본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EB%AC%B8%EC%88%A0%EB%AF%B8%EB%9E%98%EC%A0%84%EB%9E%B5%EB%8C%80%ED%95%99%EC%9B%90
최신순
조회순
한국 법체계 발전 메커니즘 규명에 나선다
우리나라의 법률은 지난 30년간 법령 개수, 조문, 글자 수 등이 급격하게 늘어나면서 미국 연방 법전보다도 더욱 복잡해지며 법률 접근성이 떨어지고 있어 법령정보 제공의 지능화가 필요한 시점이다. 이에 현 법체계의 복잡성과 강건성(robustness)을 규명하고, 시대별 분석을 통해 우리 법이 어떻게 발전해왔는지 알아냄으로써 미래 입법 방향을 예측하는 연구가 필요하다. 우리 대학 문화기술대학원 박주용 교수(복합계 물리학), 문술미래전략대학원 박태정 교수(법 발전학) 공동연구팀은 국내 법령 데이터와 국제 조약 데이터를 전수 수집한 뒤 복합계 네트워크로 구성하여 분석하는 ‘포스트 AI 시대 법 발전학’ 연구를 수행해 우리 법체계의 안정성을 제고하고 대중의 법률에 대한 이해를 높일 수 있는 섬세한 시각화가 가능한 그래프 데이터베이스를 구축할 계획임을 16일 밝혔다. 법 발전학은 국가 발전을 위한 적절한 법과 제도를 설계하는 학문으로서, 법∙과학기술∙문화가 국가 발전에 미치는 영향을 종합적으로 예측하고 과학적 입법시스템을 고안하기 위한 노력이 국제적으로 활발히 이루어지고 있다. 특히 우리나라에서도 빅데이터, SNS, AI 등 생활 밀착형 정보 과학기술의 발달과법에 대한 대중들이 관심과 접근성이 증대하는 현실에서 과학과 법학이 함께 해야 한다는 목소리가 높아지고 있다. 이에 연구팀은 우리나라 법령데이터를 전수 수집하여 법률 사이의 연결관계를 나타내는 ‘복합계 네트워크’를 분석한 뒤 이를 기반으로 법률 전문가와 일반 국민이 원하는 법률정보를 손쉽고 빠르게 검색할 수 있는 그래프 형태의 데이터베이스를 2023년 6월 1일부터 3년에 걸쳐 구축할 계획이라고 밝혔다. 이러한 법학과 과학기술의 결합으로 법에 대한 일반 국민의 이해도를 높임으로써 일상생활에 도움이 되는 것은 물론, 조금 더 전문적인 과학기술기반 법률 서비스를 일컫는 ‘리걸테크(LegalTech)’ 분야에서 새로운 산업이 창출될 것으로 기대하고 있다. 우리 대학 포스트 AI 연구소장을 맡고 있는 이론물리학자 박주용 교수는 “법령끼리 서로를 인용하는 상호연결성에 주목해 법체계를 분석할 수 있는 과학적 방법론으로서 복합계 네트워크 과학, 기계학습∙자연어 처리 등의 AI 기술을 사용해 모든 일상생활에서 법의 적용을 받는 대중들이 사용하고 이해하기 쉬운 융합형 연구가 반드시 필요하다”고 밝혔다. 또한 법학자 박태정 교수는 “우리나라 법학계는 법의 적용과 해석에 관한 연구에 지나치게 편중되어 있고 입법학, 법정책학 및 법경제학 등 법이 나아가야 할 방향에 대한 연구는 상대적으로 미진한 편이다” 라고 지적하며 “법의 방향성을 연구하기 위해서는 법체계의 과학적 진단이 필수적이며 이러한 연구가 우리나라 입법 제도 발전에 큰 도움이 될 것으로 기대한다”고 밝혔다. 이번 연구는 한국연구재단의 지원을 받아 수행될 예정이며, 연구팀은 특히 학생과 젊은 연구원에 대한 적극적인 지원과, 국제심포지엄 개최 등을 통한 국제화에 힘을 쏟을 예정이다.
2023.06.16
조회수 4074
기후 변화 예측 정확도 개선 기술 개발
우리 대학 문술미래전략대학원(건설및환경공학과 겸임) 김형준 교수가 국제 공동 연구를 통해 21세기 후반의 전 지구 강수량변화에 대한 기후모델의 예측 불확실성을 줄이는 데 처음으로 성공했다고 28일 밝혔다. 전 지구의 평균 기온이 미래에 어느 정도 상승할지에 대한 예측은 보통 복수의 기후모델에 의해 이루어지며 각 기후모델 사이에는 무시할 수 없는 편차가 존재한다. 온도 상승 예측의 불확실성을 줄이기 위한 연구는 성공적으로 수행돼왔으나 강수량 변화 예측의 불확실성을 감소시키는 연구는 아직 보고되지 않고 있다. KAIST, 일본 국립환경연구소, 일본 동경대학교로 구성된 국제 공동 연구팀은 67개의 기후모델에 의한 기온과 강수량의 시뮬레이션 결과를 과거의 관측자료와 비교함으로써 강수량변화 예측의 불확실성을 줄이는 데 세계 최초로 성공해 그 결과를 국제 학술지 `네이처 (Nature)' 2월 23일 판에 출판됐다. (논문명: Emergent constraints on future precipitation changes; doi.org/10.1038/s41586-021-04310-8) 지금까지 강수량변화 예측의 불확실성 개선이 어려웠던 가장 큰 이유로서 과거의 강수량변화에 온실가스와 대기오염물질인 에어로졸이 함께 작용했음을 들 수 있다. 과거에는 두 요인이 함께 증가했으나 그와 달리 미래에는 적극적인 대기오염 대책에 의한 에어로졸의 급격한 감소에 따라 온실가스의 증가만이 지배적으로 될 것이기 때문이다. 다시 말해 미래의 강수량 변화는 주로 온실가스 농도증가로 설명할 수 있지만, 이는 과거의 메커니즘과 다르므로 관측자료로부터 미래 예측의 불확실성 저감을 위한 정보를 얻는 것이 어려웠다고 할 수 있다. 연구팀은 세계평균 에어로졸 배출량이 거의 변하지 않는 기간(1980~2014년) 동안 모델과 관측의 트렌드를 비교함으로써 온실가스 농도증가에 대한 기후 응답의 신뢰성을 평가할 수 있다고 가정했다. 중간 정도의 온실가스 배출 시나리오(SSP-RCP 245) 에 있어서, 67개의 기후모델이 19세기 후반부터 21세기 후반에 강수량이 1.9-6.2% 증가한다고 예측했으나 각 기후모델의 온실가스에 대한 기후 응답 신뢰성을 고려함으로써 강수량증가의 예측 폭의 상한(6.2%)을 5.2-5.7%까지 감소시킬 수 있었으며 예측의 분산 또한 8-30% 줄이는 것이 가능했다. 공동 저자인 김형준 교수는 "이번 연구를 통해 기온뿐만 아니라 강수량에 대한 기후변화의 예측 정확도를 개선할 수 있게 됐다. 이로써 더욱 신뢰도 높은 기후변화 영향평가와 효율적인 기후변화 대응 및 적응 관련 정책 수립에 이바지할 수 있을 것이라 기대된다ˮ고 말했다. 한편 이번 연구는 한국연구재단 해외우수과학자유치사업(BP+)의 지원을 받아 수행됐다.
2022.02.28
조회수 8811
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1