본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%9D%B4%EA%B0%95%ED%83%9D
최신순
조회순
AI가 그린수소와 배터리 미래 신소재 찾아낸다
그린수소 또는 배터리 분야 등 청정 에너지의 성능을 높이는데 가장 큰 영향을 미치는 소재 중 하나는 전극이다. 한국 연구진이 차세대 전극 및 촉매로 활용될 수 있는 신소재를 효율적으로 설계하는 인공지능 기술을 개발했다. 이 기술을 통해 친환경 에너지 사회를 촉진하는데 중요한 역할을 할 것으로 기대된다. 우리 대학 기계공학과 이강택 교수 연구팀의 주도로 한국에너지기술연구원 (원장 이창근), 한국지질자원연구원 (원장 이평구), KAIST 신소재공학과 공동 연구팀들과 함께, 인공지능(AI)과 계산화학을 결합해 그린수소 및 배터리에 활용될 수 있는 스피넬 산화물 신소재를 설계하고, 성능과 안정성을 예측할 수 있는 새로운 지표를 개발하는 데 성공했다고 21일 밝혔다. 스피넬 산화물(AB2O4)은 그린수소 또는 배터리 분야의 차세대 촉매 및 전극 물질로 활용되어 산소 환원 반응(ORR)과 산소 발생 반응(OER)의 속도를 향상시킬 수 있는 잠재력이 높은 물질이다. 하지만, 수천 개 이상의 후보군을 일일이 실험으로 성능을 확인하기 위해서는 많은 시간과 노력이 소요된다. 연구팀은 이를 해결하기 위해 AI와 계산화학을 동시에 사용해 1,240개의 스피넬 산화물 후보 물질을 체계적으로 선별하고, 그중 기존 촉매보다 뛰어난 성능을 보일 촉매 물질들을 찾는 데 성공했다. 그뿐만 아니라, 연구팀은 이번 연구를 통해서 전공 서적에서 손쉽게 찾아볼 수 있는 원자들의 전기음성도를 바탕으로 스피넬 촉매의 안정성과 성능을 예측할 수 있는 지표를 개발했다. 이로써 기존의 실험 방식에 비해 촉매 설계 과정을 훨씬 더 빠르고 효율적으로 진행할 수 있게 되었다. 또한, 연구팀은 스피넬 산화물에서 산소 이온이 움직일 수 있는 3차원 확산 경로를 발견해, 촉매의 성능을 더욱 향상할 수 있는 메커니즘을 처음으로 규명했다. 이강택 교수는 “이번 연구는 인공지능을 통해 신소재의 성능을 빠르고 정확하게 예측할 수 있는 새로운 방법을 제시했다”며, “특히, 이를 통해 그린수소와 배터리 분야에 활용될 수 있는 촉매 및 전극의 개발을 가속화해, 고성능의 친환경 에너지 기술의 발전에 기여할 것”이라고 전했다. 연구팀이 제시한 예측 방법은 기존 실험 방식에 비해 신소재 개발의 효율성을 70배 이상 크게 높였으며, 이러한 성과가 차세대 에너지 변환 및 저장 장치를 위한 소재 개발 연구에 핵심 기술로 자리 잡을 가능성을 높게 보고 있다. 한국에너지기술연구원 이찬우 박사가 공동 교신 저자로 참여하였으며, 한국지질자원연구원 정인철 박사, KAIST 신소재공학과 심윤수 박사가 공동 제1 저자로 참여하고, KAIST 신소재공학과 육종민 교수, 한국지질자원연구원 노기민 박사가 공동 저자로 참여한 이번 연구 결과는 세계적인 학술지‘어드밴스드 에너지 머터리얼즈, Advanced Energy Materials (IF:24.4)’에 중요한 연구 결과임을 인정받아 표지(Inside Front cover) 에 선정됐으며, 24년 10월 21일에 게재됐다. (논문명: A Machine Learning-Enhanced Framework for the Accelerated Development of Spinel Oxide Electrocatalysts) 한편, 이번 연구는 과학기술정보통신부의 개인기초 연구사업, 집단기초연구사업, 그리고 국가과학기술연구회 창의형 융합연구사업의 지원을 받아 수행됐다.
2024.11.21
조회수 541
현존 최고 성능 세라믹 전기화학전지 개발
온실가스 배출량을 '0'으로 만드는 글로벌 약속 '탄소중립(Net-zero)' 달성을 위해 탄소 배출을 줄이는 수소 에너지의 활용 및 생산은 선택이 아닌 필수적인 요소로 부상하고 있다. 이를 위한 에너지 변환 기술 중 고효율 전력 변환 및 그린수소 생산이 가능한 프로토닉 세라믹 전기화학전지(PCEC)가 미래 수소 에너지 사회를 촉진할 차세대 기술로 주목받고 있다. 우리 대학 기계공학과 이강택 교수, 신소재공학과 정우철 교수, 한국에너지기술연구원 이찬우 박사, 전남대학교 송선주 교수 공동 연구팀이 프로토닉 세라믹 전기화학전지의 산화물 전극 결정구조 제어를 통해 양성자 확산경로를 2차원에서 3차원으로 확장하는 데 성공해 전극의 촉매활성을 크게 향상시켰다고 14일 밝혔다. 비대칭 구조를 갖는 페로브스카이트 산화물계 전극은 구조적인 한계로 인해 양성자의 격자 내 이동이 제한으로 촉매 활성이 낮아 연료전지의 성능이 낮아진다는 문제점이 있었다. 연구팀은 이를 해결하기 위해, 이종 금속원소 후보군을 선정 및 도핑해 격자내에서 양성자가 이동하기 어려운 비대칭 구조를 성공적으로 대칭 구조화하여 양성자 수송 특성을 극대화 하였고, 이를 통해 고성능 전극 설계에 대한 단초를 마련했다. 또한 연구팀은 계산화학*을 통해 전극의 결정구조가 양성자 수송 특성에 미치는 영향에 대한 상관관계를 규명했다. *계산화학: 컴퓨터를 이용해 화학 시스템의 구조와 반응성을 이론적으로 모델링하고 예측하는 학문 연구팀이 개발한 전극 소재는 프로토닉 세라믹 전기화학전지에 적용돼 현재까지 보고된 소자 중 가장 뛰어난 전력 변환 성능(650도에서 3.15 W/cm2)을 보이며 생산 과정 중 이산화탄소가 배출되지 않는 그린수소 또한 높은 생산 성능(650도에서 시간당 약 770 ml/cm2)을 보였다. 500시간의 장시간 구동 후에 가역 구동(전력 및 그린수소를 교대로 생산)에서도 안정적인 성능을 보여, 제시한 전극 설계 방법의 우수성이 입증됐다. 이강택 교수는 “이번 연구에서 제안한 전극 설계 기법이 프로토닉 세라믹 전기화학전지의 고성능 전력/그린수소 생산에 대한 새로운 방향성을 제시할 것으로 기대되며, 이 기술이 글로벌 넷제로 달성을 위한 수소 생산 및 친환경 에너지 기술 상용화에 촉매제가 될 수 있을 것”이라고 말했다. 우리 대학 기계공학과 김동연 박사과정, 정인철 박사, 신소재공학과 안세종 박사과정이 공동 제1 저자로 참여한 이번 연구 결과는 에너지·재료 분야의 세계적 권위지인 ‘어드밴스드 에너지 머터리얼즈, Advanced Energy Materials (IF:27.8)’에 지난 4월 12일 字 후면표지(Back cover) 논문으로 게재됐다. (논문명: On the Role of Bimetal-Doped BaCoO3-���� Perovskites as Highly Active Oxygen Electrodes of Protonic Ceramic Electrochemical Cells) 한편 이번 연구는 과학기술정보통신부 수소에너지혁신기술개발사업, 이공분야기초연구사업 그리고 나노 및 소재 기술개발사업의 지원으로 수행됐다.
2024.05.14
조회수 3814
그린수소 생산에 탁월한 전해질 신소재 개발
그린수소는 풍력, 태양광등 재생에너지를 이용하여 생산과정에서 이산화탄소 배출이 전혀 없는 궁극적인 청정 에너지원으로 각광을 받고 있다. 이러한 그린수소를 활용/생산하는 연료전지, 수전해 전지, 촉매 분야에 산소 이온성 고체전해질이 널리 사용되고 있다. 이러한 산소 이온 전도체들은 주로 700oC 이상의 고온에서 활용되는데 이 때문에 소자 내의 다른 요소들과의 바람직하지 않은 화학반응, 소재 응집, 열충격이 발생하거나 높은 유지비용이 요구되는 등의 문제가 발생하고 있다. 우리 대학 기계공학과 이강택 교수 연구팀이 미국 메릴랜드 대학 에릭 왁스만(Eric Wachsman) 교수 연구팀과 공동연구를 통해 기존 소재 대비 전도성이 140배 높은 산소 이온 전도성 고체전해질 개발에 성공했다고 22일 밝혔다. 개발된 신소재는 비스무트 산화물 기반으로 400oC에서 기존 지르코니아 소재의 700oC에 해당하는 높은 전도성을 보이며 중저온(600oC) 영역대에서 140배 이상 높은 이온전도도 나타냈다. 비스무트 산화물 산소 이온 전도체 소재는 중저온 영역대에서 상전이로 인해 이온전도도가 급격하게 감소한다는 문제가 있었으나, 이번 연구에서 개발된 산소 이온 전도체 신소재는 도핑을 통해 중저온 영역대에서도 1,000시간 이상 높은 이온전도도를 유지해 상용화 가능성을 크게 높였다. 또한, 공동연구팀은 원자단위 시뮬레이션 계산화학을 통해 도핑된 원소가 산소 이온 전도체 신소재의 성능 및 안정성을 향상하는 메커니즘을 규명했다. 개발된 신소재는 고체산화물 연료전지(SOFC)에 적용돼 학계에 보고된 소자 중 가장 높은 수준의 전력 생산(2.0 W/cm2, 600oC) 능력을 보였다. 그뿐만 아니라, 고체산화물 전해전지(SOEC)에도 적용돼 기존 대비 2배 높은 단위면적당 15.8 mL/min의 탁월한 그린 수소 생산 능력을 보이며, 해당 신소재의 실제 소자에의 적용 가능성을 증명했다. 이강택 교수는 “이번 연구에서 개발된 산소 이온 전도체 신소재는 중저온 영역대에서도 안정적으로 높은 전도도를 유지할 수 있어 세라믹 소자의 높은 작동온도를 획기적으로 낮추는 데 활용될 것으로 기대되며, 탄소중립 실현을 위한 에너지/환경 소자 상용화에 본 기술을 적용할 수 있을 것”이라며 연구의 의미를 강조했다. 기계공학과 유형민 박사과정, 정인철 박사, 장승수 박사과정이 공동 제1 저자로 참여했으며 한국에너지기술연구원 이찬우 박사 연구팀이 공동으로 참여한 이번 연구는 전 세계적으로 권위있는 국제 학술지인 ‘어드벤스드 머티리얼스(Advanced Materials)’ (IF : 29.4) 10월 17일 字 온라인판에 게재됐다. (논문명 : Lowering the Temperature of Solid Oxide Electrochemical Cells Using Triple-doped Bismuth Oxides). 한편 이번 연구는 과학기술정보통신부 수소에너지혁신기술개발사업과 나노 및 소재 기술개발사업의 지원으로 수행됐다.
2023.11.22
조회수 4319
돼지표피에서 추출한 젤라틴 활용해 고성능 고체산화물 연료전지 개발
우리 대학 기계공학과 이강택 교수 연구팀이 돼지 표피에서 추출한 젤라틴을 활용해 수백 나노 수준의 매우 얇은 고 치밀성 다중도핑 세라믹 박막 제조 기술을 적용한 고성능의 양방향 고체산화물 연료전지 개발에 성공했다고 8일 밝혔다. 양방향 고체산화물 연료전지(R-SOFC)는 하나의 연료전지 소자에서 수소 생산과 전력생산이 모두 가능한 시스템으로서 탄소중립 사회 실현을 위해 필수적인 에너지 변환장치다. 이러한 에너지 소자의 성능을 높이기 위해서는 700oC 이하의 중저온에서 고활성을 갖는 전극의 개발이 필수적이며, 이를 위해 코발트 기반 페로브스카이트 전극이 집중적으로 연구돼왔다. 하지만 이러한 코발트 기반 전극 소재는 범용으로 사용되는 지르코니아(ZrO2) 전해질과 고온에서 화학반응을 일으켜 성능을 저하하는 문제가 있다. 이를 해결하기 위해 전극과 전해질 사이에 세리아(CeO2) 기능층을 도입하는 연구가 진행돼왔지만, 세리아와 지르코니아 사이의 반응을 억제하기 위해서 공정온도가 제한되며 이로 인해 두꺼운 다공성 구조를 갖게 되어 연료전지의 성능 및 안정성이 저하된다는 문제가 있었다. 이 교수 연구팀은 이 연구에서 젤라틴을 활용해 매우 얇으면서도 치밀한 다중도핑의 세리아 나노박막 제조 공정기술을 개발해 양방향 고체산화물연료전지에 기능층으로 적용하는 데 성공했다. 전기화학 및 구조 분석을 통해 치밀한 기능층의 도입으로 산소이온의 이동경로가 크게 감소하며 전기화학적 활성영역이 크게 증가함을 확인했다. 또한 개발된 양방향 연료전지는 기존 공정을 적용한 연료전지 대비 2배 이상 높은 성능을 보였으며 동일소재를 사용한 연료전지 중 가장 높은 성능(3.5 W/cm2, 750oC) 을 나타냈으며, 수소 생산도 세계 최고성능을 발휘했다. 또한, 개발된 연료전지 소자는 1,500시간 동안 열화 없이 구동돼 매우 높은 안정성을 갖고 있음을 실증했다. 이강택 교수는 "이번 연구에서 사용된 공정들은 대면적 양산시스템에도 쉽게 적용할 수 있는 기술들이기 때문에, 탄소중립 실현을 위한 고성능 양방향 연료전지 상용화에 본 기술을 적용할 수 있을 것ˮ이라며 연구의 의미를 강조했다. 기계공학과 유형민 석사과정, 임하니 박사후연구원이 공동 제1 저자로 참여한 이번 연구는 국제 학술지인 `어드벤스드 펑셔널 머티리얼스, Advanced Functional Materials' (IF : 19.924) 지난 9월 8일 字 온라인판에 게재됐다. (논문명 : Exceptionally High-performance Reversible Solid Oxide Electrochemical Cells with Ultra-thin and Defect-free Sm0.075Nd0.075Ce0.85O2-���� Interlayers). 또한 해당 논문은 연구의 파급력을 인정받아 표지논문 (Front cover)으로 선정됐다. 한편 이번 연구는 과학기술정보통신부 수소에너지혁신기술개발사업, 중견연구자지원사업, 나노 및 소재 기술개발사업, 그리고 기후변화대응기술개발사업의 지원으로 수행됐다.
2022.12.08
조회수 6865
탄소중립을 위한 차세대 에너지 변환기술인 고성능 프로토닉 세라믹 연료전지 개발 성공
우리 대학 기계공학과 이강택 교수 연구팀이 마이크로파를 이용한 초고속 소결 공정을 통해 고성능 프로토닉 세라믹 연료전지(PCFC) 개발에 성공했다고 3일 밝혔다. 기존의 산소 이온 전도성 고체 산화물 연료전지(SOFC)와 달리, 프로토닉 세라믹 연료전지는 양성자 전도성 세라믹 전해질의 높은 이온 전도도와 낮은 활성화 에너지 특성으로 인해, 600oC 이하 저온에서 고효율로 전력 변환 및 수소 생산이 가역적으로 가능한 에너지 변환 시스템으로 이는 수소전기차, 수소 충전소, 건물 및 선박용 발전시스템 등에 활용이 가능한 탄소중립 사회를 위한 차세대 핵심 기술로 떠오르고 있다. 이러한 프로토닉 세라믹 연료전지는 난소결성 바륨 기반 산화물 전해질을 사용하는데, 이를 치밀화하기 위해서 1,500oC 이상 고온에서 장시간 소결(세라믹 입자를 가열하여 단단하게 결합시키는) 공정이 필수적이다. 하지만, 이러한 극한 공정 중에 산화물 내부에서 발생하는 양이온 확산으로 화학적 조성이 불안정해지는 치명적인 문제가 있었다. 이를 해결하기 위해 다양한 연구가 진행되고 있지만, 대부분 실험실에서 국소적으로 가능한 방법들이 보고되고 있으며, 실용적으로 상용화가 가능한 새로운 제조 공정의 연구가 시급한 실정이다. 연구팀은 이러한 문제점을 해결할 방법으로 기존에 복사열로 장시간 (300분) 소결하는 방법 대신 흔히 전자레인지나 오븐 등에 쓰이는 마이크로파를 사용해 5분 만에 초고속 소결을 해 이론적 화학조성의 전해질을 갖는 프로토닉 세라믹 연료전지를 개발하는 데 성공했다. 이와 동시에, 초고속 온도 상승으로 연료극이 나노 구조화돼 전기화학적 활성 영역 또한 크게 확장됨을 증명했다. 연구팀은 이와 더불어 3차원 형상 복원 기술을 통해, 연료극 입자 미세화로 인한 삼상계면 길이의 증가가 전극 표면 활성 반응을 가속화하는 미세구조와 전기화학 특성 간의 상관관계를 규명했다. 연구팀이 개발한 프로토닉 세라믹 연료전지는 현재까지 보고된 동일 소재의 연료전지 중 가장 우수한 성능을 보였으며, 장시간 (800시간) 구동에도 매우 높은 안정성이 확인돼, 마이크로파 기반 초고속 제조 공정 도입의 이점을 효과적으로 증명했다. 우리 대학 기계공학과 김동연, 배경택 박사과정생이 공동 제1 저자로 참여한 이번 연구 결과는 국제 학술지인 `에이씨에스 에너지 레터스, ACS Energy Letters' (IF:23.991) 6월 29일 字 온라인판에 게재됐다. (논문명: High-Performance Protonic Ceramic Electrochemical Cells) 이강택 교수는 "이번 연구를 통해 마이크로파를 이용한 초고속 제조 공정이 기존 공정의 난제를 해결하고 프로토닉 세라믹 연료전지 성능을 극대화할 수 있음을 실험적으로 증명했고, 이는 탄소중립 사회 실현을 앞당길 수 있는 고성능 차세대 에너지 변환기술 발전의 촉매 역할을 할 것ˮ 이라고 말했다. 한편 이번 연구는 과학기술정보통신부 수소에너지혁신기술개발사업, 중견연구자지원사업 그리고 나노 및 소재 기술개발사업의 지원으로 수행됐다.
2022.08.03
조회수 13750
차세대 에너지 변환기술인 양방향 고체산화물 연료전지용 스마트 전극 개발
우리 대학 기계공학과 이강택 교수 연구팀이 포스텍 한정우 교수, 한국세라믹기술원 신태호 박사팀과의 공동 연구를 통해 양방향 고체산화물 연료전지(SOFC)용 고성능 전극 소재 개발에 성공했다고 21일 밝혔다. 양방향 고체산화물 연료전지는 고온에서 수소와 산소를 자발 반응시켜 고효율로 전력으로 변환(연료전지 모드) 하고, 전기를 가하면 청정 수소(그린 수소)와 같은 친환경 에너지원을 생산(전해전지 모드) 할 수 있는, 탄소중립 사회를 위한 차세대 에너지 변환 기술이다. 이러한 양방향 연료전지의 전기화학적 성능을 높이기 위해서 가역반응에서 전극의 촉매 성능을 획기적으로 높이는 것이 중요하며, 이를 위한 다양한 연구가 진행되고 있다. 그중 다공성 연료극 구조체 표면에 고성능 나노 금속 촉매를 입히는 기존 함침법의 경우 반응점을 늘리기 위해서 반복적인 증착 공정을 수행해야 하고, 고온 장기 구동 시 응집 현상으로 인한 촉매 활성도가 저하되는 한계를 갖고 있다. 연구팀은 이러한 문제점 해결을 위해 연료전지가 작동하는 환경에서, 전극 표면에 금속합금 나노촉매가 자발적으로 형성되는 용출(exsolution) 현상을 활용한 전극을 디자인 했다. 연구팀은 금속합금 나노촉매 형성을 촉진하기 위해 기존 코발타이트계 산화물 구조 내에 팔라듐(Pd)을 미량 첨가해, 양방향 구동 시 가역적으로 고활성을 갖는 전극 개발에 성공했다. 해당 방법으로 설계된 나노 합금 촉매는 페로브스카이트 격자 내부에서부터 전극 표면으로 스스로 용출돼 형성되기 때문에 전극 표면과 응집 현상 없이 강하게 결합하고, 입자의 균일도 또한 우수해 촉매 성능 향상에 큰 이점이 있다. 연구팀은 전해질 지지체 단전지에 개발된 전극을 연료극으로 사용해 성능을 측정한 결과, 연료전지 모드에서 최대출력 2.0W/cm2 (850oC), 전해전지 모드에서 전력밀도 2.23A/cm-2 (1.3V, 850oC)를 구현해, 세계 최고 수준의 양방향 연료전지 성능을 달성했다. 이는 기존 기술 대비 연료전지 모드는 1.6배, 전해전지 모드는 2.4배 향상된 결과다. 기계공학과 김경준 박사, 배경택 박사과정생, 포스텍 임채성 박사과정생이 공동 제1 저자로 참여한 이번 연구 결과는 국제 학술지인 `어플라이드 카탈리시스 비: 인바이러멘탈, Applied Catalysis B: Environmental' (IF:19.503, JCR분야 0.93%) 5월 14일 字 온라인판에 게재됐다. (논문명: Concurrent promotion of phase transition and bimetallic nanocatalyst exsolution in perovskite oxides driven by Pd doping to achieve highly active bifunctional fuel electrodes for reversible solid oxide electrochemical cells) 이강택 교수는 “이번 연구를 통해서 특정 페로브스카이트 전극 물질 내 높은 환원 특성을 가지는 원소의 도핑이 산화물 전극 표면에 이종 금속 나노촉매를 선택적으로 형성하는 방아쇠 역할을 할 수 있으며, 이는 고성능 고 안정성의 양방향 고체산화물 연료전지 상용화를 선도하는 기술이 될 것”이라고 말했다. 한편 이번 연구는 과학기술정보통신부 수소에너지혁신기술개발사업, 중견연구자지원사업 그리고 나노 및 소재 기술개발사업의 지원으로 수행됐다.
2022.06.21
조회수 6833
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1