나를갖는THz 발생기 전자현미경사진: 광학나노안테나가 집적된 테라헤르츠 생성소자의 전자현미경 이미지. 그림2. NP-PCA 개념도: 광학나노안테나가 집적된 테라헤르츠 생성 소자의 개념도. 테라헤르츠 광전도 안테나 사이의 집적된 광학나노안테나에 의해, 광전류 펄스를 생성하는 펨토초 광펄스의 세기가 기판 표면에서 증가한다. 이를 통해 기존 테라헤르츠 생성소자의 테라헤르츠 출력 파워를 증가 시킬 수 있다. 그림3.나노안테나를갖는THz 발생기모식도 : 광학나노안테나에 의한 증가되는 테라헤르츠 파 출력의 가상도.
2012.04.23
조회수 21088
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1