본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%9E%A5%EA%B8%B0%EC%A3%BC
최신순
조회순
실리콘 나노선의 불순물 특성 세계 첫 규명
장기주 교수 - “실리콘 나노선을 소재 상용화 앞당겨 획기적 반도체 집적도 향상 기대” -- 나노분야 세계적 학술지 ‘나노레터스’ 9월 17일자 게재 - 우리 학교 연구진이 미래 차세대 반도체 소자 소재로 기대를 모으고 있는 실리콘 나노선의 전기 흐름과 직결된 불순물 특성을 밝혀냈다. 우리 학교 물리학과 장기주 특훈교수팀은 산화 처리된 실리콘 나노선에서 전기를 흐르게 하기위해 첨가한 불순물 붕소(B), 인(P) 등의 움직임과 비활성화를 일으키는 메커니즘을 세계 최초로 규명했다. 현재 최첨단 기술로도 10nm(나노미터) 이하의 실리콘 기반 반도체 제작은 불가능한 것으로 알려져 있지만, 실리콘 나노선은 굵기가 수 나노미터이기 때문에 보다 획기적인 집적도를 가진 반도체를 구현할 수 있을 것으로 기대된다. 실리콘 나노선은 원래 전기가 흐르지 않는 데 반도체 소자로 적용하려면 인 또는 붕소와 같은 불순물을 소량 첨가(Doping)해 양의 전하를 띠는 정공이나 음 전하를 띠는 전자 운반 매개체를 만들어 전기가 흐를 수 있도록 해야 한다. 그러나 덩어리 형태의 기존 실리콘에 비해 나노선에서는 불순물 첨가가 어려울 뿐만 아니라 전기전도 특성을 조절하기 어려운 문제가 있었다. 장 교수 연구팀은 이번 연구를 위해 단순 모형을 이용한 기존 이론을 개선한 획기적 양자시뮬레이션 이론을 고안해 실제와 매우 가까운 코어-쉘 원자 모델을 만들었다.연구팀은 이를 통해 실리콘 코어 내부에 첨가된 붕소 불순물이 산화과정에서 코어를 싸고 있는 산화물 껍질로 쉽게 빠져나가는 원인을 세계 최초로 규명하는 데 성공했다. 이와 함께 인 불순물은 산화물로 빠져나가지 못하지만 서로 전기적으로 비활성화 된 쌍을 이루면서 정공이 생기는 효율을 감소시킨다는 사실도 밝혔다. 이러한 현상은 나노선이 필름 형태로 돼 있는 기존 실리콘에 비해 같은 부피라도 표면적이 더 넓기 때문에 더욱 심각한 문제를 일으킨다고 연구팀은 이번 연구에서 입증했다. 장기주 교수는 “이번 연구방법은 실리콘과 산화물 사이의 코어-쉘 나노선 모델을 구현하는 이론 연구의 기본 모형으로 받아질 것으로 기대된다”며 “특히, 10nm급 수준의 소자 연구에서 실리콘 채널을 산화물로 둘러 싼 3차원 FinFET 구조의 원자구조를 구현해 소자 특성을 밝히는 데 커다란 도움이 될 것이다”라고 연구의의를 밝혔다.KAIST 장기주 교수가 주도하고 김성현 박사과정 학생(제1저자)과 박지상 박사과정 학생(제 2저자)이 참여한 이번 연구는 교육과학기술부와 한국연구재단이 추진하는 중견연구자사업(도약연구) 및 신기술융합형성장동력사업(나노기반정보⋅에너지) 지원으로 수행됐고, 나노과학분야 세계적 학술지인 ‘나노레터스(Nano Letters)’ 9월 17일자 온라인 판에 게재됐다. 그림설명 : 실리콘/산화물 코어-쉘 나노선의 종단면. 초기 코어에 잘 들어가 있던 붕소(녹색)이 격자 틈새에 위치한 실리콘(연파랑)에 의해 밀려남 따라 붕소가 산화물 껍질로 빠져나간다.
2012.10.22
조회수 15955
장기주 교수, 불순물도핑없는 반도체나노선 양전하 생성원인규명
물리학과 장기주(張基柱, 56) 교수팀이 게르마늄-실리콘 나노선에서 불순물 도핑 없이도 양전하가 생성되는 원인을 최근 규명했다. 이 연구는 KAIST 박지상, 류병기 연구원, 연세대 문창연 박사와 함께 나노미터(nm=10억분의 1m)단위의 직경을 가진 코어-쉘(core-shell) 구조의 게르마늄-실리콘 나노선의 전기전도 특성을 조사해 이뤄졌다. 이번 연구결과는 나노과학기술 분야 최고 권위지인 ‘나노 레터스(Nano Letters)" 온라인판에 게르마늄-실리콘 코어-쉘 나노선의 양전하 정공 가스를 일으키는 결함(Defects Responsible for the Hole Gas in Ge/Si Core−Shell Nanowires)라는 제목으로 지난 17일 게재됐다. 반도체 기술이 소형화의 한계에 직면하면서 탄소나노튜브, 그래핀(graphene), 반도체 나노선 등 나노 소재를 이용한 새로운 반도체 소자 연구가 널리 수행되고 있다. 특히 실리콘 및 게르마늄 나노선은 기존 반도체 기술과 접목이 가능하기 때문에 큰 기대를 모으고 있다. 반도체 나노선의 소자 응용은 불순물을 첨가하여 양전하 혹은 음전하를 띤 정공(hole)이나 전자 운반자를 만들어 전류가 흐를 수 있게 해야 한다. 그러나 나노선의 직경이 작아져 나노미터 수준이 되면 불순물 첨가가 어려워 전기전도의 조절이 매우 어려워진다. 이에 반해 게르마늄 나노선을 얇은 실리콘 껍질로 둘러싼 코어-쉘(core-shell) 구조를 갖는 나노선을 만들면 불순물을 도핑하지 않아도 게르마늄 코어에 정공이 만들어지고 전하 이동도는 크게 증가한다. 연구진은 제일원리 전자구조 계산을 통해 게르마늄 코어와 실리콘 쉘의 밴드구조가 어긋나 있고, 이러한 이유로 게르마늄 코어의 전자가 실리콘 쉘에 있는 표면 결함으로 전하 이동이 가능하여 코어에 양공이 생성됨을 최초로 규명했다. 또한 반도체 나노선을 만드는 과정에서 촉매로 쓰이는 금(Au) 원자들이 실리콘 쉘에 남아 게르마늄 코어의 전자를 빼앗는다는 사실도 처음 밝혔다. 張 교수는 “이번 연구 결과는 그동안 수수께끼로 남아있던 게르마늄-실리콘 나노선의 양전하 생성 원인과 산란과정을 거치지 않는 정공의 높은 전하 이동도에 대한 이론적 모델을 확립하고, 이를 토대로 불순물 도핑 없는 나노선의 소자 응용과 개발에 크게 기여할 것으로 기대된다.” 고 말했다. * 용어설명○ 제일원리 전자구조 계산 : 실험 데이터 없이 순전히 양자이론에 기초하여 물질의 전자구조와 물성을 기술하는 최고급(state-of-the-art) 전자구조 계산방법. (그림1) 실리콘 나노선 및 게르마늄-실리콘 코어-쉘 나노선의 원자구조. (그림2) 게르마늄-실리콘 코어-쉘 나노선의 전자의 상태밀도 분포.
2009.12.30
조회수 19655
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1