본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%B5%9C%EC%84%B1%EC%9C%A8
최신순
조회순
최성율 교수, 뉴로모픽 칩의 시냅스 구현
〈 최성율 교수 〉 우리 대학 전기및전자공학부 최성율 교수 연구팀이 멤리스터(Memristor) 소자의 구동 방식을 아날로그 형태로 변화해 뉴로모픽 칩의 시냅스로 활용할 수 있는 기술을 개발했다. 이 기술을 통해 기존의 디지털 비휘발성 메모리로만 이용되던 멤리스터를 아날로그 형태로 활용함으로써 인간의 뇌를 모사한 인공지능 컴퓨팅 칩인 뉴로모픽 칩의 상용화에 기여할 수 있을 것으로 기대된다. 장병철 박사(현 삼성전자 연구원), 김성규 박사(현 노스웨스턴대학), 양상윤 연구교수가 공동 1 저자로 참여하고 美 노스웨스턴 대학, KAIST 임성갑 교수가 공동으로 수행한 이번 연구는 나노과학 분야 국제 학술지 ‘나노 레터스 (Nano Letters)’ 1월 4일 온라인판에 게재됐다. 사람 뇌를 닮은 반도체로 알려진 뉴로모픽 칩은 기존의 반도체 칩이 갖는 전력 확보 문제를 해결할 수 있고 데이터 처리 과정을 통합할 수 있어 차세대 기술로 주목받고 있다. 멤리스터는 메모리와 레지스터의 합성어로, 메모리와 프로세스가 통합된 기능을 수행할 수 있다. 특히 뉴로모픽 칩 내부에 물리적 인공신경망을 가장 효과적으로 구현할 수 있는 크로스바 어레이(crossbar array) 제작에 최적인 소자로 알려져 있다. 물리적 인공신경망은 뉴런 회로와 이들의 연결부인 시냅스 소자로 구성되는데 뉴로모픽 칩 기반의 인공지능 연산을 수행할 때 각 시냅스 소자에서는 뉴런 간의 연결 강도를 나타내는 전도도 가중치가 아날로그 데이터로 저장 및 갱신돼야 한다. 그러나 기존 멤리스터들은 대부분 비휘발성 메모리 구현에 적합한 디지털의 특성을 가져 아날로그 방식의 구동에 한계가 있었고, 이로 인해 시냅스 소자로 응용하기 어려웠다. 최 교수 연구팀은 플라스틱 기판 위에 고분자 소재 기반의 유연 멤리스터를 제작하면서 소자 내부에 형성되는 전도성 금속 필라멘트 크기를 금속 원자 수준으로 얇게 조절하면 멤리스터의 동작이 디지털에서 아날로그 방식으로 변화하는 것을 발견했다. 연구팀은 이러한 현상을 이용해 멤리스터의 전도도 가중치를 연속적, 선형적으로 갱신할 수 있고 구부림 등의 기계적 변형 상태에서도 정상 동작하는 유연 멤리스터 시냅스 소자를 구현했다. 유연 멤리스터 시냅스로 구성된 인공신경망은 학습을 통해 사람의 얼굴을 효과적으로 인식해 분류할 수 있고 손상된 얼굴 이미지도 인식할 수 있음을 확인했다. 이를 통해 얼굴, 숫자, 사물 등의 인식을 효율적으로 수행할 수 있는 유연 뉴로모픽 칩 개발의 가능성을 확보했다. 최 교수는 “멤리스터 소자의 구동 방식이 디지털에서 아날로그로 변화되는 주요 원리를 밝힘으로써 다양한 멤리스터 소자들을 디지털 메모리 또는 시냅스 소자로 응용할 수 있는 길을 열었다”라며 “고성능 뉴로모픽 칩 개발의 가속화에 기여할 수 있을 것이다” 라고 말했다. 이번 연구는 과학기술정보통신부 한국연구재단 글로벌프론티어사업 중 (재)나노기판소프트일렉트로닉스 연구단의 지원을 받아 수행됐다. □ 그림 설명 그림1. 플라스틱 기판 위에 제작된 유연 멤리스터 시냅스 소자 모식도
2019.02.11
조회수 10129
최성율, 박상희 교수, 전자기기용 저전력 멤리스터 집적회로 개발
우리 대학 전기및전자공학부 최성율 교수와 신소재공학과 박상희 교수 공동 연구팀이 메모리와 레지스터의 합성어인 멤리스터(Memristor)를 이용해 저전력 비휘발성 로직-인-메모리 집적회로를 개발했다. 레지스터, 커패시터, 인덕터에 이어 4번째 전자 회로 소자인 멤리스터를 통한 기술로 새로운 컴퓨팅 아키텍처(하드웨어와 소프트웨어를 포함한 컴퓨터 시스템 전체 설계방식)를 제공할 수 있을 것으로 기대된다. 장병철, 남윤용 박사과정이 공동 1저자로 참여한 이번 연구는 재료분야 국제 학술지 ‘어드밴스드 펑셔널 머티리얼즈(Advanced Functional Materials)’ 1월 10일자 표지 논문으로 게재됐다. 4차 산업혁명 시대는 사물인터넷, 인공지능 등의 정보통신 기술 기반을 통해 발전되고 있으며 이는 사용자 친화적인 유연, 웨어러블 기기를 활용해 제공될 것으로 보여진다. 이러한 측면에서 저전력 배터리를 기반으로 한 소프트 전자기기의 개발에 대한 필요성이 커지고 있다. 하지만 기존 트랜지스터로 구성된 메모리와 로직회로 기반의 전자 시스템은 문턱전압 이하 수준의 트랜지스터 누설 전류(subthreshold leakage current)에 의한 대기전력 소모로 인해 휴대용 전자기기로의 응용에 한계가 있었다. 또한 기존 메모리와 프로세서가 분리돼 있어 데이터를 주고받는 과정에서 전력과 시간이 소모되는 문제점도 있었다. 연구팀은 문제 해결을 위해 정보의 저장과 로직 연산 기능을 동시에 구현할 수 있는 로직-인-메모리 집적회로를 개발했다. 플라스틱 기판 위에 비휘발성의 고분자 소재를 이용한 멤리스터, 산화물 반도체 소재를 이용한 유연 쇼트키 다이오드 선택소자(Schottky Diode Selector)를 수직으로 집적해 선택소자와 멤리스터가 일대일로 짝을 이루는 1S-1M 집적소자 어레이를 구현했다. 연구팀은 기존의 아키텍처와는 달리 대기 전력을 거의 소모하지 않는 비휘발성 로직-인-메모리 집적회로를 구현해 새로운 컴퓨팅 아키텍처를 개발했다. 또한 어레이 상에서 소자 간에 흐르는 스니크(sneak) 전류라고 불리는 누설 전류 문제도 해결했다. 그 밖에도 연구팀의 기술은 병렬 컴퓨터 방식인 하나의 명령어로 여러 값을 동시에 계산하는 단일 명령 다중 데이터 처리(Single-Instruction Multiple-Data, SIMD)를 구현했다. 최 교수는 “멤리스터와 선택소자의 집적을 통해 유연한 로직-인-메모리 집적회로를 구현한 이번 연구는 유연성과 저전력성을 가진 메모리와 로직을 동시에 제공한다”며 “모바일 및 웨어러블 전자시스템의 혁신을 가져 올 수 있는 원천기술을 확보했다는 의의를 갖는다”고 말했다. 이번 연구는 과학기술정보통신부 한국연구재단이 추진하는 글로벌프론티어사업 등의 지원을 받아 수행됐다. □ 그림 설명 그림1. 저널에 게재된 표지논문 사진 그림2 유연 멤리스티브 비휘발성 로직-인-메모리 회로와 소자 단면 고해상도 투과전자현미경 이미지 그림3. 비휘발성 메모리 소자 응용을 위한 인가전압에 따른 소자 성능 확인 그림4. 유연 1S-1M 집적 소자 어레이의 병렬 로직 연산
2018.02.13
조회수 18235
최성율 교수, 이차원 소재 이용한 초저전력 유연메모리 개발
〈 최성율 교수, 장병철 박사과정 〉 우리 대학 전기및전자공학부 최성율 교수와 생명화학공학과 임성갑 교수 공동 연구팀이 2차원 소재를 이용한 고집적, 초저전력 비휘발성 유연 메모리 기술을 개발했다. 연구팀은 원자층 두께로 매우 얇은 이황화몰리브덴 채널 소재와 고성능의 고분자 절연막 소재를 이용해 이 기술을 개발했다. 우명훈 석사(현 삼성전자 연구원)와 장병철 박사과정 학생이 공동 1저자로 참여한 이번 연구는 국제적인 재료분야 학술지 ‘어드밴스드 펑셔널 머티리얼즈(Advanced Functional Materials)’ 11월 17일자 표지 논문으로 게재됐다. 사물인터넷, 인공지능, 클라우드 서버 기술 등의 등장으로 인해 메모리 중심의 컴퓨팅 전환과 함께 웨어러블 기기 산업의 수요 증가로 고집적, 초저전력 비휘발성 유연 메모리에 대한 필요성이 커지고 있다. 특히 원자층 두께의 매우 얇은 이황화몰리브덴 반도체 소재는 최근 포스트 실리콘 소재로 주목받고 있다. 이는 얇은 두께로 인해 기존 실리콘 소자에서 나타나는 단채널 효과를 억제해 고집적도 및 전력 소모 측면에서 장점을 갖기 때문이다. 또한 얇은 두께로 인해 유연한 특성을 가져 웨어러블 전자소자로의 응용이 가능하다는 이점이 있다. 하지만 이황화몰리브덴 반도체 소재는 불포화 결합(dangling bond)을 갖지 않는 표면 특성으로 인해 기존의 원자층 증착 장비로는 얇은 절연막을 균일하고 견고하게 증착하기 어렵다는 한계가 있다. 게다가 현재의 액상 공정으로는 저유전율 고분자 절연막을 10나노미터 이하로 균일하게 대면적으로 증착하기가 어려워 저전압 구동이 불가능하고 포토리소그래피 공정과 호환이 이뤄지지 않았다. 연구팀은 문제 해결을 위해 ‘개시제를 이용한 화학 기상증착법(initiated chemical vapor deposition, iCVD)’을 이용해 고성능의 고분자 절연막을 개발해 해결했다. 연구팀은 iCVD 공정을 이용해 이황화몰리브덴 반도체 소재 위에 10나노미터 두께의 터널링 고분자 절연막이 균일하고 견고하게 증착됨을 확인했다. 연구팀은 기존의 이황화몰리브덴 반도체 메모리 소자가 20V 이상의 전압으로 구동되는 반면 이번에 제작한 소자는 10V 부근의 저전압으로 구동됨을 확인했다. 최 교수는 “인공지능, 사물인터넷 등 4차산업혁명의 근간인 반도체 소자기술은 기존 메모리 소자를 뛰어넘는 저전력성과 유연성 등의 기능을 갖춰야 한다”며 “이번 기술은 이를 해결할 수 있는 소재, 공정, 소자 원천 기술을 개발했다는 의의를 갖는다”고 말했다. 이번 연구는 과학기술정보통신부 한국연구재단이 추진하는 글로벌프론티어사업, 미래소재 디스커버리 사업 등의 지원을 받아 수행됐다. □ 그림 설명 그림1. Advanced Functional Materials 표지 그림2. 제작된 비휘발성 메모리 소자의 개념도 및 소자 단면 고해상도 투과전자현미경 이미지
2017.12.18
조회수 20273
이건재, 최성율 교수, 고체 상분리 현상에 의한 그래핀 생성원리 발견
우리 대학 신소재공학과 이건재 교수와 전기및전자공학부 최성율 교수 연구팀이 초단시간의 레이저를 조사해 단결정 탄화규소(SiC)의 고체 상분리 현상을 발견하고 이를 활용한 그래핀 생성원리를 밝혔다. 기존에 활용되고 있는 화학기상증착(Chemical Vapor Deposition, CVD) 기반의 그래핀 합성법이 상당시간의 고온 공정을 필요로 하는 것과 달리 새로운 레이저 열처리법은 상온환경에서 단시간의 공정으로 그래핀을 합성할 수 있어 향후 그래핀 활용의 폭을 넓힐 수 있을 전망이다. 연구진은 단결정 탄화규소 소재 표면에 나노초(10억분의 1초) 단위의 극히 짧은 시간 동안 레이저를 쪼여 표면을 순간적으로 녹였다가 다시 응고시켰다. 그러자 탄화규소 표면이 두께 2.5나노미터의 탄소(C) 초박막층과 그 아래 두께 5나노미터의 규소(Si, 실리콘)층으로 분리되는 상분리 현상이 나타났다. 여기에 레이저를 다시 쪼이자 안쪽 실리콘층은 증발하고, 탄소층은 그래핀이 됨을 확인했다. 특히 탄화규소와 같은 이종원소 화합물과 레이저의 상호작용에 대한 연구는 아주 짧은 시간에 일어나는 복잡한 상전이 현상으로 지금까지 그 규명이 쉽지 않았다. 그러나 연구진은 레이저에 의해 순간적으로 유도된 탄소 및 실리콘의 초박막층을 고해상도 전자현미경으로 촬영하고, 실리콘과 같은 반도체 물질이 고체와 액체 상태일 때 나타나는 광학 반사율이 다르다는 점에 착안해 탄화규소의 고체 상분리 현상을 성공적으로 규명해낼 수 있었다. 연구에 활용된 레이저 열처리기술은 AMOLED(능동형 유기발광다이오드) 등 상용 디스플레이 생산공정에 널리 활용되고 있는 방법으로, CVD 공정과 달리 레이저로 소재 표면만 순간적으로 가열하기 때문에 열에 약한 플라스틱 기판 등에도 활용이 가능하여, 향후 플렉시블 전자 분야로 응용의 폭을 넓힐 수 있을 것으로 기대된다. 이 교수는 "이번 연구 결과를 통해 레이저 기술이 그래핀과 같은 2차원 나노소재에 보다 폭넓게 응용될 수 있을 것이다”고 말했다. 최 교수는 "앞으로 다양한 고체 화합물과 레이저의 상호작용을 규명해 이들의 상분리 현상을 활용하면 새로운 나노소재 개발을 기대할 수 있을 것이다”고 말했다. 이번 연구결과는 자연과학 및 응용과학 분야 학술지 '네이처 커뮤니케이션즈(Nature Communications)' 최신호에 게재됐다. □ 그림 설명 그림1. 단결정 탄화규소의 용융을 통한 상분리 현상의 원리를 밝혀내는 분자동역학 시뮬레이션의 모식도 그림2. 레이저에 의해 순간적으로 유도된 단결정 탄화규소의 용융 및 응고 현상을 증명하는 실시간 시간 분해능 반사율 (In-situ time-resolved reflectance) 측정 스펙트럼 그림3. 레이저가 조사된 탄화규소 표면의 전체적인 전자현미경 사진(a) 및 이로 의한 탄소와 실리콘으로의 상분리 현상을 촬영한 고해상도 전자현미경 사진(b)
2016.12.05
조회수 18801
도장 찍듯이 자유롭게 그래핀 옮기는 기술 개발
우리 학교 전기및전자공학과 최성율 교수 연구팀이 단원자층 그래핀을 금속촉매기판에서 직접 떼어내는 동시에 원하는 기판에 도장을 찍듯 자유롭게 옮길 수 있는 기술을 개발하는데 성공했다. 이 기술을 활용하면 기존의 직접박리 기반 전사공정으로 달성하기 어려웠던 그래핀 박막 적층, 구조물 표면이나 유연한 기판으로 전사, 4인치 웨이퍼 크기의 대면적 전사 등이 가능해진다. 향후 웨어러블 스마트기기 등 다양한 분야에 사용되는 그래핀 전자소자 상용화에 활용될 전망이다. 그래핀을 원하는 기판으로 옮기기 위해 현재 가장 널리 사용하는 방법인 습식전사법은 전사과정 중에 그래핀이 물리적으로 손상되고 표면이 오염 될 수 있어 전사된 그래핀의 전기적 특성이 심각하게 훼손될 수 있다는 단점이 있다. 최 교수 연구팀은 금속촉매기판 위에 성장된 그래핀을 수용성 고분자 용액으로 처리한 후 동일한 수용성 고분자 지지층을 그 위에 형성시켰다. 이 과정을 통해 지지층과 그래핀 사이에 강한 결합력이 형성되고 그 후 지지층을 탄성체 스탬프로 떼어내면 지지층과 함께 그래핀이 금속촉매기판으로부터 분리된다. 이렇게 분리된 그래핀은 탄성체 스탬프에 고립상태로 존재하기 때문에 원하는 기판 어디에든 도장 찍어내듯 자유롭게 옮길 수 있다. 또 금속촉매기판을 재활용 할 수 있고 유해한 화학물질을 전혀 사용하지 않기 때문에 친환경적인 전사법 이라는 장점도 가지고 있다. 최 교수는 이번 연구에 대해 “개발된 그래핀 전사방법은 그 공정이 범용적이고 대면적 전사도 가능하므로 그래핀 전자소자 상용화에 기여할 수 있을 것”이라며 “이 방법이 가지고 있는 높은 전사 자유도로 인해 향후 그래핀과 2차원 소재 접합 나노소자 구현에도 다양하게 활용될 것으로 기대된다”고 연구의의를 밝혔다. 이번 연구는 KAIST 전기및전자공학과 최성율 교수와 양상윤 연구교수가 주도하고 같은 과 조병진 교수, 한국전자통신연구원 최춘기 박사가 참여했으며, 미래창조과학부가 추진하는 글로벌 프론티어 사업인 ‘나노기반 소프트일렉트로닉스 연구단’의 지원으로 수행됐다. 연구 결과는 나노 및 마이크로 과학 분야의 국제 학술지 스몰(small) 1월 14일자 표지논문으로 게재됐다. 끝. 그림1. 본 연구결과를 설명하는 Small紙의 2015년 1월 14일자 표지 사진 그림2. 본 연구에서 개발된 ‘높은 자유도를 갖는 그래핀 직접박리/전사법’ 그림3. 개발된 전사법으로 전사된 그래핀: (좌) 단원자층 그래핀을 3번 반복 전사하여 얻은 3층 그래핀 (3-layerd graphene), (우) 그래핀 트랜지스터 제작을 위해 금속 전극 구조물 표면에 전사한 그래핀 그림4. 대면적 전사된 그래핀: (좌) 4인치 실리콘 웨이퍼에 전사된 그래핀, (우) 플라스틱 (polyethersulfone, PES) 유연기판에 전사된 그래핀 (크기 7cm x 7cm)
2015.01.19
조회수 15214
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1