본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EB%82%98%EB%85%B8%EC%84%AC%EC%9C%A0
최신순
조회순
전자기기 도움 없이 실시간 체온 모니터링 가능한 초고감도 센서 개발
우리 대학 신소재공학과 김일두 교수 연구팀이 온도에 감응하는 색 변화 염료를 전기방사 기술을 통해 나노섬유 멤브레인(얇은 막)에 적용해 인간의 체온(31.6~42.7℃)을 색 변화를 통해 육안으로 손쉽게 감지할 수 있는 초고감도 센서 플랫폼을 개발했다. 색 변화식 센서는 오직 육안으로 센서의 물리화학적 변화(온도, pH 등)를 감지할 수 있어 사용이 편리한 장점이 있다. 하지만, 기존의 상용화된 필름(film) 타입의 온도 감응 색 변화 센서는 염료의 색상이 필름 내부에 갇혀 외부로 효과적으로 전달되지 않아 색 변화 감도가 낮다는 단점이 있다. 이러한 한계를 극복하고자 본 연구팀은 넓은 비표면적과 높은 기공도를 나타내는 나노섬유 멤브레인에 온도 감응 색염료를 효과적으로 결착해 기존의 필름 타입의 색 변화 멤브레인 대비 인간의 체온 범위의 온도에서 색 변화 민감도를 최대 5배 이상 높일 수 있는 기술을 개발했다. 이 기술로 개발된 센서는 특히 휴대가 가능한 개인 헬스케어 진단기기로 별도의 전자기기의 도움 없이 실시간 체온 모니터링이 가능한 센서다. 전기방사 기술을 이용해 합성된 다공성 나노섬유 멤브레인은 필름 타입의 센서 대비 매우 높은 기공도(~95%)와 10배 이상 높은 빛 투과율을 나타내기 때문에 나노섬유 멤브레인에 결착된 염료의 색을 효과적으로 외부로 전달할 수 있어, 연구팀은 색 변화 센서 감도를 극대화할 수 있음을 확인했다. 연구팀은 이번 연구에서 기존에 주로 보고됐던 무정렬(random) 나노섬유 멤브레인 뿐만 아니라 전기장을 조절해 정렬(aligned)된 나노섬유 멤브레인 및 개별 섬유 가닥들이 초고밀도로 나선상으로 꿰어진 나노섬유 얀(yarn) 구조의 온도 감응형 색 센서를 제조하는 데 성공했다. 연구팀은 나노섬유의 밀도와 기공 구조를 더욱 세밀하게 조절해 색 변화 강도를 한층 더 높일 수 있다. 연구를 주도한 김일두 교수는 "기존에 활용되는 필름 타입의 멤브레인이 아닌 진보된 전기방사 기법을 도입함으로써, 나노섬유 멤브레인의 밀도와 정렬 방향을 조절해 온도 감응 색 변화 센서의 반응성을 극대화할 수 있었다ˮ며 "정렬된 나노섬유 및 얀 타입의 나노섬유 멤브레인을 활용해 마스크, 팔찌, 또는 몸에 붙이는 패치(patch) 타입의 웨어러블 온도 감응 색 변화 센서로 활용 가능성을 제시했다는 측면에서 매우 의미가 있는 연구 결과ˮ라고 말했다. 그리고 "저비용, 대량생산이 가능한 전기방사 기법을 활용했기 때문에 상용화 가능성이 큰 기술이며, 누구나 손쉽게 스스로 체온을 육안으로 진단할 수 있는 자가 진단 기기의 진보는 개인의 지속적인 건강관리에 큰 도움이 될 것이다ˮ고 밝혔다. 이번 연구는 공동 제1 저자인 우리 대학 신소재공학과 김동하 박사(現 MIT 박사후 연구원)와 배재형 박사(우리 대학 신소재, 現 하버드 대학 박사후 연구원)의 주도하에 진행됐으며, 우리 대학 신소재공학과 김일두 교수가 교신저자로 참여했다. 이번 연구 결과는 나노 분야의 권위적인 학술지 `어드밴스드 펑셔널 머티리얼즈(Advanced Functional Materials)' 6월호에 앞 표지 논문으로 선정됐다.
2022.06.30
조회수 5449
김도경 교수, 모세관현상 이용한 리튬-황 전지 소재 개발
우리 대학 신소재공학과 김도경 교수 연구팀이 종이가 물을 흡수하는 모세관 현상처럼 탄소나노섬유 사이에 황을 잡아두는 방식을 통해 리튬-황 기반 이차전지 전극 소재를 개발했다. 연구팀이 개발한 면적당 용량(mAh/㎠)이 우수한 저중량, 고용량 리튬-황 기반 이차전지 전극소재를 통해 리튬-황 전지의 상용화를 앞당길 수 있을 것으로 기대된다. 윤종혁 박사과정이 1저자로 참여하고 김도경 교수, UNIST 이현욱 교수가 교신저자로 참여한 이번 연구는 국제 학술지 ‘나노 레터스(Nano Letters)’ 2018년도 18호에 게재됐다. 최근 전기자동차, 대용량 에너지 저장장치의 수요가 급증함에 따라 기존 리튬이온 전지를 뛰어넘는 높은 에너지 밀도의 이차전지 개발 필요성이 커지고 있다. 리튬-황 전지는 차세대 고용량 리튬이차전지로 각광받고 있으며 이론적으로 리튬이온 전지보다 약 6배 이상 높은 에너지 밀도를 갖는다. 하지만 황의 낮은 전기전도도, 충전과 방전으로 인해 발생하는 부피 변화, 리튬 폴리설파이드 중간상이 전해질로 녹아 배출되는 현상은 리튬-황 전지 상용화의 걸림돌이다. 이를 해결하기 위해 다공성 탄소 분말로 황을 감싸 전기전도도를 향상시키고 부피변화를 완화시키며 폴리설파이드가 녹는 것을 방지하는 황-탄소 전극 개발에 대한 연구가 주로 진행돼 왔다. 그러나 이러한 구형의 0차원 탄소 분말들은 입자 간 무수한 접촉 저항이 발생하고 황을 감싸는 합성 과정이 까다로울 뿐 아니라 입자들을 연결하기 위해 고분자 바인더를 사용해야한다는 단점이 있다. 연구팀은 기존 탄소 재료의 단점을 극복하기 위해 전기방사를 통해 대량으로 1차원 형태의 탄소나노섬유를 제작하고 고체 황 분말이 분산된 슬러리(slurry, 고체와 액체 혼합물 또는 미세 고체입자가 물 속에 현탁된 현탁액)에 적신 뒤 건조하는 간단한 방법을 통해 접촉 저항을 대폭 줄인 황-탄소 전극을 개발했다. 연구팀은 주사전자현미경(SEM)을 통해 현상을 관찰했다. 종이가 물을 흡수하듯 고체 황이 전기화학 반응 중 중간 산물인 액체 리튬 폴리설파이드로 변화하고 이들이 탄소나노섬유들 사이에 일정한 모양으로 맺힌 후 충전과 방전 과정에서 그 형태를 유지하며 밖으로 녹아나가지 않음을 확인했다. 이는 복잡하게 황을 감싸지 않고도 황이 탄소 섬유들 사이에 효과적으로 가둬지는 것을 발견한 것이다. 또한 기존 연구 결과가 단위 면적당 황 함량이 2mg/㎠ 이내인 것에 비해 이번 연구에서는 10mg/㎠이 넘는 황 함량을 달성했고 이를 기반으로 7mAh/㎠의 높은 면적당용량을 기록했다. 이는 기존 리튬이온전지의 면적당용량인 1~3mAh/㎠를 능가하는 값이다. 1저자인 윤종혁 박사과정은 “금속집전체 위에 전극물질을 도포하는 기존의 전극 제조 방법과는 전혀 다른 전극 구조 및 제조 방식을 적용한 연구로 향후 리튬 이차전지의 연구 범위를 넓히는 데에 기여할 수 있을 것이다”고 말했다. 김도경 교수는 “고용량 리튬-황 상용화에 한 단계 다가선 연구성과로 전기자동차뿐만 아니라 무인항공기(UAV) 및 드론 등에도 폭넓게 적용될 수 있을 것으로 기대된다”고 말했다. 이번 연구는 EEWS 연구센터의 기후변화연구허브사업과 한국연구재단의 중견연구자 지원사업을 통해 수행됐다. □ 그림 설명 그림1. 전기화학 반응을 통해 탄소나노섬유에 황이 맺히는 현상과 그로 인한 전지의 안정적인 수명 특성 그림2. 탄소나노섬유들 사이에 흡수되어 맺힌 형태 그대로 고체화 된 황의 미세구조와 모식도 그림3. 액상의 리튬 폴리설파이드를 효과적으로 흡수하는 탄소나노섬유 구조체
2018.03.22
조회수 17259
김일두 교수, 동물 단백질 촉매로 활용한 질병진단센서 개발
〈 김 일 두 교수 〉 우리 대학 신소재공학과 김일두 교수 연구팀이 동물의 단백질을 촉매로 활용해 호흡으로 질병을 진단할 수 있는 센서를 개발했다. 이는 사람의 날숨에 포함된 다양한 질병과 관련된 바이오마커 가스들에 대한 패턴 인식을 통해 질병을 조기 모니터링 할 수 있는 기술이다. 이번 기술은 다양한 단일 금속입자 뿐만 아니라 어떠한 조합의 이종입자도 2 nm 크기로 합성할 수 있는 장점을 갖는다. 연구팀은 기존에도 호흡으로 질병을 진단하는 센서를 개발했으나 이번 기술은 더욱 정확하고 높은 감도를 갖는다는 특징이 있다. 김상준, 최선진 박사가 1저자로 참여한 이번 연구 결과는 미국 화학회의 화학분야 국제 학술지 ‘어카운트 오브 케미칼 리서치(Accounts of Chemical Research)’ 7월호 표지논문으로 선정됐고, 독일 와일리 국제 학술지인 ‘어드밴스드 머터리얼즈(Advanced Materials)’에도 게재가 확정됐다. 혈액 체취나 영상 촬영 없이 내뱉는 숨(호기)만으로 각종 질병 여부를 파악하는 호흡 지문 센서 기술은 핵심 미래 기술이다. 호기 속 특정 가스들의 농도변화를 체크해 건강 이상 여부를 판단할 수 있다. 호기가스 성분에는 수분 외에도 수소, 아세톤, 톨루엔, 암모니아, 황화수소, 일산화질소 등이 포함된다. 이 가스들은 천식, 폐암, 1형 당뇨병, 구취 등 특정 질병 환자에게서 높은 농도로 배출되는 바이오마커 가스이다. 호흡을 이용한 질병 진단은 마치 음주측정기처럼 테들라(Tedlar) 백에 포집된 날숨 가스를 소형 센서 장치로 주입한 후 빠른 속도로 분석되기 때문에 쉽고 간편하게 질병을 진단할 수 있다. 또한 질병 대사가 일어나는 시점에서 검출이 가능해 조기 진단이 가능하다. 하지만 매우 경미한 수준인 10억분의 1(ppb)에서 100만분의 1(ppm) 수준으로 발생하는 가스를 호흡 속에서 정확히 분석하기 위해서는 기술의 진보가 필요하다. 특히 수분을 포함한 수백 종의 방해 가스는 특정 질병 관련 바이오마커 가스를 선택적으로 분석하는 저항 변화식 센서의 취약점으로 남아 있다. 기존의 가스 센서는 백금, 팔라듐 등 특정 촉매를 결합해 감지 특성을 높이려고 시도했으나 ppb 농도에서는 생체지표 가스 감지 특성이 높지 않다는 한계가 있었다. 연구팀은 기존 센서의 한계 극복을 위해 동물의 조직에 존재하는 나노크기의 단백질을 희생층으로 이용해 속이 비어있는 단백질 껍질 안에 석출된 이종촉매(Heterogeneous catalyst) 입자를 합성하는데 성공했다. 이번 연구에 사용된 나노크기의 단백질은 주기율표에 존재하는 원소물질을 조합해 어떠한 형태의 이종촉매도 다양하게 구현할 수 있다는 큰 장점을 갖는다. 특히 이종 원소간 조성비를 쉽게 조절할 수 있고 금속간화합물도 제조할 수 있어 신조성을 갖는 촉매 합성 측면에서 매우 획기적인 방법이다. 예를 들어 백금이 기준 촉매일 때 백금팔라듐(PtPd), 백금니켈(PtNi), 백금루테늄(PdRu), 백금이트륨(PtY3) 등 다양한 이종 합금촉매로 확장할 수 있다. 연구팀은 개발된 이종촉매 입자를 넓은 비표면적과 다공성 구조를 갖는 금속산화물 나노섬유에 결착시켜 특정 생체지표 기체에만 선택적으로 반응하는 감지소재를 개발했다. 이종촉매가 결착된 나노섬유 센서는 기존에 촉매 활성이 가장 뛰어나다고 알려진 백금이나 팔라듐 촉매보다 약 3~4배 이상 감지 특성이 향상됨을 확인했다. 특히 아세톤이나 황화수소 가스는 1ppm에서 감도가 100배 수준으로 바뀌는 최고 수준의 감도 특성이 관찰됐다. 연구팀은 다양한 종류의 감지 소재가 적용된 복합 센서 배치(sensor array) 시스템을 이용해 사람의 지문을 인식하듯 개개인의 호흡을 패턴 인식해 일반인도 쉽게 건강 이상을 판별할 수 있는 질병진단 플랫폼을 개발했다. 16종의 다른 선택성을 갖는 센서를 어레이화하는데 성공했으며, 환자의 건강상태에 따라 날숨 농도변화가 다르게 나타나기 때문에 날숨 속 가스 정보를 지문처럼 패턴화하여 개인의 건강 변화를 지속적으로 모니터링 하는 헬스케어 기기에 적용할 수 있다. 김 교수는 “기존에 센서에 사용된 적이 없는 2 nm 크기의 이종촉매를 단백질을 이용하여 적용함으로써, 질병과 연관된 생체지표 가스에 고감도 및 고 선택성으로 반응하는 센서소재 라이브러리를 구현할 수 있다”며 “앞으로 다양한 촉매 군을 확보하면 수많은 질병을 진단할 수 있는 센서를 개발할 수 있다”고 말했다. 또한 “호흡으로 질병을 진단하는 센서는 누구나 손쉽게 스스로 진단할 수 있는 자가 진단 기기의 시작으로 의료비 지출 상승을 막고 지속적 건강관리에 큰 도움이 될 것이다”고 말했다. 이번 기술과 관련된 특허들은 지난 3월과 6월 각각 벤처기업과 중소기업에 기술이전 됐다. 본 연구는 미래창조 과학부 웨어러블 플랫폼소재 기술센터 과제와 바이오의료기술개발사업 과제의 지원으로 이루어졌다. □ 그림 설명 그림1. 어카운트 오브 케미칼 리서치 표지 이미지 그림2. 다종 입자 촉매 그림3. 함금촉매 합성 그림4. 다종센서 어레이_날숨 분석 센서
2017.07.18
조회수 29120
전기자동차용 차세대 전지의 성능 극대화
〈 김 일 두 교수〉 우리 대학 신소재공학과 김일두 연구팀이 리튬-공기전지의 핵심 구성요소인 촉매를 대량생산할 수 있는 기술을 개발했다. 리튬-공기전지는 전기자동차에 쓰이는 리튬-이온전지를 대체할 차세대 전지로 주목받고 있으며, 이번에 연구팀이 개발한 원천기술을 통해 리튬-공기전지의 상용화에 한 발짝 다가갈 것으로 기대된다. 연구팀은 촉매활성이 뛰어난 두 소재인 루테늄산화물(RuO2)과 망간산화물(Mn2O3)이 균일하게 분포된 이중 나노튜브 구조를 손쉽게 대량 제조하는 원천기술을 확보했고, 이를 리튬-공기전지에 적용하는데 성공했다. 이번 연구는 나노재료 분야의 국제 학술지 ‘나노 레터스(Nano Letters)’ 3일자 온라인 판에 게재됐다. (논문명: One-Dimensional RuO2/Mn2O3 Hollow Architectures as Efficient Bifunctional Catalysts for Lithium-Oxygen Batteries) 리튬-공기전지는 리튬-이온전지에 비해 용량이 10배 이상 높고 대기 중의 산소를 연료로 활용하기 때문에 전기자동차를 위한 에너지 저장장치로 큰 주목을 받고 있다. 그러나 방전 시 생성되는 고체 리튬산화물(Li2O2)이 충전 과정에서 원활히 분해되지 않아 전지의 효율 및 수명특성이 저하돼 상용화에 어려움을 겪었다. 따라서 탄소재 양극 내의 리튬산화물의 형성 및 분해를 안정적으로 도와주는 촉매 개발이 필수적으로 요구됐다. 리튬-공기전지용 촉매는 가벼우면서 내구성이 우수하고 촉매의 표면적을 최대한 넓히는 것이 중요하다. 현재 상용화 수준으로 대량생산이 가능하고 우수한 촉매 활성을 갖는 소재는 아직 개발되지 않았었다. 연구팀은 위의 문제 해결을 위해 루테늄과 망간 전구체가 녹아 있는 고분자 용액을 전기 방사했다. 이는 누에가 실을 뽑듯이 고분자 용액을 재료로 삼은 실을 뽑아내 루테늄-망간 전구체를 기반으로 한 고분자 복합 섬유를 합성해내는 기술이다. 이후 이 섬유를 고온 열처리하면 거푸집 역할을 하는 고분자 템플릿(Template)이 타서 없어지고, 루테늄산화물 및 망간산화물의 이종 물질이 함께 복합체를 이루는 이중튜브 구조의 촉매가 완성된다. 연구팀이 개발한 이중 튜브는 직경 220 나노미터의 외부튜브와 80 나노미터의 내부튜브로 이뤄져 안쪽 및 바깥쪽 벽이 동시에 촉매 반응에 참여 가능하고, 비어있는 공간이 많아 가볍다는 장점을 갖는다. 연구팀은 초기 충전, 방전 시의 과전압 차이가 약 0.8V 이내로 감소하는 효과를 얻었다. 기존 탄소재 사용시 과전압은 약 2.0V 이상이다. 또한 용량제한 1000 mAh/g 하에서 100사이클 이상의 안정적인 리튬-공기전지 특성을 확인했다. 위의 기술 향상이 가능한 이유는 리튬산화물의 생성반응(산소환원 반응)을 도와주는 망간산화물 촉매와 분해반응(산소발생 반응)을 돕는 루테늄산화물 촉매가 내, 외부 튜브에서 나노단위로 균일하게 존재하기 때문이다. 김 교수 연구팀의 핵심 기술인 전기방사 기술은 고분자, 금속 전구체가 포함된 용액을 전기적 인력으로 연신시켜 수십에서 수백 나노 직경의 나노섬유를 얻을 수 있는 기술이다. 이 기술은 쉽게 기능성 나노섬유를 대량생산할 수 있어 수처리용 필터, 황사 마스크, 마스크팩 소재, 바이오 필터 등에 활발히 사용되고 있다. 연구팀은 “휘발점이 다른 두 용매의 온도 상승 속도를 조절하는 간단한 공정을 통해 리튬-공기전지의 충전 및 방전에 이상적인 촉매구조 디자인에 성공했다”고 밝혔다. 김 교수는 “생산 공정이 매우 손쉽고 대량생산이 가능한 기술이다”며 “촉매의 성능이 우수해 차세대 전지로 각광받는 리튬-공기전지의 상용화를 앞당기는 데 기여할 것이다”고 말했다. 신소재공학과 김상욱 교수와 공동 연구로 진행된 이번 연구는 윤기로 박사과정이 제1저자로 참여했고, ‘한국 이산화탄소 포집 및 처리 연구개발센터(Korea CCS R&D Center)’ 및 현대자동차의 지원을 받아 수행됐다. □ 그림 설명 그림1. 루테늄산화물-망간산화물 코어-쉘 나노튜브 및 이중 나노튜브 미세구조 사진 그림2. 나노튜브 촉매가 사용된 리튬-공기전지의 구성 그림3. 리튬-공기전지의 구동 원리 그림4. 루테늄산화물-망간산화물 코어-쉘 나노튜브 및 이중 나노튜브 형성원리
2016.02.16
조회수 16066
리튬공기 이차전지 핵심기술 개발
- KAIST-경기대 공동연구팀, 나노섬유·그래핀 복합촉매 개발 -- 리튬이온 이차전지보다 5배 용량 향상, 최대 800km 주행가능 - 서울-부산을 전기차로 왕복할 수 있는 시대가 열릴까? 차세대 초고용량 전지로 주목받고 있는 리튬공기 이차전지의 핵심기술이 개발됐다. 우리 학교 신소재공학과 김일두·전석우 교수와 경기대학교 신소재공학과 박용준 교수 공동연구팀은 나노섬유·그래핀 복합촉매를 개발하고 리튬공기 이차전지에 적용해 리튬이온 이차전지 보다 용량이 5배 높은 ‘리튬공기 이차전지’를 만드는 데 성공했다. 연구 결과는 나노 분야 권위 있는 학술지 ‘나노레터스(Nano Letters)’ 8월 8일자 온라인판에 게재됐다. ‘리튬이온 이차전지’의 음극과 양극에는 각각 흑연, 리튬전이금속산화물로 구성돼 있다. 이 전지는 핸드폰, 노트북 등에 널리 사용되고 있는데 전기차에 적용할 경우 한 번 충전에 약 160km 정도만 주행할 수 있어 아직은 전기차용으로는 용량이 충분하지 않다는 것이 일반적인 평가다. 연구팀이 이번에 개발한 ‘리튬공기 이차전지’는 음극은 리튬, 양극은 산소를 사용한다. 무게가 가벼우면서도 실제 얻을 수 있는 에너지밀도가 리튬이온 이차전지보다 훨씬 높아 차세대 이차전지 중 가장 큰 각광을 받고 있다. 그러나 방전 시 리튬과 산소가 서로 만나 리튬산화물(Li2O2)이 형성되고 충전 시 다시 분해되는데 이 과정이 원활하게 일어나지 않는 문제점으로 인해 높은 저항이 발생하며, 수명이 짧아 상용화에 어려움이 있었다. 따라서 리튬산화물의 형성 및 분해반응을 보다 수월하게 해주는 고효율 촉매 개발이 필수적이었다. 연구팀은 전기방사 방법으로 대량생산이 가능한 코발트산화물 나노섬유와 그래핀을 섞어 나노 복합촉매를 개발했다. 촉매활성이 매우 높은 ‘코발트산화물 나노섬유’에 큰 비표면적과 높은 전기전도도를 가지고 있는 ‘비산화그래핀’을 결착시킴으로써 리튬공기 이차전지의 성능을 극대화 시킬 수 있었다고 연구팀은 전했다. 개발된 나노 복합촉매를 리튬공기 이차전지의 양극에 적용하면 리튬이온 이차전지 용량의 5배에 달하는 1000mAh/g 이상의 고용량에서도 80회 이상의 충·방전이 가능한 우수한 수명특성을 보였다. 연구팀이 이번에 확보한 충·방전 특성은 현재까지 보고된 성능 중 가장 높은 수준이며, 금속 산화물과 그래핀을 소재로 활용했기 때문에 저렴하게 만들 수 있다. 상용화에 성공해 전기차에 적용하면 한 번 충전에 800Km이상 주행할 수 있어 서울-부산을 왕복 가능해질 것으로 기대된다. 김일두 교수는 “안정성 등 상용화까지는 해결할 과제들이 많이 있지만 본격적인 전기차 시대를 위해 여러 기관들과 협력해 연구할 것”이라며 “우리나라에서 리튬공기 이차전지 분야의 핵심 소재 중에 하나인 나노촉매 합성 기술 개발을 주도해 차세대 리튬공기 이차전지 분야의 활성화에 기여하고 싶다”고 말했다. 한편, 이번 연구에는 KAIST 신소재공학과 류원희 박사, 송성호 박사과정 학생, 경기대학교 윤택한 석사과정 학생이 참여했다. 그림1. 나노복합촉매로 구성된 리튬공기 이차전지 개념도 그림2. 코발트산화물 나노섬유/그래핀 나노 복합촉매 이미지 그림3. 리튬공기 이차전지용 코발트산화물 나노섬유/그래핀 나노 복합촉매 제조과정 이미지
2013.09.05
조회수 18339
호흡 분석해 질병 진단한다!
- 나노섬유 형상 120ppb급 당뇨병 진단센서 개발 -- 음주 측정하듯 후~ 불면 질병 진단할 수 있어 - 우리 학교 신소재공학과 김일두 교수 연구팀이 인간이 호흡하면서 배출하는 아세톤 가스를 분석해 당뇨병 여부를 파악할 수 있는 날숨진단센서를 개발했다. 연구 결과는 신소재 응용분야 세계적 학술지 ‘어드밴스드 펑셔널 머티리얼스(Advanced Functional Materials)’ 5월 20일자 표지논문으로 게재됐다. 인간이 숨을 쉬면서 내뿜는 아세톤, 톨루엔, 일산화질소 및 암모니아와 같은 휘발성 유기화합물 가스는 각각 당뇨병, 폐암, 천식 및 신장병의 생체표식인자(바이오마커)로 알려져 있다. 당뇨병의 경우 일반적으로 정상인은 900ppb(parts per billion), 당뇨환자는 1800ppb의 아세톤 가스를 날숨으로 내뿜는다. 따라서 날숨 속 아세톤 가스의 농도 차이를 정밀하게 분석하면 당뇨병을 조기에 진단할 수 있고 발병 후 관리를 쉽게 할 수 있다. 연구팀은 얇은 껍질이 겹겹이 둘러싸인 다공성 산화주석(SnO2) 센서소재에 백금 나노입자 촉매가 균일하게 도포된 1차원 나노섬유를 대량 제조하는 기술을 개발했다. 이 소재의 표면에 아세톤 가스가 흡착될 때 전기저항 값이 변화하는 120ppb급 아세톤 농도 검출용 센서에 적용해 날숨진단센서를 개발했다. 개발한 나노섬유 센서는 1000ppb급 아세톤 농도에서 소재의 저항 값이 최대 6배 증가해 당뇨병을 진단할 수 있음이 입증됐다. 이와 함께 7.6초의 매우 빠른 아세톤 센서 반응속도를 나타내 실시간 모니터링이 가능해져 상용화에 대한 기대를 높였으며, 전기방사 기술로 제조해 나노섬유형상을 쉽게 빠르게 대량생산할 수 있는 게 큰 장점이다. 연구팀이 개발한 날숨진단센서는 사람의 호흡가스 속에 포함된 다양한 휘발성 유기화합물의 농도를 정밀하게 분석할 수 있다. 따라서 당뇨병은 물론 향후 폐암, 신장병 등의 질병을 조기에 진단하는데 활용될 수 있을 것으로 기대된다. 김일두 교수는 이번 연구에 대해 “ppb급 농도의 날숨 휘발성 유기화합물 가스를 실시간으로 정밀하게 진단하는 나노섬유 센서를 당뇨병 또는 폐암 진단용 감지소재로 이용하면 다양한 질병을 조기에 검출하고 관리하는 일이 가능해질 것”이라고 말했다. 김 교수는 향후 다양한 촉매와 금속산화물 나노섬유의 조합을 통해 많은 종류의 날숨가스를 동시에 정확하게 진단하는 센서 어레이(array)를 개발해 상용화를 앞당길 계획이다. 미래창조과학부 글로벌프린티어사업 스마트 IT 융합시스템 연구단의 지원을 받은 이번 연구는 KAIST 신소재공학과 신정우 학부생(2월 졸업), 최선진 박사과정 학생, 박종욱 교수, 고려대학교 신소재공학과 이종흔 교수가 참여했다. 그림1. 날숨진단센서 어레이(우측)와 날숨진단센서 크기 비교(좌측 상단) 그림2. 나노섬유 센서들이 어레이로 구성된 당뇨진단 센서 이미지 그림3. 날숨 가스들을 분석하는 질병진단 분석기의 소형화 및 실시간 분석 그림4. 주석산화물 나노섬유를 이용한 당뇨진단 센서 이미지
2013.05.30
조회수 20663
김봉수교수, 은나노선 합성법 개발
단결정 銀 나노선 합성법 최초 개발 - 질병진단센서, 바이오센서, 차세대 자성소자 등 광범위한 활용- 화학분야 최고 권위지인 미국화학회지에 지난 18일자 속보로 게재 KAIST(총장 서남표) 화학과 김봉수(金峯秀, 48) 교수 연구팀은 촉매를 전혀 사용하지 않는 새로운 합성법 개발로 ‘단결정 은 나노선 합성’에 최초로 성공했다. 이 연구 결과는 화학분야 최고 권위지인 미국화학회지(Journal of the American Chemical Society)에 지난 18일(수) 속보로 게재됐다. 은(Ag)은 높은 항균효과를 지니며, 전자 및 광학 재료로도 중요하게 사용된다. 은을 완벽한 단결정 나노선으로 만들면 탄소가 다이아몬드로 변하듯 물질의 특성이 변하면서 가치가 크게 높아진다. 보통의 물질은 촉매 등을 사용하면 단결정 나노선 합성이 가능한데 은과 같은 금속의 경우에는 적절한 촉매를 찾아내지 못해서 합성이 불가능했다. 金 교수는 촉매를 사용하지 않고 산화은을 출발물질로 적절한 응결조건을 맞추어줌으로써 은 입자들이 가장 에너지가 낮은 상태를 스스로 찾아가서 저절로 은 나노선이 생긴다는 사실을 발견했다. 이 기술을 이용하면 금속 및 금속화합물 대부분을 단결정 나노선으로 만들 수 있다. 특히 자성물질 나노선 및 열전소자 나노선 개발로 차세대 자성 소자 및 신에너지 핵심 물질을 개발할 수 있는 가능성이 열렸다. 합성된 은 나노섬유는 소독이 필요 없는 의료용 제품 개발, 바이오센서 및 자성메모리 제작 등에 중요한 소재가 될 수 있다. 은에 분자가 흡착되면 빛을 쪼였을 때 산란되는 빛의 세기가 1조배 이상 커진다. 이를 “표면증강 라만 효과”라 하며, 단 하나의 분자만 존재하더라도 검출이 가능하다. 이 효과는 은이 나노입자 크기로 작아지면 더욱 높아지므로 이를 이용한 질병 진단기 개발 연구가 활발하게 진행되고 있다. 특히, 은 나노선은 진단 능력이 보다 뛰어나 질병진단센서로 개발 전망이 높다. 이 연구는 과학기술부「21세기 프론티어연구개발사업」나노소재기술개발사업단에서 지원했으며, 연구 결과는 현재 세계 각국에 특허 출원중이다. <붙임1. 용어해설> ■ 단결정 은 나노선나노선은 직경이 수 나노미터에서 수백 나노미터 사이에 있는 아주 가늘고 긴 선을 말한다. 단결정은 물질을 이루고 있는 모든 구성원소가 규칙적으로 배열되어 있는 순수하고 독특한 구조인데 다이아몬드 같은 것이 대표적 예다. 은과 같은 금속의 경우에는 적절한 촉매를 찾아내지 못해서 합성이 불가능한데, 이번에 촉매를 사용하지 않고 은이 스스로 단결정 나노선을 이루는 새로운 합성법을 개발했다. ■ 은 나노섬유의 의료분야 응용 은 나노섬유를 이용하여 상처를 보호하기 위해 사용하는 의료용 붕대 등을 제작하면 병균 등의 침투를 근본적으로 방지할 수 있으므로 강력한 의료용 소재가 될 것으로 전망된다. ■ 미국 화학회지(Journal of the American Chemical Society)미국화학회(American Chemical Society)에서 발행하는 대표 학회지로서 가장 역사가 오래되고 권위가 높은 학술지이다. 여기서 특히 긴급하며 중요성이 높은 연구결과는 속보(Communication)로 신속하게 발표된다. <붙임2. 관련 사진 및 설명> 1. 연구팀이 합성에 성공한 단결정 은 나노선의 전자현미경 사진 2. 하나하나의 원자까지 보여주며 완벽한 은 단결정임을 증명하는 초고전압 전자현미경 사진
2007.07.23
조회수 24142
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1