본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EB%B0%94%EC%9D%B4%EC%98%A4%EC%84%BC%EC%84%9C
최신순
조회순
딥러닝을 응용한 신속한 박테리아 검출 방법 개발
우리 대학 전산학부 조성호 교수, 신소재공학과 정연식 교수 공동 연구팀이 딥러닝(deep learning) 기법과 표면 증강 라만 분광법(surface-enhanced Raman spectroscopy, SERS)의 결합을 통해 효율적인 박테리아 검출 플랫폼 확립에 성공했다고 10일 밝혔다. 공동 연구팀은 질량분석법, 면역분석법(ELISA), 중합효소 연쇄 반응(PCR) 등과 같은 일반적인 박테리아 검출 방법보다 획기적으로 빠르게 신호 습득이 가능한 SERS 스펙트럼을 연구팀 고유의 딥러닝 기술로 분석해 다양한 용액 속 박테리아 신호 구분에 성공했다. 전산학부 노어진 석박사통합과정 학생과 신소재공학과 김민준 박사과정 학생이 공동 제1 저자로 참여한 이번 연구는 국제학술지‘바이오센서 및 바이오일렉트로닉스 (Biosensors and Bioelectronics)’1월 18일 字 온라인 판에 게재됐다. (논문명: Separation-free bacterial identification in arbitrary media via deep neural network-based SERS analysis) 박테리아 감염으로 인한 질병 예방과 원인 분석을 위해 소변 또는 음식물에서 신속한 박테리아 검출법이 요구되며, 다양한 바이오마커 분석물의 스펙트럼 신호를 높은 민감도로 수초~수십초 이내에 측정하는 SERS가 검출 방법으로 주목받고 있다. 박테리아 대상의 기존 SERS 신호 분석은 그 복잡성과 수많은 신호 겹침 현상 때문에 주성분 분석(principal component analysis, PCA)과 같은 통계적인 방법으로도 정확도에 한계가 있었다. 특히, 박테리아의 고유 신호와 간섭현상을 일으키는 환경 매질의 신호를 제거하기 위해 번거로운 박테리아 분리 과정을 거쳐 시간 소모가 큰 것이 문제로 지적돼 왔다. 따라서 SERS를 이용한 박테리아 검출의 활용도를 높이기 위해서는 분리 단계를 최소화하고 신속하게 높은 정확도로 분석하는 기술 개발이 요구된다. 연구팀은 분리 단계를 완전히 생략해 박테리아가 담긴 서식 용액을 SERS 측정 기판에 올려 신호를 측정하고 딥러닝을 이용해 분석하는 방법을 시도했으며, 이를 위해 서로 다른 커널 크기(kernel size)를 가지는 이중 분기 네트워크로 구성된 `듀얼 WK넷' (DualWKNet, Dual-Branch Wide Kernel Network)라는 효율적인 딥러닝 모델을 개발했다. 특정 매질 속 박테리아의 신호는 매질의 신호와 유사해 사람의 눈으로는 구별하기가 사실상 불가능하지만, 연구팀은 DualWKNet을 이용해 스펙트럼 신호의 특징을 추출하고 물, 소변, 소고기 용액, 우유, 배양 배지 등 다양한 환경 내 대장균(Escherichia coli)과 표피 포도상구균(Staphylococcus epidermidis)의 신호를 학습해 최대 98%의 정확도로 검출 및 구분했다. 조성호 교수는 "이번 연구는 딥러닝 기술을 활용해 실제 환경에서 사용 가능한 라만 신호 분석 방법을 제시했다는 점에서 의미가 있다ˮ며 "의료 분야와 식품 안전 분야로 확장하여 사용돼 발전에 이바지할 것ˮ이라고 예상했다. 한편 이번 연구는 한국연구재단의 나노 및 소재기술개발사업의 지원을 받아 수행됐으며, 향후 추가 연구와 기술이전을 통해 KAIST 교원/학생 공동 창업 기업인 ㈜피코파운드리에서 상용화를 추진할 계획이다.
2022.02.10
조회수 8856
미세 유체의 회전 운동을 활용한 현장 진단용 초고감도 바이오센서 개발
우리 대학 기계공학과 윤용진 교수팀이 뉴캐슬 대학(Newcastle University in Singapore) 김누리 교수와 공동연구를 통해 미세 유체의 회전력을 이용해 극소량의 분자 샘플로 현장 진단(Point-of-Care)이 가능한 바이오센서 칩을 개발했다고 18일 밝혔다. 윤용진 교수 연구팀은 미세 유체(microfluidics) 기술과 광 초소형 정밀기계 기술 바이오센서(Optical MEMS BioSensor)를 융합해 특정 용액의 0.19 펨토 몰(fM) 농도까지 감지할 수 있는 것으로 기존의 단일 유동 방법보다 1억(108)배 이상 향상된 감지력을 보여주는 `다상 유동 바이오센서(Rotationally Focused Flow (RFF) Biosensor)'의 연구 개발에 성공했다. 이와 관련해 윤용진 교수는 "이번 연구를 통해 T자형 미세 유체 채널 내에 유체의 회전 운동을 발생시키는 현상을 적용함으로서, 현재까지 알려진 분자 진단의 최소 샘플 농도로, 극소량의 피분석물(target analyte)의 검진이 가능하여 현장 진단 테스트 (PoC, Point Of Care testing) 개념의 바이오센서를 구현했다ˮ며, "이번 연구는 앞으로 코로나19와 같은 바이러스의 조기 발견을 통한 빠른 진단과 분자 진단 기기의 소형화를 통한 PoC 실시간 현장 진단을 가능하게 할 것이고, 나아가 차세대 랩 온어 칩(Lab-on-a-chip)을 이용한 바이오 분석학(bioanalytics)의 새로운 돌파구가 될 수 있을 것이다ˮ라고 설명했다. 뉴캐슬 대학 김누리 교수가 제1 저자로 참여하고 윤용진 교수가 교신저자로 진행된 해당 연구 결과는 국제적 권위 학술단체 `네이처(nature)'의 퍼블리셔 그룹인 `사이언티픽 레포트(scientific reports)'에 지난 4월 29일 자 게재됐다. 한편 이번 연구는 한국연구재단과(NRF-2020R1A2C1011859)과 한국교육재단BK21+ 프로그램 지원을 부분적으로 받아 수행됐다. (논문명: A rotationally focused flow (RFF) microfluidic biosensor by density difference for early‑stage detectable diagnosis)
2021.10.19
조회수 7648
광대역 광학 활성을 갖는 카이랄 세라믹 물질 최초 개발
우리 대학 신소재공학과 염지현 교수 연구팀이 광대역 광학 활성을 갖는 *카이랄 세라믹 물질을 최초로 개발했다고 30일 밝혔다. 신소재공학과 박기현 석사과정이 제1 저자로 참여한 이번 연구는 미국화학회가 발행하는 국제 학술지 ‘ACS 나노(ACS Nano)’에 개재됐다. (논문명 : Broad Chiroptical Activity from Ultraviolet to Short-Wave Infrared by Chirality Transfer from Molecular to Micrometer Scale) ☞ 카이랄(Chiral): 수학, 화학, 물리학, 생물학 등 다양한 과학 분야에서 비대칭성을 가르키는 용어중 하나다. 이는 어떤 대상의 모양이 거울에 비춘 모양과 일치되지 않을 때 카이랄 성이 존재한다고 일컫는다. 카이랄 나노물질은 입사하는 원형 편광의 오른쪽 또는 왼쪽 방향성에 따라 다른 광학적 성질을 보이는 광학 활성도(chiroptical activity)의 특징을 가지고 있다. 같은 물질이어도 구조에 따라 서로 다른 광학 성질을 보이는 특이성을 활용해 많은 응용이 가능할 것이라는 기대로 최근 주목을 받는 물질이다. 하지만, 기존에 보고된 대부분의 카이랄 나노물질은 자외선(ultraviolet) 및 가시광선(visible) 영역에서만 제한적으로 광학 활성을 갖고 있어 바이오 및 통신 등을 포함한 다양한 분야에서의 응용에 한계가 있었다. 염지현 교수 연구팀은 이러한 문제를 해결하고자 자외선에서부터 근적외선 영역을 넘어 단적외선 영역에서까지 광범위한 광학 활성을 갖는 카이랄 소재를 최초로 개발했다. 연구팀은 황화구리(copper sulfide) 세라믹 물질에 원자 수준에서부터 마이크로 수준에까지 체계적으로 카이랄 특성을 부여하는 기술을 선보였다. 그와 동시에 황화구리 나노입자의 화학적 상태를 긴 파장의 빛을 효과적으로 흡수할 수 있는 상으로 변화되도록 유도하여 적외선 영역 광학 활성 효율을 극대화하였다. 연구팀은 먼저 아미노산이 가지고 있는 원자 수준 카이랄 특성을 무기 나노입자에 전이시켜 나노 수준 카이랄 특성을 구현한 후, 나노입자 사이의 인력 및 척력을 조절해 1~2 마이크로미터(㎛) 길이의 카이랄 나노꽃(nanoflower, NF)이 자가조립으로 만들어지도록 유도했다. 연구팀은 이렇게 디자인된 나노꽃이 자외선에서부터 수 마이크로미터의 파장을 갖는 적외선에서까지 빛의 원형 편광 방향 따라 특이적으로 상호작용하는 것을 확인했다. 또한, 이 광대역 광학 활성은 연구팀이 유도한 대로 적외선을 흡수할 수 있는 황화구리 상으로 화학적 변화가 잘 변이됐기 때문이고, 나노꽃의 구조적 카이랄 특성이 원형 편광의 방향성에 따른 비대칭적 상호작용을 유도하기 때문인 것을 컴퓨팅 시뮬레이션으로도 밝혔다. 이렇게 개발된 광대역 광학 활성 나노 플랫폼 기술은 바이오센서, 바이오이미징, 적외선 신경 자극, 나노온열치료, 텔레커뮤니케이션 등 다양한 분야에 응용될 것으로 기대된다. 제1 저자로 이 연구에 참여한 박기현 석사과정은 “이 연구를 통해 카이랄 물질군 라이브러리를 만들고 그들의 자가조립 제어 기술을 이용해 새로운 패러다임의 나노소재를 개발하는데 기여할 수 있으며, 무엇보다 세계 최초로 단적외선 영역에서도 광학 활성을 갖는 소재를 개발함으로써 카이랄 나노소재의 응용과 발전을 위한 토대를 마련한 것 같다”며 이 연구의 의의를 설명했다. 한편, 이번 연구는 과학기술정보통신부의 재원으로 범부처전주기의료기기연구개발사업단, 삼성 반도체연구기금, 연구재단 우수신진사업, KAIST 창의도전사업 (C2 프로젝트) 등의 지원을 받아 수행됐다.
2021.10.01
조회수 9131
커피링 효과로 감염성 병원균 신속 진단키트 개발
감염성 병원균을 현장에서 육안으로 신속하고 정확하게 검출할 수 있는 기술이 우리 연구진에 의해 개발됐다. 의료시설 접근이 어려운 환경에서, 그리고 분자진단(RT-PCR) 장비의 대안으로 빠른 사용과 활용이 기대된다. 우리 대학 생명과학과 정현정 교수 연구팀이 '커피링 등온 유전자 검출법(i-CoRi, isothermal coffee ring assay)' 개발에 성공했다고 16일 밝혔다. '커피링 효과'란 사물 표면에 떨어진 커피 방울이 증발하면서 특징적인 링(ring) 모양이 생기는 효과다. 연구팀은 이 효과에서 아이디어를 얻어 상온에서 육안으로 병원균 유전자를 선택적으로 감별 및 고감도 검출이 가능한 기술을 개발했다. 이 기술은 RT-PCR 등 기존 분자진단 기술처럼 고가의 정밀한 장비가 필요한 문제점을 해소할 수 있다. 즉, 정 교수팀이 개발한 기술은 쉽고 간단한 POCT(point-of-care testing) 기술로 저가라는 게 큰 장점이다. 우리 대학 생명과학과 강유경 박사가 제1 저자로, 생명과학과 석박사통합과정 임산해, 나노과학기술대학원 석박사통합과정 류제성 학생이 공동저자로 참여한 이번 연구 결과는 바이오센서 분야 국제학술지 '바이오센서 앤 바이오일렉트로닉스(Biosensors & Bioelectronics, IF 10.257)' 9월 6일 字 온라인에 게재됐다. (논문명: Simple visualized readout of suppressed coffee ring patterns for rapid and isothermal genetic testing of antibacterial resistance) 정 교수 연구팀이 개발한 '커피링 등온 유전자 검출법'은 병원균 감염의 빠른 판별을 위해 시료를 표면에 떨어뜨려 커피링 패턴을 유도, 육안으로 관찰함으로써 병원균의 내성 종류를 선택적으로 정확하게 검출이 가능할 뿐 아니라 스마트폰 등을 이용한 모바일 진단이 가능한 기술이다. 콜로이드 용액이 기판 표면에서 증발할 때, 표면장력과 모세관 운동에 따라 미세입자들이 이를 포함하는 용액 방울 주변으로 이동해 특징적인 링 패턴을 형성한다. 연구팀은 표적 유전자 물질이 존재할 경우 미세입자와 유전자 물질의 선택적 인식에 의한 입자-핵산 물질 간 상호 응축을 유도해 링 패턴을 억제함으로써 병원균을 감별했다. 연구팀은 또 커피링 현상에 회전 환 증폭(rolling circle amplification) 기반의 등온 증폭기술을 융합했는데 융합과정에서 생성된 긴 단일 가닥의 표적 DNA 물질이 미세입자(직경 0.1~10 마이크로미터 가량) 크기로 응축되도록 효과를 극대화했다. 연구팀은 이밖에 *젭토 몰 농도 이하의 범위(sub-zeptomolar)에서도 병원균 표적 물질을 육안으로 검출하거나 스마트폰 등 모바일 장치를 통해 기록과 판독이 모두 가능한 기술을 개발했다. ☞ 젭토(zepto): 10^(-21) 을 뜻하는 접두어. 1 젭토 몰 농도는 용액 10 cc에 분자 6개가 존재하는 농도로, 기존의 현장 진단키트의 경우는 1 젭토 몰 농도의 약 1,000배 이상의 표적 물질이 존재해야 검출이 가능하다. 연구팀에서 개발한 '커피링 등온 유전자 검출' 기술은 신속하고 높은 선택성과 민감도를 지니고 있어 유전자상 2개 염기의 차이를 구별하며 별도의 분석 장비 없이 30분 이내에 항생제 내성 유전자 검출과 함께 혈청 등 복잡한 시료에서도 검출이 가능한 게 특징이다. 연구팀은 이와 함께 자동판독을 위한 진단키트로의 활용을 위해 미세입자에 의해 나타나는 공간 패턴의 이미지를 판독할 수 있는 알고리즘을 정립했고, 이를 통해 커피링 형성에 따른 감염 여부를 판별하는 데 성공했다. 정현정 교수는 "연구팀이 개발한 `커피링 등온 유전자 검출법'은 진료소나 클리닉 등에서 병상 분석을 위해서 유용하게 적용될 수 있을 것으로 기대된다ˮ면서 "현재 코로나바이러스감염증(COVID-19)을 진단하는 데 적용하기 위한 연구를 진행 중이다ˮ고 밝혔다. 이번 연구는 한국보건산업진흥원 감염병위기대응기술개발사업 및 한국연구재단의 중견연구자지원사업 지원을 통해 이뤄졌다.
2020.09.16
조회수 28228
전상용, 임성갑 교수, 신경세포의 안정적 배양 가능한 플랫폼 개발
우리 대학 생명과학과 전상용 교수와 생명화학공학과 임성갑 교수 공동 연구팀이 신경세포를 장기적, 안정적으로 배양할 수 있는 아세틸콜린 유사 고분자 박막 소재를 개발했다. 특히 이 연구는 KAIST의 ‘학부생 연구 참여 프로그램(URP : Undergraduate research program)’을 통해 유승윤 학부생이 참여해 더욱 큰 의미를 갖는다. 유승윤 학부생을 포함해 백지응 박사과정, 최민석 박사가 공동 1저자로 참여한 이번 연구 성과는 나노분야 학술지 ‘에이시에스 나노(ACS Nano)’ 10월 28일자 온라인 판에 게재됐다. 신경세포는 알츠하이머, 파킨슨병, 헌팅턴병 등의 신경퇴행성 질환 및 신경 기반 바이오센서 등 전반적인 신경관련 응용연구에 꼭 필요한 요소이다. 대부분의 신경 질환이 노인성, 퇴행성이기 때문에 신경세포가 오래됐을 때 어떤 현상이 발생하는지 관찰할 수 있어야 한다. 하지만 신경세포는 장기 배양이 어려워 퇴행 상태가 되기 전에 세포가 죽게 돼 관찰이 어려웠다. 기존에는 특정 수용성 고분자(PLL)를 배양접시 위에 코팅하는 방법을 통해 신경세포를 배양했다. 그러나 이 방법은 장기적, 안정적인 세포 배양이 불가능하기 때문에 신경세포를 안정적으로 장기 배양할 수 있는 새로운 플랫폼이 필요하다. 연구팀은 문제 해결을 위해 ‘개시제를 이용한 화학 기상 증착법(iCVD : initiated chemical vapor deposition)’을 이용했다. iCVD는 기체 상태의 반응물을 이용해 고분자를 박막 형태로 합성하는 방법으로, 기존 세포 배양 기판 위에 손쉽게 얇고 안정적인 박막을 형성시킬 수 있다. 연구팀은 이러한 기체상 공정의 장점을 이용해 신경세포를 장기적으로 배양할 수 있는 기능을 가진 공중합체 고분자 박막을 합성하는 데 성공했다. 새로 합성된 이 고분자 박막은 신경전달물질로 알려진 아세틸콜린과 유사한 물질로 이뤄져 있다. 또한 신경세포가 고분자 박막에서 배양될 수 있는 최적화된 조건을 발견했고, 이 조건에서 생존에 관여하는 여러 신경관련 유전자를 확인했다. 연구팀은 생명과학과 손종우 교수 연구팀의 도움을 통해 새로 배양된 신경세포가 기존의 신경세포보다 전기생리학적 측면 및 신경전달 기능적 측면에서 안정화됨을 확인했다. 연구팀은 “신경세포를 장기적으로 배양할 수 있는 이 기술은 향후 신경세포를 이용한 바이오센서와 신경세포 칩 개발의 핵심 소재로 활용될 것이다”며 “다양한 신경 관련 질병의 원리를 이해할 수 있는 역할을 할 것으로 기대된다”고 말했다. 이번 연구는 한국보건산업진흥원과 한국연구재단의 지원을 받아 수행됐다. □ 그림 설명 그림1. 본 연구에서 개발된 표면(pGD3) 및 폴리라이신 코팅 위에서 장시간 배양된 신경세포 그림2. 신경전달물질 유사 작용기를 도입한 표면 형성 과정
2016.11.17
조회수 20103
박인규 교수, 공기오염 측정 센서 원천기술 개발
<박인규 교수> 우리 대학 기계공학과 박인규(38) 교수팀이 스마트폰 등 모바일 기기에 탑재 가능한 초소형, 초절전 공기오염 측정 센서의 원천기술 개발에 성공했다고 밝혔다. 연구 결과는 네이처(Nature)의 자매지인 사이언티픽 리포트(Scientific Reports) 1월 30일 자 온라인 판에 게재됐다. 각종 공기오염 물질이 증가하고 사람들의 건강관리에 대한 관심이 높아지면서 개인의 주변 공기오염도에 대한 측정 기술의 필요성이 커지고 있다. 하지만 기존의 공기오염 측정 센서는 소모 전력과 부피가 크고, 여러 유해가스를 동시에 측정할 때의 정확도가 낮았다. 이는 기존에 개발된 반도체 제작공정을 사용해도 해결이 쉽지 않았다. 박인규 교수팀은 수백 마이크로미터 폭의 미세유동과 초소형 가열장치로 수 마이크로미터만을 국소적으로 가열하는 극소영역 온도장 제어기술을 이용해 여러 종류의 기능성 나노소재를 하나의 전자칩에 쉽고 빠르게 집적하는 기술을 개발했다. 대표적으로 공기오염 측정에 사용되는 센서 소재인 반도체성 금속산화물 나노소재 기반의 전자칩을 제작하였다. 박 교수팀의 기술은 다종의 센서용 나노소재를 적은 양으로도 동시제작 할 수 있어 모바일 기기에 탑재할 초소형, 초절전 가스 센서를 만들 수 있다. 이 기술은 고밀도 전자회로, 바이오센서, 에너지 발전소자 등 다양한 분야에 응용이 가능하고, 특히 소형화 및 소비전력 감소에 어려움을 겪는 휴대용 가스센서 분야에 혁신을 가져올 것으로 예상된다. 박 교수는 “모바일 기기용 공기오염 센서 뿐 아니라 바이오센서, 전자소자, 디스플레이 등의 다양한 융합기술 발전에 크게 기여할 수 있을 것”이라고 말했다. 이번 연구는 교육부의 글로벌프론티어 사업, 미래창조과학부의 나노소재 기술개발사업, BK21 사업의 지원을 받아 수행됐다. 이번 연구에는 박인규 교수를 비롯해 기계공학과 양대종 박사후 연구원, 강경남 박사과정 연구원, 한국전력공사 김동환 연구원, 미국 휴렛 팩커드(Hewlett Packard) 사의 지용 리 (Zhiyong Li) 박사가 참여했다. □ 그림설명 그림1. 다종 나노소재 제작 원리 및 미세 유동 컴퓨터 시뮬레이션 결과 그림2. 초미세 영역에서 동시에 제작된 다종의 나노소재
2015.02.24
조회수 15657
달걀 모방한 세포보호 및 분해기술 개발
특정 미생물은 영양분이 부족한 환경에서 생존이 불리해지면 DNA 보존을 위해 세포외벽에 단단한 보호막인 내생포자를 형성한다. 이렇게 만들어진 내생포자가 생존에 적합한 환경을 만나면 다시 세포증식이 가능한 원래 상태로 돌아간다. 이 현상을 인공적으로 조절하는 기술이 국제 공동연구진에 의해 개발됐다. 달걀껍질처럼 하나의 세포를 감싸서 보존했다가 원하는 시기에 분해할 수 있어 세포기반 바이오센서·세포 치료제·바이오촉매 등에 활용될 것으로 기대된다. 우리 학교 화학과 최인성·이영훈 교수는 호주 멜버른대학교 화학공학과 프랭크 카루소(Frank Caruso) 교수와 공동으로 나노미터 스케일의 필름으로 단일 세포를 코팅해 세포의 생존을 유지하다가 원하는 시간에 분해할 수 있는 기술을 개발했다. 연구결과는 화학분야 세계적 학술지 ‘앙게반테 케미(Angewandte Chemie International Edition) 11월 10일자 속표지(frontispiece) 논문으로 소개됐다. 세포피포화(細胞被包化)는 세포의 생존을 최대한 유지하면서 각각의 세포를 단단한 캡슐로 포획하는 기술이다. 세포를 기반으로 한 응용 분야에서 당면한 문제인 세포 안정도 유지와 세포분열제어를 위해 중요성이 높아지고 있다. 기존 세포피포화 방법은 유기박막 혹은 유기박막을 주형으로 만들어진 무기물 캡슐을 이용했다. 이들은 세포표면에 단단하게 형성됐으나 잘 분해되지 않아 활용하기가 어려웠다. 연구팀은 효모세포를 가지고 탄닌산 수용액과 철이온 수용액을 섞어 세포를 하나씩 금속-폴리페놀박막으로 감싸는 데 세계 최초로 성공했다. 탄닌산은 참나무껍질이나 포도껍질에서 추출한 천연물질로 세포친화도가 높아 철이온과 만나면 10초 이내로 금속-폴리페놀박막이 만들어진다. 이 박막으로 피포화된 세포들은 높은 생존율을 보였으며 박막 형성시간이 짧고 간단해 효율적으로 많은 양의 피포화 세포를 얻을 수 있었다. 이와 함께 연구팀은 금속-폴리페놀박막이 중성 pH(수소이온지수)에서는 안정하지만 약한 산성조건에서 빠르게 분해되는 특성을 이용해 원하는 시간에 세포를 피포화 전 상태로 복구해 세포분열을 조절할 수 있음을 밝혔다. 달걀껍질처럼 외부환경으로부터 내부 세포를 보호해주는 금속-폴리페놀박막은 △세포에 손상을 줄 수 있는 분해효소 △장시간의 자외선 처리 △은나노입자에 대한 방어기작을 가져 세포가 극한의 외부환경에 노출되더라도 높은 세포 생존도를 유지하는 결과를 나타냈다. 이영훈 교수는 이번 연구에 대해 “이 기술을 통해 피포화과정에서의 세포생존도를 유지함은 물론 극한의 외부환경에 대항하여 세포를 보호할 수 있다”며 “나아가 응답형 분해기작으로 원하는 때에 피포화된 세포의 분열시기를 조절할 수 있는 차세대 세포피포화기술”이라고 말했다. 최인성 교수는 “세포피포화기술은 아직 걸음마 단계지만 기술이 성숙함에 따라 세포조작기술의 응용가능성이 현실화될 것”이라며 “세포기반 응용분야에서 현실적으로 당면한 문제들을 해결할 맞춤형 대안이 될 것”이라고 덧붙였다. 미래창조과학부와 한국연구재단이 추진하는 리더연구자지원사업과 글로벌연구실지원사업의 지원으로 수행된 이번 연구는 KAIST와 호주 멜버른대학교 국제 공동 교수진의 지도아래 KAIST 화학과 박지훈·김경환 석사과정 학생이 주도했다. 그림 1. 앙게반테 케미 속표지 배경 : 금속-폴리페놀박막(붉은색으로 염색)이 형성된 효모세포가 생존을 유지하고 있음(초록색으로 염색-생존도를 가지고 효소활성을 나타냄)을 보여줌. 앞쪽그림 : 각 피포화 단계의 효모세포 왼쪽아래 : 세포는 피포화하기전 상태, 붉은색 화살표를 따라가면 보라색 금속-폴리페놀박막이 형성되어 보라색으로 나타나는 효모세포, 초록색 화살표를 따라가면 약 산성 pH에서 금속-폴리페놀박막이 표면에서 분해되는 것을 형상화했다. 그림 2. 금속-폴리페놀박막을 이용한 세포피포화(細胞被包化) 모식도 (위)피포화하기전 효모세포 (중간) 금속-폴리페놀 나노캡슐(Tannic Acid-Fe(III) Nanoshell)으로 피포화된 효모세포-피포화된 효모세포는 세포분열이 pH에 따라 조절(Cell-Division Control)되고, UV-C, 분해효소와 은나노입자에 대한 저항성을 가진다. (아래) 원하는 시간에 pH 조절로 금속-폴리페놀박막이 분해되는 것을 형상화
2014.11.18
조회수 15051
종이 한 장으로 구제역 조기 진단 가능해진다
지난 2010년 11월 말 경북 안동에서 시작돼 이듬해 4월 초까지 전국으로 퍼졌던 구제역파동은 직접적인 피해액만 3조원으로 추산되며 경제 전반에 미친 파급효과는 5조원 이상이라는 분석도 있다. 구제역과 같은 전염성 강한 질병을 현장에서 즉시 진단할 수 없기 때문에 피해가 확산될 가능성이 높다. 의심신고가 들어오면 시료를 채취해 전문기관에서 분석하는 데만 2~3일 걸린다. 그 사이 바이러스는 걷잡을 수 없이 퍼진다. 구제역, 조류독감, 신종플루 등 전염성이 강한 질병 진단을 위한 바이오센서를 저렴한 가격에 만들 수 있게 됐다. 우리 학교 생명화학공학과 정기준·임성갑(41) 교수 공동연구팀은 종이나 비닐 등 다양한 물질에 항체를 고정하는데 성공해 보급형 바이오센서개발에 필요한 원천기술을 확보했다. 연구결과는 세계적 학술지 ‘폴리머 케미스트리(Polymer Chemistry)’ 후면 표지논문(7월 7일자)으로 게재됐다. 바이오센서의 기판은 안정성이 높은 금이나 유리를 주로 사용한다. 그러나 가격이 비싸고 휴대성이 떨어지기 때문에 현장에서 쓰기 어렵다. 게다가 항원 진단을 위해 사용되는 항체의 높은 생산 단가로 인해 진단시스템의 가격이 비싸 축산농가 등에 보급이 어려웠다. 연구팀은 기존에 있던 두 가지 핵심기술을 보급형 바이오센서 개발에 활용했다. 연구팀은 바이오센서의 제조단가를 획기적으로 줄이는 동시에 휴대성을 높이기 위해 초기 화학적 진공증착법(iCVD, Initiated chemical vapour deposition)으로 종이나 비닐에 고분자 박막을 증착했다. 또 박막과의 화학적 반응을 통해 항체 단백질을 안정적으로 고정하는데도 성공했다. 이와 함께 가격이 비싸고 고온에 견디지 못했던 기존의 항체 대신, 미생물을 기반으로 만들어 저렴하면서도 70℃의 높은 온도에서도 뛰어난 안정성을 보여주는 ‘크링글도메인’이라는 유사항체를 활용했다. 그 결과 연구팀은 기존 진단시스템의 고비용·불안정성 문제를 동시에 해결했다. 이번 연구를 주도한 정기준 교수는 “기판을 종이나 비닐로 대체하고 유사항체를 활용해 지금보다 훨씬 저렴하면서도 안정성 높은 바이오센서를 만드는 것이 핵심기술”이라고 설명했다. 이와 함께 “최근 국내에서 발병해 국민경제에 커다란 피해를 유발했던 구제역처럼 급속한 전파력을 갖는 바이러스성 질병을 현장에서 신속하게 진단할 수 있을 것”이라며 “향후 포스트잇 또는 책자 형태로 바이오센서를 만들어 축산농가에 보급되면 전수조사가 가능해져 무조건적인 살처분을 막고 샘플링검사로 인한 부정확성을 줄일 수 있을 것”이라고 말했다. 한편, 이번 연구는 미래창조과학부 신기술융합형 성장동력사업(바이오제약) 및 글로벌프론티어사업(차세대바이오매스연구단)의 지원을 받아 수행됐다. 그림1. 종이 비닐 등 다양한 표면 물질 위에 단백질을 고정화하는 기술의 모식도 그림2. 비닐(a)과 종이(b)에 고정화된 비항체 단백질 골격을 이용한 바이오센서 그림3. 고분자 박막 증착 기술에 기반한 단백질 고정화 시스템 이미지
2014.07.16
조회수 14383
‘인공포자’ 형성 기술 개발
- “세포 안정도 증가해 세포기반 바이오센서 개발의 핵심 기술이 될 것”- 화학분야 저명 학술지인 ‘미국 화학회지’ 3월호 표지논문 선정 질병이나 병원균 등 위험물질을 진단하는 데 획기적인 ‘바이오센서’ 개발을 위한 핵심기술이 국내 연구진에 의해 개발됐다. 우리학교 화학과 최인성 교수 연구팀이 살아있는 세포를 선택적으로 코팅해 ‘인공포자’를 형성할 수 있는 원천기술을 개발했다. 생물학 및 공학계에서는 차세대 바이오센서인 세포기반센서 개발을 위해 센서 기판상에서 세포를 오랫동안 분열 없이 살아있도록 하는 것이 오랜 난제였다. 세포를 몸 밖으로 빼내면 번식하거나 쉽게 죽기 때문이다. 최 교수 연구팀은 혹독한 환경에서 생명체가 번식 없이 버텨나가는 형태인 포자를 모방해, 껍데기가 없는 세포에 화학적으로 껍데기를 만들어 자연포자와 같은 기능을 하는 인공포자를 형성할 수 있는 원천기술을 개발했다. 이번 연구결과에 의하면, 홍합의 접착력에 기여하는 단백질을 모방한 화학 물질을 이용해 세포인 효모에 인공껍데기를 형성하면 물리적・생물학적 안정도가 증가했다. 아울러 껍데기의 두께를 조절함으로써 효모의 번식 속도도 조절할 수 있었다. 최인성 교수는 “연구팀에 의해 ‘인공포자’로 이름 붙여진 이 구조를 통해 세포의 안정도를 획기적으로 증가시킬 수 있으며, 원하는 기능을 손쉽게 세포에 도입할 수 있다”며 “이 기술은 단일세포기반 바이오센서 개발의 핵심 기술이 될 것이다”라고 말했다. 연구팀은 규조류의 구조를 이용해 효모에 유리껍데기를 입혔을 때 자연계에 존재하는 효모 대비 생존율이 세배 이상 증가한다는 연구 결과를 독일에서 발간되는 저명학술지인 ‘앙게반테 케미(Angewante Chemie)’지에 지난해 10월 발표하기도 했다. 양성호 박사를 주저자로 하고 KAIST 화학과 이해신 교수와 서울대학교 화학과 정택동 교수 연구팀과 공동으로 수행한 이번 연구는 화학분야 저명학술지인 ‘미국화학회지(Journal of the American Chemical Society)’ 3월 9일자 표지논문으로 선정됐다.
2011.03.17
조회수 14157
양승만 교수, 물위를 걷게 하는 스마트 나노구조 입자 제조
- 스스로 세정하는 초소수성 연꽃잎 구조를 생체모방한 최초의 나노입자 제조기술로 Nature와 Nature Nanotechnology에서 동시에 하이라이트 흙탕물 속에서도 아름답고 깨끗한 모습을 지키는 연꽃잎, 건조한 사막에서도 물 걱정 안 하는 딱정벌레, 영양분 공급 걱정 안 하는 끈끈이주걱, 물위를 자유자재로 걷는 소금쟁이, 물이 젖지 않는 나비날개는 모두 나노구조를 지니고 있어서 신기/한 생존현상을 만들어 낸다. KAIST 생명화학공학과 양승만 교수팀(광자유체집적소자 창의연구단)은 연꽃잎 나노구조를 표면에 갖고 있는 미세입자를 균일한 크기로 연속적으로 생산하여 다양한 응용분야에 적용할 수 있는 기술을 개발해 최근 Nature와 Nature Nanotechnology등 해외 저명학술지로부터 크게 주목 받는 연구성과를 거뒀다. 국제적으로 가장 권위 있는 두 학술지에 동시에 하이라이트로 실린 것은 극히 이례적인 일로, 이 연구결과가 나노과학의 진보성과 실용성이 크게 이바지한 것임을 입증한다. 양 교수팀의 이번 연구는 2006년부터 교육과학기술부의 ‘창의적연구진흥사업’의 지원을 받아 수행했다. 연꽃잎 나노구조로 발생하는 소위 연꽃잎효과(Lotus Effect)의 응용분야는 무궁무진하여 세계적인 연구그룹들이 활발히 개발 중이나 현재의 기술수준은 연꽃잎 효과를 지니는 실용성 있는 제품을 개발하는 데는 성공하지 못하고 있다. Nature지(3월 25일호)와 Nature Nanotechnology지(4월호)가 비중 있게 하이라이트한 양 교수팀의 이번 연구에서는 감광성 액체방울을 이용하여 연꽃잎의 나노구조를 생체 모방하여 크기가 균일한 미세입자를 대량으로 만들 수 있는 기술을 성공적으로 개발하였다. 특히 주목할 것은 나노구슬이 스스로 구조를 형성하는 자기조립 원리를 이용함으로써 제조공정이 손쉽고 빨라 경제적이란 점이다(제조 공정도 참고). 우선 크기가 수백 나노미터인 균일한 유리구슬을 감광성 액체 속에 분산시킨 후, 크기가 수십 마이크로미터로 균일한 액체방울로 만들어 물에 주입하고, 물-감광성 액체-유리구슬 사이의 표면화학적 힘의 균형을 유지시키면 유리구슬은 저절로 감광성 액체방울 표면 위에 촘촘히 육방밀집구조로 배열하게 된다. 이 때 자외선을 감광성 액체방울에 쪼여서 고형화 시킴으로써 수 천개의 유리 나노구슬이 박혀있는 입자를 얻게 된다. 그 후 유리구슬을 불산으로 녹여내면 마치 골프공 같이 분화구가 촘촘하게 파진 미세입자를 만들 수 있고 여기에 플라즈마(높은 에너지를 갖는 기체이온)를 쪼여주면 분화구가 깊게 깎이면서 연꽃잎과 같은 나노구조가 형성된다. 이러한 연꽃잎 구조는 세계적인 연구그룹들이 활발히 개발 중이며 최근에 나노식각공정을 사용하여 평판 위에 연꽃잎 효과를 구현한 결과는 보고된 바 있다. 그러나 본 연구의 결과는 머리카락 보다 가는 미세한 입자표면에 연꽃잎 구조를 자기조립법으로 만든 최초의 사례로서 이 분야의 국제경쟁에서 우위를 확보하는데 필요한 핵심요소이다. Nature와 Nature Nanotechnology에서 언급한 바와 같이, 이렇게 제조된 연꽃잎 효과를 나타내는 미세입자의 응용은 다양하다. 세차가 필요없는 자동차, 김이 서리지 않는 유리, 비에 젖지 않는 섬유, 스스로 세정하는 페인트 그리고 비나 눈물에 얼룩이 지지 않는 화장품 등도 개발할 수 있다. 또한, 화학 및 바이오센서 등의 마이크로 분석소자, 물위를 걸을 수 있는 마이크로로봇, LCD 차세대 대형 디스플레이에서도 연꽃잎 효과를 이용한 코팅 기술이 사용될 것으로 기대된다. 이 연구결과는 화학분야 최고의 저명학술지인 안게반테 케미(Angewandte Chemie International Edition) 4월호 표지논문으로 하이라이트 되었고 연꽃잎 구조의 실용성을 구현하는데 크게 기여한다고 인정받아 그 호의 VIP(Very Important Paper: 매우 중요한 논문)로 선정되었다. 특히, Nature지는 3월 25일호에서 양 교수팀 연구의 중요성과 응용성에 주목하여 ‘표면과학: 물방울로 만든 구슬(Surface Science: Liquid Marbles)’이라는 제목으로 ‘뉴스와 논평(News & Views)’란에 하이라이트로 선정해 첨부한 자료와 같이 비중있게 게재했다. 또한, Nature Nanotechnology지는 4월호에서 ‘주목해야 할 연구(Research Highlights)’로 선정해 해설을 함께 실었다. <그림1> 연꽃잎의 나노구조를 생체모방한 미세입자제조 공정모식도 <그림2> 연꽃잎의 나노구조를 갖는 미세입자를 물표면에 뿌리면 막이 형성되고 이 막은 유리 막대를 찔러도 뚫리지 않고 유리막대에 물이 묻지 않는다. <그림3> Nature Nanotechnology에 실린 물 위에 뜬 물방울 사진: 연꽃잎 나노구조를 갖는 미세입자를 물표면에 뿌리면 막이 형성되고 이 막 위에 물을 뿌리면 방울로 맺히게 된다. 이것은 미세입자를 이용하면 물위로 물체를 띠울 수 있음을 보여준다. <그림4> Nature에 실린 물방울로 만든 구슬을 집게로 잡고 있는 모습: 연꽃잎 나노구조를 갖는 미세입자가 물을 포획하여 물방울 구슬을 만든 모습. 이 물방울구슬은 집게로 찌그러트려도 안 터지며 떨어뜨려도 깨지지 않는다. <그림5> 연꽃잎에 맺힌 물방울 사진과 나노구조의 전자현미경 사진과 봉우리의 모식도 <그림6> 사막의 딱정벌레와 나노구조의 전자현미경 사진 <그림7> 끈끈이 주걱과 나노구조의 전자현미경 사진
2010.03.24
조회수 24859
김봉수교수, 은나노선 합성법 개발
단결정 銀 나노선 합성법 최초 개발 - 질병진단센서, 바이오센서, 차세대 자성소자 등 광범위한 활용- 화학분야 최고 권위지인 미국화학회지에 지난 18일자 속보로 게재 KAIST(총장 서남표) 화학과 김봉수(金峯秀, 48) 교수 연구팀은 촉매를 전혀 사용하지 않는 새로운 합성법 개발로 ‘단결정 은 나노선 합성’에 최초로 성공했다. 이 연구 결과는 화학분야 최고 권위지인 미국화학회지(Journal of the American Chemical Society)에 지난 18일(수) 속보로 게재됐다. 은(Ag)은 높은 항균효과를 지니며, 전자 및 광학 재료로도 중요하게 사용된다. 은을 완벽한 단결정 나노선으로 만들면 탄소가 다이아몬드로 변하듯 물질의 특성이 변하면서 가치가 크게 높아진다. 보통의 물질은 촉매 등을 사용하면 단결정 나노선 합성이 가능한데 은과 같은 금속의 경우에는 적절한 촉매를 찾아내지 못해서 합성이 불가능했다. 金 교수는 촉매를 사용하지 않고 산화은을 출발물질로 적절한 응결조건을 맞추어줌으로써 은 입자들이 가장 에너지가 낮은 상태를 스스로 찾아가서 저절로 은 나노선이 생긴다는 사실을 발견했다. 이 기술을 이용하면 금속 및 금속화합물 대부분을 단결정 나노선으로 만들 수 있다. 특히 자성물질 나노선 및 열전소자 나노선 개발로 차세대 자성 소자 및 신에너지 핵심 물질을 개발할 수 있는 가능성이 열렸다. 합성된 은 나노섬유는 소독이 필요 없는 의료용 제품 개발, 바이오센서 및 자성메모리 제작 등에 중요한 소재가 될 수 있다. 은에 분자가 흡착되면 빛을 쪼였을 때 산란되는 빛의 세기가 1조배 이상 커진다. 이를 “표면증강 라만 효과”라 하며, 단 하나의 분자만 존재하더라도 검출이 가능하다. 이 효과는 은이 나노입자 크기로 작아지면 더욱 높아지므로 이를 이용한 질병 진단기 개발 연구가 활발하게 진행되고 있다. 특히, 은 나노선은 진단 능력이 보다 뛰어나 질병진단센서로 개발 전망이 높다. 이 연구는 과학기술부「21세기 프론티어연구개발사업」나노소재기술개발사업단에서 지원했으며, 연구 결과는 현재 세계 각국에 특허 출원중이다. <붙임1. 용어해설> ■ 단결정 은 나노선나노선은 직경이 수 나노미터에서 수백 나노미터 사이에 있는 아주 가늘고 긴 선을 말한다. 단결정은 물질을 이루고 있는 모든 구성원소가 규칙적으로 배열되어 있는 순수하고 독특한 구조인데 다이아몬드 같은 것이 대표적 예다. 은과 같은 금속의 경우에는 적절한 촉매를 찾아내지 못해서 합성이 불가능한데, 이번에 촉매를 사용하지 않고 은이 스스로 단결정 나노선을 이루는 새로운 합성법을 개발했다. ■ 은 나노섬유의 의료분야 응용 은 나노섬유를 이용하여 상처를 보호하기 위해 사용하는 의료용 붕대 등을 제작하면 병균 등의 침투를 근본적으로 방지할 수 있으므로 강력한 의료용 소재가 될 것으로 전망된다. ■ 미국 화학회지(Journal of the American Chemical Society)미국화학회(American Chemical Society)에서 발행하는 대표 학회지로서 가장 역사가 오래되고 권위가 높은 학술지이다. 여기서 특히 긴급하며 중요성이 높은 연구결과는 속보(Communication)로 신속하게 발표된다. <붙임2. 관련 사진 및 설명> 1. 연구팀이 합성에 성공한 단결정 은 나노선의 전자현미경 사진 2. 하나하나의 원자까지 보여주며 완벽한 은 단결정임을 증명하는 초고전압 전자현미경 사진
2007.07.23
조회수 24185
초고감도 나노바이오센서 원천기술 개발
KAIST 바이오시스템학과 박제균(朴濟均, 42) 교수팀이 나노자성입자를 이용 단백질, DNA 등의 생체분자(生體分子)를 초고감도로 검출할 수 있는 바이오센서 기술 개발에 성공했다. 이 기술은 나노(10억분의 일)그램 이하 수준으로 존재하는 극미량 물질을 검출할 수 있는 새로운 센서기술로 특정 자기장(磁氣場)하에서 생체분자의 정량적 및 고감도 분석이 가능하다. 황사 알레르기 등 많은 질환의 표지가 되는 생체분자들은 일반적으로 극미량 만으로도 인체에 심각한 영향을 미치기 때문에 이를 검출할 수 있는 센서기술은 차세대 나노바이오기술의 핵심분야에 속한다. 기존의 바이오센서 기술은 극미량 검출에는 본질적인 한계가 있는데 이번에 개발된 나노입자를 이용한 극미량 검출기술은 그러한 한계를 뛰어넘은 새로운 원천기술로서 향후 바이오센서, 랩온어칩(Lab on a chip, 손톱만한 크기의 칩으로 실험실에서 할 수 있는 연구를 수행할 수 있도록 만든 장치)개발 등에 크게 기여할 것으로 보인다. 이 연구결과는 최근 나노바이오분야의 세계적인 학술지인“랩온어칩”誌 인터넷 판에 발표되었고, 관련기술은 현재 특허 출원중에 있다.
2005.05.20
조회수 21177
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1