본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%9C%A0%EB%AF%BC%EC%88%98
최신순
조회순
세계 최초 개인정보 보호 기술이 적용된 인공지능(AI) 반도체 개발
우리 대학 전기및전자공학부 유민수 교수 연구팀이 세계 최초로 `차등 프라이버시 기술이 적용된 인공지능(AI) 어플리케이션(Differentially private machine learning)'의 성능을 비약적으로 높이는 인공지능 반도체를 개발했다고 19일 밝혔다. 빅데이터 및 인공지능 기술의 발전과 함께 구글, 애플, 마이크로소프트 등 클라우드 서비스를 제공하는 기업들은 전 세계 수십억 명의 사용자들에게 인공지능 기술을 기반으로 여러 가지 서비스(머신러닝 애즈 어 서비스, ML-as-a-Service, MLaaS)를 제공하고 있다. 이러한 서비스 중에는, 대표적으로 유튜브나 페이스북 등에서 시청자의 개별 취향에 맞춰 동영상 콘텐츠나 상품 등을 추천하는 `개인화 추천 시스템 기술(예- 딥러닝 추천 모델, Deep Learning Recommendation Model)' 이나, 구글 포토(Photo) 와 애플 아이클라우드(iCloud) 등에서 사진을 인물 별로 분류해주는 `안면 인식 기술 (예- 합성곱 신경망 네트워크 안면 인식, Convolutional Neural Network based Face Recognition)' 등이 있다. 이와 같은 서비스는 사용자의 정보를 대량으로 수집해, 이를 기반으로 인공지능 알고리즘의 정확도와 성능을 개선한다. 이 과정에서 필연적으로 많은 양의 사용자 정보가 서비스 제공 기업의 데이터 센터로 전송되고, 민감한 개인정보나 파일들이 저장되고 사용되는 과정에서 정보가 유출되는 문제가 발생하기도 한다. 또한 이러한 문제는 최근 주목받는 대형 인공지능 모델의 경우에 더 쉽게 발생하는 경향이 있으며, 실제 구글에서 사용하는 대화형 인공지능 모델인 GPT-2의 경우, 특정 단어들을 이야기했을 때 사용자의 개인정보 등을 유출하는 문제를 보였다. [참고1] 유사사례로서 국내에서 2020년 화제가 되었던 스캐터랩의 인공지능 챗봇 이루다의 경우에도 비슷한 문제가 불거진 적이 있다. [참고2] [참고1] https://ai.googleblog.com/2020/12/privacy-considerations-in-large.html [참고2] https://n.news.naver.com/mnews/article/092/0002243051?sid=105 이에 애플, 구글, 마이크로소프트 등 빅 테크 기업에서는 `차등 프라이버시 (differential privacy)' 기술을 크게 주목하고 있다. 차등 프라이버시 기술은 학습에 사용되는 그라디언트(gradient, 학습 방향 기울기)에 잡음(노이즈)를 섞음으로써 인공지능 모델로부터 사용자의 개인정보를 유출하는 모든 종류의 공격을 방어할 수 있다. 하지만 이러한 장점에도 불구하고, 차등 프라이버시 기술 적용 시, 기존 대비 어플리케이션의 속도와 성능이 크게 하락하는 문제 때문에 아직까지 범용적으로 널리 적용되지는 못했다. 이는 차등 프라이버시 머신러닝 학습 과정이 일반적인 머신러닝 학습과 다른 특성을 보이고, 이로 인해 기존의 하드웨어에서 효과적으로 실행되지 않아 메모리 사용량, 학습 속도 및 하드웨어 활용도 (hardware utilization) 측면에서 비효율적이기 때문이다. 이에 유민수 교수 연구팀은 차등 프라이버시 기술의 성능 병목 구간을 분석해 해당 기술이 적용된 어플리케이션의 성능을 크게 시킬 수 있는 `차등 프라이버시 머신러닝을 위한 인공지능(AI) 반도체 칩'을 개발했다. 유민수 교수팀이 개발한 인공지능 반도체는 외적 기반 연산기와 덧셈기 트리 기반의 후처리 연산기 등으로 구성돼 있으며, 현재 가장 널리 사용되는 인공지능 프로세서인 구글 TPUv3 대비 차등 프라이버시 인공지능 학습 과정을 3.6 배 빠르게 실행시킬 수 있고, 엔비디아의 최신 GPU A100 대비 10배 적은 자원으로 대등한 성능을 보인다고 연구팀 관계자는 설명했다. 또한 이번 개발을 통해서 기존 하드웨어의 한계로 널리 쓰이지 못했던 차등 정보보호 기술의 대중화에 도움을 줄 수 있을 것으로 기대된다고 전했다. 우리 대학 전기및전자공학부 박범식, 황랑기 연구원이 공동 제1 저자로, 윤동호, 최윤혁 연구원이 공동 저자로 참여한 이번 연구는 미국 시카고에서 열리는 컴퓨터 구조 분야 최우수 국제 학술대회인 `55th IEEE/ACM International Symposium on Microarchitecture(MICRO 2022)'에서 오늘 10월 발표될 예정이다. (논문명 : DiVa: An Accelerator for Differentially Private Machine Learning) 또한 이번 연구는 지금까지는 없던 차등 프라이버시가 적용된 인공지능 반도체를 세계 최초로 개발했다는 점에서 의의가 있으며, 차등 프라이버시 인공지능 기술을 대중화해 인공지능 기반 서비스 사용자들의 개인정보를 보호하는 데에 큰 도움을 줄 수 있을 것으로 보인다. 또한, 가속기의 성능 향상은 인공지능 연구 효율을 높여 차등 프라이버시 인공지능 모델의 정확도 개선에도 기여할 것으로 보인다. 한편 이번 연구는 한국연구재단, 삼성전자, 그리고 반도체설계교육센터 (IDEC, IC Design Education Center)의 지원을 받아 수행됐다.
2022.08.19
조회수 8810
메모리-중심 인공지능 가속기 시스템 개발
삼성미래기술육성재단이 지원한 우리 대학 연구진이 세계 최초로 `프로세싱-인-메모리(Processing-In-Memory, 이하 PIM)' 기술을 기반으로 한 인공지능 추천시스템 학습 알고리즘 가속에 최적화된 지능형 반도체 시스템 개발에 성공했다. 전기및전자공학부 유민수 교수 연구팀은 PIM 기술 기반의 메모리-중심 인공지능 가속기 반도체 시스템을 개발했다고 16일 밝혔다. 유 교수는 관련 분야에서 그동안의 탁월한 연구 성과를 인정받아 올해 아시아에서 유일하게 페이스북 패컬티 리서치 어워드(Facebook Faculty Research Award)를 수상했다. 인공지능 기술을 기반으로 고안된 추천시스템 알고리즘은 구글(Google), 페이스북(Facebook), 유튜브(YouTube), 아마존(Amazon) 등 빅테크 기업들이 콘텐츠 추천 및 개인 맞춤형 광고를 제작하는데 기반이 되는 핵심 인공지능 (AI) 기술이다. 온라인 광고를 통한 수입은 구글과 페이스북과 같은 실리콘밸리의 빅테크 기업의 주 수익 모델인 만큼 고도화된 추천 인공지능 기술에 대한 수요는 최근 들어 급상승하는 추세다. 페이스북이 최근 공개한 자료에 따르면 페이스북 데이터센터에서 처리되는 인공지능 연산의 70%가 추천 알고리즘을 처리하는 데에 사용되며, 인공지능 알고리즘 학습을 위한 컴퓨팅 자원의 50%를 추천 알고리즘을 학습하는 데 사용하고 있다. 유민수 교수 연구팀은 최근 메모리 반도체에 인공지능 연산 기능이 추가된 프로세싱-인-메모리(PIM) 기술 기반의 지능형 반도체 시스템을 개발하는 데 성공했다. 유 교수팀이 개발한 이 시스템은 인공지능 추천시스템 알고리즘의 학습 과정을 엔비디아(NVIDIA)의 그래픽카드(GPU)를 사용하는 기존 인공지능 가속 시스템 대비 최대 21배까지 빠르다고 연구팀 관계자는 설명했다. 지능형 메모리 반도체 기술은 우리나라의 AI 반도체 세계시장 공략을 위한 핵심기술로 주목받고 있다. 특히 정부에서도 `AI 종합 반도체 강국 실현'이라는 비전 아래 막대한 국가적 투자를 아끼지 않는 핵심 투자 분야다. 따라서 유 교수팀의 연구 성과는 향후 막대한 수요와 급성장이 예상되는 세계 AI 반도체 시장에서 메모리-중심으로 설계된 PIM 기술의 상용화 및 성공 가능성을 시사한다는 점에서 의미가 크다고 전문가들은 평가하고 있다. 유민수 교수는 서강대와 KAIST에서 각각 학사와 석사를 거쳐 미국 텍사스 오스틴 주립대에서 박사학위를 취득한 후 지난 2014년 인공지능 컴퓨팅 기술 기업인 미국 엔비디아(NVIDIA) 본사에 입사했다. 엔비디아에 입사한 이후 줄곧 인공지능 컴퓨팅 가속을 위한 다양한 하드웨어 및 소프트웨어 시스템 연구를 주도했으며 지난 2018년부터 우리 대학 전기및전자공학부 교수로 재직 중이다. 전기및전자공학부 권영은 박사과정이 제1 저자, 이윤재 석사과정이 제2 저자로 참여한 이번 연구 결과는 세계 최초의 추천시스템 학습용 가속기 시스템 개발 성과라는 학술 가치를 인정받아 컴퓨터 시스템 구조 분야 최우수 국제 학술대회인 IEEE International Symposium on High-Performance Computer Architecture(HPCA)에서 `Tensor Casting: Co-Designing Algorithm-Architecture for Personalized Recommendation Training' 이라는 논문 제목으로 내년 2월에 발표된다.
2020.11.16
조회수 32757
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1